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ABSTRACT

Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA
interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemo-
cytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of
hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock
House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV),
and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which
were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy
gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this
recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was
required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies,
suggesting that autophagy does not play a major role in antiviral immunity in Drosophila. Altogether, our results indicate that,
while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects.

IMPORTANCE

Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immu-
nity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control
of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-
specific immune responses in Drosophila. This work brings to the front a novel facet of antiviral host defense in insects, which
may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral patho-
gens.

Experiments in the model organism Drosophila melanogaster
have shown that RNA interference (RNAi) plays a major role

in antiviral immunity in insects: (i) flies with mutations for the
three key genes of the small interfering RNA (siRNA) pathway,
Dicer-2, Argonaute 2, and r2d2, show increased sensitivity to in-
fection by RNA and DNA viruses (1–6); (ii) Dicer-2-dependent
21-nucleotide siRNAs of viral origin accumulate in virus-infected
flies (1, 3, 4, 7–9); (iii) several insect viruses express viral suppres-
sors of RNAi (5, 10–12). The importance of this pathway in the
control of viral infections has been confirmed in other insects, in
particular, the vector mosquito genera Aedes and Culex, which
transmit important human pathogens such as dengue virus, West
Nile virus, and other arthropod-borne viruses (13–18).

Inducible responses also contribute to the antiviral host de-
fense in Drosophila, although they remain poorly characterized
and involve virus-specific mechanisms (reviewed in references 19
and 20). We previously reported that a number of genes are in-
duced following viral infection via the Jak/STAT pathway (21).
Accordingly, flies with mutations for the Jak kinase Hopscotch are
susceptible to infection by Drosophila C virus (DCV) and Cricket
paralysis virus (CrPV), two members of the Dicistroviridae family,
although they are as resistant as wild-type controls to other viruses
(e.g., the alphavirus Sindbis virus [SINV] or the rhabdovirus ve-
sicular stomatitis virus [VSV]) (3). Virus-induced autophagy and

apoptosis have also been associated with antiviral immunity in
Drosophila (22–24) and other insects (reviewed in reference 25).

Insects also mount cellular responses to fight infections medi-
ated by blood cells called hemocytes. In Drosophila, macrophage-
like plasmatocytes and two other nonphagocytic cells, the crystal
cells and lamellocytes, have been described (26, 27). Plasmatocytes
form the majority of differentiated blood cells (90 to 95% of he-
mocytes in Drosophila larvae). Commonly referred to as macro-
phages, they can engulf and degrade dead cells, debris, and invad-
ing pathogens (28, 29). Crystal cells (5% of larval hemocytes in
Drosophila) are round cells with a 10- to 12-�m diameter and
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characteristic paracrystalline cytoplasmic inclusions. They play a
key role in host defense through melanization and they participate
in wound healing. Lamellocytes are large (15 to 40 �m in diame-
ter), flat adherent cells which encapsulate and neutralize objects
too large to be phagocytosed by plasmatocytes (30–32). Of note,
the question of the involvement of hemocytes in antiviral immu-
nity has not been a focus of interest so far for Drosophila.

Here, we performed a comparative analysis of the contribution
of cellular immunity and autophagy to antiviral host defense, us-
ing a panel of 6 different viruses. We show that hemocytes partic-
ipate in antiviral host defense against CrPV, Flock House virus
(FHV), and VSV, but not against the three other viruses tested.
FHV- and CrPV-infected cells undergo apoptosis and can be
cleared by hemocytes. In addition, we confirmed that autophagy
participates in the host defense against VSV infection, although its

contribution is modest compared to that of RNAi. However, Dro-
sophila strains with mutations of the essential autophagy gene
Atg7 are more resistant to FHV infection, indicating that au-
tophagy has a pro- rather than antiviral function in this context.
Our results indicate that blood cells and autophagy display virus-
specific functions in Drosophila and are not general antiviral path-
ways, in contrast to RNAi.

MATERIALS AND METHODS
Drosophila strains. The fly stocks were raised on standard cornmeal agar
medium at 25°C. Canton-S, w1118, y1 w1, Df(2R)BSC22/SM6a (stock num-
ber 7441), w*; P{UAS-mCherry.NLS}3 (stock 38424), Df(2R)BSC45,
w�mC/SM6a (stock 7441), UAS-Mito::GFP (stock 8443), and actin-GAL4
(stock 25374) genotype flies were obtained from the Bloomington Fly
Stock Center (Bloomington, IN). Atg7d14/Cyo-GFP, Atg7d77/Cyo-GFP,

A

FE

DC

B
PBS + CrPV
PBS + TRIS

Beads + CrPV
Beads + TRIS

PBS + FHV
PBS + TRIS

Beads + FHV
Beads + TRIS

PBS + VSV
PBS + CM

Beads + VSV
Beads + CM

P
er

ce
nt

 s
ur

vi
va

l
P

er
ce

nt
 s

ur
vi

va
l

P
er

ce
nt

 s
ur

vi
va

l

Days post infection

Days post infection

Days post infection

***
***

***

***

100
80
60
40
20
0

100
80
60
40
20
0

100
80
60
40
20
0

100
80
60
40
20
0

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 5 10 15 20

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

(C
rP

V
/R

pL
32

)
N

or
m

al
iz

ed
 e

xp
re

ss
io

n
(F

H
V

1/
R

pL
32

)
N

or
m

al
iz

ed
 e

xp
re

ss
io

n
(V

S
V

/R
pL

32
)

2.0

1.5

1.0

0.5

0
321 321 321 321

TRISCrPVTRIS CrPV
PBS Beads

321 321 321 321
TRIS FHV TRIS FHV

PBS Beads

1.0
0.8
0.6
0.4

0
0.2

631 9
CM VSV CM VSV

PBS Beads

631 9 631 9 631 9

***

***

*

**

*

**

ns

ns

***
***

FIG 1 Inhibition of phagocytosis affects resistance to CrPV, FHV, and VSV. (A, C, and E) Survival of Canton-S wild-type flies injected with latex beads
or PBS 1 day before challenge with CrPV (A), FHV (C), or VSV (E). (B, D, and F) Quantitative RT-PCR analysis of the accumulation of viral RNA at the
indicated days postinfection in Canton-S flies injected with latex beads or PBS 1 day before challenge with CrPV (B), FHV (D), or VSV (F). Tris or
conditioned medium (CM) was used as a control. Data represent the means � standard errors (A, C, and E) or SD (B, D, and F) of 3 independent
experiments, each containing three groups of 10 (A, C, and E) or 6 (B, D, and F) flies. ns, not significant; *, P � 0.05; **, P � 0.01; ***, P � 0.001 (log rank
[A, C, and E] or unpaired t test [B, D, and F]).
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CG5335d30/Cyo-GFP (33), Dcr-2L811fsX (3), UAS-bax/CyO-actin-GFP,
hml(�)-GAL4, UAS-eGFP (34), Toll-7g1-1 (35), and Toll-7p8 and Toll-
7p114 (36) stocks have been described previously. A genomic rescue of the
Toll-7 gene was established with the fosmid FlyFos 030116 (http:
//transgeneome.mpi-cbg.de) inserted at the landing site attP40 (3L), and
the transgenic chromosome was associated with the deficiency
Df(2R)BSC22, which uncovers the Toll-7 locus. For the rescue experi-
ments, Toll-7g1-1 mutants were crossed with the Df(2R)BSC22– gToll-7
rescue line. All fly lines were tested and cleared of any Wolbachia spp.
infection.

Phagocyte ablation experiments. Surfactant-free, red, 0.3-�m-diam-
eter carboxylate modified latex beads (Interfacial Dynamics Corp.) were
washed and resuspended at a 4� concentration in 1� phosphate-buff-
ered saline (PBS) (corresponding to 5 to 10% solids). Flies were injected
with 69 nl of this solution 24 h prior to virus infection.

Infections. Adult flies (half males and half females) 4 to 6 days old
were used in infection experiments. VSV and VSV with a green fluores-

cent protein inserted (VSV-GFP) were grown and titers were determined
on Vero cells. Supernatants of infected cells were centrifuged at 1,000 � g
to pellet cell debris. The resulting virus suspensions were used to infect
flies. A supernatant from uninfected cells was used as a control. For all
other viruses, stocks were prepared, titers were determined as described
previously (3), and the stocks were resuspended in 10 mM Tris-HCl (pH
7.5). Infections were done by intrathoracic injection (Nanoject II appara-
tus; Drummond Scientific) of 4.6 nl of a viral suspension (500 PFU/fly for
DCV and FHV, 5 PFU/fly for CrPV, 2,500 PFU/fly for SINV, 5,000 PFU/
fly for Invertebrate iridescent virus 6 [IIV6], and 10,000 PFU/fly for VSV
and VSV-GFP). The size of the inoculum was chosen to take into account
the kinetics of replication and colonization of Drosophila by the different
viruses (3). Injection of the same volume of 10 mM Tris-HCl (pH 7.5) or
mock-infected Vero cell culture supernatant for VSV and VSV-GFP ex-
periments was used for controls. Infected flies were incubated at 25°C and
monitored daily for survival or frozen for RNA or DNA isolation at the
indicated time points.
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Quantitative RT-PCR. Analysis of RNA expression or viral DNA was
performed by real-time quantitative reverse transcription-PCR (RT-
PCR) as previously described (3). Primers used for quantitative PCR
(qPCR) were as follows: RP49 (forward, 5=-GACGCTTCAAGGGACAG
TATCTG-3=; reverse, 5=-AAACGCGGTTCTGCATGAG-3=), DCV (for-
ward, 5=-TCATCGGTATGCACATTGCT-3=; reverse, 5=-CGCATAACC
ATGCTCTTCTG-3=), CrPV (forward, 5=-GCTGAAACGTTCAACGC
ATA-3=; reverse, 5=-CCACTTGCTCCATTTGGTTT-3=), FHV RNA1
(forward, 5=-TTTAGAAGCACATGCGTCCAG-3=; reverse, 5=-CGCTCA
CTTTCTTCGGGTTA-3=), VSV (forward, 5=-CATGATCCTGCTCTTC
GTCA-3=; reverse, 5=-TGCAAGCCCGGTATCTTATC-3=), SINV (for-
ward, 5=-CAAATGTGCCACAGATACCG-3=; reverse, 5=-ATACCCTGC
CCTTTCAACAA-3=), Toll-7 (forward, 5=-GGGCGAGAATCAAATTC

GTA-3=; reverse, 5=-CAGACCAGTCAGCTGGTGAA-3=), IIV6 (forward,
5=-TTGTTAGGAATTGGAACTGGAA-3=; reverse, 5=-GCCCTAGATGC
TGCTTGTTC-3=).

Flow cytometry. Cell death was assessed by Annexin-V–fluorescein
isothiocyanate/7-aminoactinomycin D (7-AAD) double staining (catalog
numbers 559925 and 556419; BD Biosciences) after infection at a multi-
plicity of infection (MOI) of 10 during 1 h at 4°C. After acquisition by a
Gallios flow cytometry apparatus (Beckman Coulter), data were analyzed
with FlowJo software (Tree Star) or imaged with a cell observer (spinning
disk; Zeiss, Oberkochen, Germany) with adapted settings.

Live imaging. Lab-Tek II chambered coverglasses (catalog number
155382; Thermo Scientific Nunc) were coated with a Cell-Tak solution
(catalog number 354240; Corning) diluted in ultrapure water (1 to 5 �g/
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cm2). A total of 200,000 S2 cells were added per chamber during 30 min at
25°C. Cells were incubated with different viruses at an MOI of 10 during 1
h at 4°C. NucBlue was used for live DNA staining (catalog number
R37605; Molecular Probes). Cells were then observed using adapted set-
tings on a cell observer (spinning disk; Zeiss, Oberkochen, Germany).

Cocultured hemocytes/infected S2 cells. A stable cell line derived
from plasmatocyte-like S2 cells was established for the expression of
cytoplasmic GFP and mCherry, using the construct Flag-mCherry-T2A-
GFP-T2A-neo (catalog number 32426; Addgene) and G418 at a concen-
tration of 2 mg/ml. Hemocytes were collected from actin-GAL4	UAS-
Mito-GFP adult flies and added to Lab-Tek II chambered coverglasses
with Schneider medium for 1 h at 25°C. Aliquots (100 �l) of infected S2
cells (at a concentration of 106 cells/ml) were added to each well. Cells
were imaged for 12 h, with 1 picture every 20 min, under a confocal
microscope (spinning disk cell observer; Zeiss, Oberkochen, Germany)
using adapted settings.

Statistical analysis. An unpaired two-tailed Student t test was used for
statistical analysis of data within GraphPad Prism (GraphPad Software).
Survival curves were plotted and analyzed by log-rank analysis (Kaplan-
Meier method) using the Prism program (GraphPad Software). P values
less than 0.05 were considered statistically significant.

RESULTS
Virus-specific role of plasmatocytes in antiviral host defense.
Injection of latex beads into wild-type flies blocks phagocytosis
and provides a convenient way to address the contribution of
plasmatocytes in host defense (37, 38). As observed previously
(39), flies injected with latex beads showed decreased survival
upon infection with the dicistrovirus CrPV (Fig. 1A). In addition,
bead injection led to a significant increase in the CrPV titer, sug-
gesting that phagocytes are important to control viral replication
(Fig. 1B). Resistance of wild-type flies to the nodavirus FHV and

the rhabdovirus VSV was also significantly reduced when phago-
cytosis was impaired (Fig. 1C to F). In contrast, injection of latex
beads did not affect survival or virus load following challenge with
the alphavirus SINV, the iridovirus IIV6, or DCV, which belongs
to the same family as CrPV (Fig. 2). Similar results were obtained
using transgenic flies genetically depleted of hemocytes, referred
to as hemoless (34). Hemoless flies were more sensitive to infec-
tion by CrPV, FHV, and VSV than were the wild-type controls
[hml(�)-GAL4, UAS-eGFP/�] (Fig. 3). In agreement with results
using latex beads, no differences were observed for the other vi-
ruses. These findings uncover the involvement of hemocytes in the
control of viral infections, thus revealing a novel arm of the anti-
viral defense in insects. Significantly, however, they also showed
that this host defense reaction is limited to some viral species.

FHV and CrPV, but not VSV, induce apoptosis of infected
cells. The requirement for phagocytosis in antiviral immunity
raises the question of the recognition of virus-infected cells by
plasmatocytes. FHV was one of the viruses impacted by hemocytes
and is known to induce apoptosis (23, 40), raising the possibility
that plasmatocytes are involved in the clearance of infected apop-
totic cells. One hallmark of apoptosis is the early surface exposure
of phosphatidylserine, which can readily be detected by An-
nexin-V staining. As expected, Drosophila S2 cells (a hemocyte-
like cell line) infected with FHV had a significant increase in An-
nexin-V staining 24 h postinfection (Fig. 4A). CrPV-infected cells,
and to a lesser extent DCV-infected cells, also showed increased
Annexin-V staining compared to controls, suggesting that Dicis-
troviridae trigger apoptosis as well, although we did not detect a
contribution of hemocytes in the control of DCV (Fig. 4A) (see
Discussion). Notably, CrPV-infected cells showed a significant in-
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crease in Annexin-V as early as 8 h postinfection (Fig. 4B). Ex vivo,
plasmatocytes isolated from adult flies engulfed apoptotic bodies
derived from CrPV-infected cells, supporting the hypothesis that
plasmatocytes clear apoptotic cells and prevent the release of in-
fectious particles from dead or dying cells (Fig. 4C; see also Movies
S1 and S2 in the supplemental material). Intriguingly, we did not
detect Annexin-V staining or cell death of VSV-infected S2 cells
(Fig. 4A), despite the importance of phagocytosis and plasmato-
cytes in the control of this virus in vivo. This suggests that blood
cells participate in the control of VSV by a mechanism different
from clearance of apoptotic cells.

Autophagy has opposite effects on VSV and FHV in Drosoph-
ila. Plasmatocytes could be involved in the direct recognition of
viruses. In mammals, VSV infection promotes autophagy in den-
dritic cells, leading to recognition of viral RNA by Toll-like recep-
tor 7 (TLR-7) upon fusion of autophagosomes with lysosomes
(41). Of note, autophagy and a Toll receptor, Toll-7, were re-
ported to participate in the control of VSV infection in Drosophila
(22, 42). To address the global role of autophagy in antiviral de-
fenses in flies, we used transheterozygous adult flies carrying two
null alleles of the Atg7 gene (Atg7d14/d77). These flies are viable but
exhibit a strong impairment of the autophagy pathway and suc-

cumb rapidly to starvation (data not shown) (33). We compared
these flies to controls carrying one of the null alleles in trans, with
a shorter deletion affecting the gene CG53335 but not the coding
sequence of Atg7 (Atg7d14/CG5335d30) (Fig. 5A). Of note, the three
different deletion mutants are in the same genetic background
(33). In agreement with their shorter life span and reported sus-
ceptibility to oxidative stress, Atg7 mutant flies (Atg7d14/d77) were
more sensitive to an injection of buffer than were control flies
(Atg7d14/CG5335d30) (Fig. 5B and D). In addition, Atg7 mutants
exhibited reduced survival upon VSV infection (Fig. 5B), as pre-
viously described (22). A significant but modest increase (almost
3-fold) in the VSV viral titer was observed in Atg7 mutant flies at
late time points of infection that coincided with a decrease in
survival (9 and 12 days postinfection [dpi]) (Fig. 5C). In contrast,
we did not observe significant differences in the resistance of Atg7
mutants versus control flies to infection with SINV, DCV, CrPV,
or IIV6 (Fig. 6). Surprisingly, Atg7 mutant flies showed increased
survival and decreased viral loads compared to controls infected with
FHV, suggesting that autophagy plays a proviral role in this context
(Fig. 5D and E). Altogether, these data indicate that autophagy is not
a broad antiviral mechanism in Drosophila and can impact viral rep-
lication negatively or positively, depending on the virus.
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Toll-7 and resistance to VSV infection. The VSV-specific an-
tiviral role of autophagy led us to further investigate the previously
described mechanisms. The Toll-7 receptor has been proposed to
function as a direct VSV sensor to activate autophagy and control
infection (42). However, we observed that Toll-7-deficient flies
carrying a null allele over a deficiency that covers the Toll-7 locus
[Toll-7g1-1/Df(2R)BSC22] (35) (Fig. 7A) survived VSV infection,
similar to control flies carrying one wild-type allele of Toll-7 [WT/
Df(2R)BSC22]. For comparison to Toll-7 mutants, we used Dcr-2
mutant flies [Dcr-2L811fsX/Df(2R)BSC45], which showed signifi-
cantly increased VSV replication and rapidly succumbed to infec-
tion (Fig. 7B and C). VSV RNA levels remained similar in Toll-7
hemizygote mutants and in control flies, despite a 1.6-fold signif-
icant increase observed at only one time point. However, this mild
phenotype was not reproducible when we rescued mutant flies
with a transgene carrying a wild-type copy of Toll-7 (Fig. 7D and
E). In addition, flies carrying two other null alleles of Toll-7 (p8
and p114) (36) also resisted VSV infection, similar to control flies
(Fig. 8A and B). We noted that the original study showed in-
creased sensitivity of Toll-7 mutants to a recombinant VSV-GFP
virus, whereas we used a wild-type VSV (Indiana strain); this
could help explain the differences we observed. However, we ob-
tained similar results using a recombinant VSV-GFP in a separate
set of experiments (Fig. 8C and D). We conclude that Toll-7 does

not participate in the autophagy and hemocyte-mediated host de-
fense against VSV infection.

DISCUSSION

We investigated the involvement of hemocytes and autophagy in
the resistance to a panel of six viruses representative of different
families of RNA and DNA viruses. Our data revealed that (i) un-
like RNAi, which acts via a broad antiviral pathway, blood cells
play a critical role only in defense against certain viruses, such as
CrPV, FHV, and VSV; (ii) CrPV and FHV induce apoptosis of
infected cells that likely act in concert with hemocytes to control
these viruses; (iii) autophagy contributes to the containment of
VSV infection together with hemocytes, but it does not seem to be
important for the other viruses tested.

How can hemocytes sense infected cells and control viral infec-
tions in flies? FHV, CrPV, and VSV belong to different virus fam-
ilies and do not share obvious features that would explain why
hemocytes are required to control them. However, FHV and
CrPV trigger surface exposure of phosphatidylserine, suggesting
that plasmatocytes clear apoptotic cells containing infectious par-
ticles. Recently, Nakanishi and colleagues reported a role for he-
mocytes in the control of DCV infection. They demonstrated that
DCV infection triggers activation of effector caspases, phosphati-
dylserine exposure, and efferocytosis of the dying cells that is me-
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diated by the receptors integrin 
� and Draper (24). Curiously, in
our hands blood cells were not required to control DCV infection
in vivo. This virus induced exposure of phosphatidylserine and cell
death in tissue culture S2 cells, but at lower rates than FHV and
CrPV. Of note, DCV is less virulent than the two other viruses,
possibly because its suppressor of RNAi is less potent (43). This
could account for a threshold difference for the induction of
apoptosis. In this regard, the difference between the two studies
may have been due to the high dose of DCV used by Nainu et al.
(up to 80,000 50% tissue culture infective doses [TCID50] per fly,
versus a dose of �800 TCID50 in our study).

Autophagy may be used to combat infection by intracellular
pathogens, such as viruses, by isolating them from the cytosol
through an isolation membrane and targeting them to lysosomes,
where they can be degraded. The role of autophagy in the control
of viral infection is complex, since many RNA viruses hijack the
autophagy machinery to generate the network of intracellular
membranes that will nest their replication sites (44). The com-
plexity of the relationship between viruses and autophagy is well
illustrated by the case of measles virus, in which a first wave of
autophagy, triggered during viral entry, is antiviral, whereas a sec-
ond wave of autophagy is proviral (45, 46). Our data indicate that
only two of the six viruses tested are affected by mutation of the
essential autophagy gene Atg7. The first is FHV, for which au-
tophagy is proviral, as shown by the reduced viral titer and in-
creased survival of Atg7 mutant flies. Interestingly, FHV replicates
on the outer membrane of mitochondria, and an important and
well-characterized role of autophagy is the regulation of the turn-
over of mitochondria (mitophagy) (47). We propose that efficient
removal of damaged mitochondria, which may not fully support
the activity of the viral polymerase, contributes to the success of
FHV replication. The second virus affected by autophagy is VSV,
for which we observed an increase in replication by Atg7 mutants,
as previously reported (22). This increase is, however, modest (3-
fold increase), especially compared to that in RNAi-deficient flies
(	50-fold increase). Therefore, we conclude that autophagy does
not represent a major pathway of antiviral defense in Drosophila.

A previous study reported the provocative finding that one of
the nine Toll receptors encoded in the Drosophila genome, Toll-7,
senses VSV infection and triggers antiviral autophagy (42). How-
ever, our genetic studies using three different well-characterized
alleles of Toll-7 do not support this initial observation. Although
the sizes of the families of Toll receptors in Drosophila and mam-
mals are similar, with about 10 members, phylogenetic analysis
has clearly indicated that Toll receptors evolved independently in
different animal phyla (48, 49). In Drosophila, only Toll itself has
so far been shown to participate in the induction of an immune
response in flies, although Toll-8 acts as a negative regulator of
antimicrobial defenses in the respiratory tract (50–53). Drosophila
Toll receptors are highly expressed during embryogenesis, point-
ing to developmental functions (49, 54). Indeed, a subset of Toll
receptors, including Toll-7, function as neurotrophin receptors
and are activated by members of the Spaetzle family in the devel-
oping nervous system (36, 55). Drosophila Toll receptors were also
recently shown to function as adhesion molecules during elonga-
tion of the antero-posterior axis of the embryo (56). In contrast,
experimental evidence that members of the Toll family other than
Toll itself participate in the activation of innate immunity in Dro-
sophila is still lacking.
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