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ABSTRACT

Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neu-
rons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links
the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs
1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the
HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The
infectivity of the mutants HSV-1(17�)Lox-pUL36-WD/AA-WE/AA and HSV-1(17�)Lox-CheVP26-pUL36-WD/AA-WE/AA, in
which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron micros-
copy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective paren-
tal strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in
the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired
the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and,
to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique
conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the
membranes of secondary capsid envelopment and for efficient virion assembly.

IMPORTANCE

Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly
individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins
that are essential for several stages of the herpesvirus life cycle. Here we characterized two conserved tryptophan-acidic motifs in
the central region of the large tegument protein pUL36 of herpes simplex virus. When we mutated these motifs, secondary envel-
opment of cytosolic capsids and the production of infectious particles were severely impaired. Our data suggest that pUL36 and
its homologs in other herpesviruses, and in particular such tryptophan-acidic motifs, could provide attractive targets for the
development of novel drugs to prevent herpesvirus assembly and spread.

The diversity of clinical herpesvirus isolates is shaped to a large
extent by the long coevolution between virus and host as well

as by homologous recombination among different strains (1–4).
The subfamilies of the Herpesviridae are characterized by similar
properties: for example, fast replication of members of the Alpha-
herpesvirinae in keratinocytes, epithelial cells, or fibroblasts and
latency in sensory neurons. Infections with the herpes simplex
viruses (HSV-1 or HSV-2) or varicella-zoster virus occur at young
age, and besides the latent genomes in the neuronal nuclei, the
viruses are mostly cleared from the host. Primary infections as well
as reactivations from latency cause many diseases, such as herpes
encephalitis, herpes neonatorum, or postherpetic neuralgia, par-
ticularly in immunocompromised patients (5–7).

Herpesvirus virions are enveloped, and their large DNA ge-
nomes are enclosed in capsids with a diameter of 125 nm. The
tegument constitutes their most complex structure, and in HSV-1
occupies about two-thirds of the virion volume in an asymmetric
crescent shape between the capsid and the envelope (8). Tegument
proteins modulate nuclear and cytoplasmic viral and host func-
tions and are incorporated into virions in a complex repertoire

and with various stoichiometries (9, 10). Assembly of herpesvi-
ruses commences with nuclear procapsids that package viral ge-
nomes and mature into icosahedral capsids that diffuse to the
inner nuclear membrane for primary budding (9, 11, 12). The
primary envelopes fuse with the outer nuclear membrane and
release the capsids into the cytosol, where they associate with inner
tegument proteins: e.g., pUL36 and pUL37 of the Alphaherpesviri-
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nae (10, 13, 14). Cytosolic capsids are transported along microtu-
bules to the cytoplasmic organelles of secondary envelopment (15,
16; K. Döhner, A. Buch, L. Ivanova, A. Binz, A. Pohlmannn, M.
Capucci, M. Sandbaumhüter, B. Sodeik, and R. Bauerfeind, sub-
mitted for publication).

The viral envelope and outer tegument proteins accumulate on
cytoplasmic membranes which are accessible to endocytic tracers
and harbor marker proteins of the trans-Golgi-network (10, 17–
20). Here, the membranes with the envelope proteins and associ-
ated host and viral proteins wrap around cytosolic capsids in a
process called secondary envelopment which results in the forma-
tion of transport vesicles that in the end fuse with the plasma
membrane to release virions (9–11). Neighboring cells are in-
fected by fusion of the viral envelopes with the plasma membrane
or the limiting membranes of macropinosomes or endosomes
(21–24). While at least some inner tegument proteins (e.g., pUL36
and pUL37), remain associated with the incoming capsids, enve-
lope and outer tegument proteins dissociate (15, 25–28). The cap-
sids again utilize microtubules for transport to the nucleus, where
they dock at the nuclear pores to release the viral genomes into the
nucleoplasm for viral transcription and replication (29–32).

The evolutionarily conserved large tegument protein HSV-1
pUL36 and its orthologs are expressed mainly after genome repli-
cation and contribute to various steps of the viral life cycle (33–
35). The full-length version of HSV-1 pUL36 consists of 3,164
amino acid residues (c.f. Figure 1A). In cells infected with mutants
of HSV-1 or of pseudorabies virus (PRV), a porcine alphaherpes-
virus, that lack pUL36 or express severely truncated versions of
pUL36, capsid assembly and nuclear egress into the cytosol pro-
ceed normally, but there is no secondary envelopment, and no
infectious virions are formed (26, 28, 36–38). In addition to its

function in targeting the capsids to cytoplasmic membranes for
assembly, pUL36 is also crucial for capsid binding to the nuclear
pore complexes during cell entry (29, 39, 40). An HSV-1(17�)
mutant lacking only the C-terminal 167 residues of pUL36 assem-
bles virions of regular morphology that also enter neighboring
cells, but the incoming capsids are not targeted to the nuclear
envelopes (26).

The N-terminal 533 residues of HSV-1-pUL36 and its or-
thologs encode a ubiquitin-specific protease (41, 42). Further-
more, a fragment of residues 1 to 767 interacts with tumor suscep-
tibility gene 101, a component of the ESCRT complexes which
regulate endosomal sorting (43). Residues 124 to 511 of HSV-1-
pUL36 are required for interaction with the transcriptional acti-
vator VP16 and residues 548 to 572 for binding to the inner tegu-
ment protein pUL37 (35, 37, 44–47). The interaction with VP16
contributes to efficient virion assembly but is not essential per se,
while deletion of the pUL37-binding site abrogates virus forma-
tion (37, 44, 45). HSV-1-pUL36 contains a conserved nuclear lo-
calization signal at residues 426 to 432 that is essential for targeting
incoming HSV-1 capsids to the nuclear pores but not for virion
formation (48, 49).

While Scrima et al. have solved the first crystal structure for
HSV-1 pUL36, comprising residues 1625 to 1758, which consists
mainly of �-helices (50), no functional domains have yet been
assigned to the central third of the large tegument proteins (c.f.
Fig. 1A). The most C-terminal 60 residues of HSV-1 pUL36 and
PRV pUL36 encode a binding domain for pUL25 that forms a
complex with pUL17 on the capsid surface around the vertices,
and the pUL36-pUL25-pUL17 structures contribute to the capsid
vertex-specific components (40, 51, 52). However, an HSV-1
pUL36 of residues 1 to 2998 but lacking the C-terminal 167 resi-

FIG 1 Primary structure of HSV-1-pUL36. (A) Primary structure of pUL36 and location of important point mutations, truncations, interaction domains, and
tryptophans. The N-terminal third of pUL36 contains an ubiquitin-specific cysteine protease (USP) with a conserved catalytic residue cysteine at position 65, a
nuclear localization signal spanning residues 426 to 432, binding sites for the transcriptional activator VP16, and the inner tegument protein pUL37 (35, 41, 42,
44–46, 48, 49, 81, 109). The tsB7 point mutation Y1453H prevents genome uncoating of incoming capsids at the nuclear pores at the nonpermissive temperature
(29, 110, 111). The C-terminal region of pUL36 contains two binding sites for the capsid protein pUL25 and a PQ repeat-rich region (26, 40, 112). HSV-1-pUL36
truncation mutants lacking the C-terminal 735 residues (STOP at position 2430) do not associate with capsids, whereas the 167 C-terminal residues are required
during early steps of infection (STOP at position 2998) (26). The positions of 32 tryptophan residues in HSV-1-pUL36 are indicated by vertical bars and the
respective numbers. W1766 and W1862 (red) were mutated in the present study. (B) Alignments around conserved W motifs. HSV-1-pUL36 was aligned with its
orthologs HSV2-pUL36, VZV-ORF22, PRV-pUL36 and GHV-MDV049 using UniProtKB and Clustal Omega. The tryptophan-acidic motifs are indicated by red
boxes.
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dues still associates with capsids during assembly, whereas one
with a larger C-terminal truncation of 735 residues does not (26).
This observation may be related to a second pUL25 binding site
that has been identified among residues 2037 to 2353 (40). Inter-
estingly, capsids recruit pUL36 of residues 1 to 2894 that includes
this pUL25 binding site during assembly but do not hold onto it
during nuclear targeting upon cell entry (26). Superresolution
fluorescence microscopy of extracellular HSV-1 virions localizes
pUL36 in close proximity to the capsids, whereas pUL37 and VP16
are shifted toward the envelope consistent with pUL36’s proposed
structural linker function (53).

Hot spots on protein surfaces are specific amino acid peptide
motifs that contribute more than others to the binding affinity of
protein-protein interaction interfaces (54–56). The composition
of hot spots is distinctive and not random, with tryptophans (W)
having the highest frequency; when tryptophan with its large hy-
drophobic surface is mutated to alanine (A), the size difference of
these residues generates a cavity that creates a local destabilization
(54, 57, 58). There are 32 tryptophans among the 3,164 residues of
HSV-1 pUL36. To begin to understand their potential functional
roles, we have replaced conserved central tryptophan-acidic mo-
tifs by alanine, namely, 1766WD/AA1767 or 1862WE/AA1863. Our
data show that we have identified novel viral determinants that are
required for efficient secondary envelopment and virion forma-
tion. These motifs could either contribute to pUL36 self-interac-
tions required for proper folding of the central part of pUL36,
mediate important interactions with other structural HSV-1 pro-
teins, or bind to host factors facilitating the secondary envelop-
ment of tegumented cytosolic capsids with cytoplasmic mem-
branes harboring the HSV-1 envelope proteins.

MATERIALS AND METHODS
Alignments. We used the website Universal Protein Knowledgebase cu-
rated by the public research organization UniProtKB (http://www
.uniprot.org/ [accessed October 2015]) and the entries for HSV-1-pUL36
(P10220), HSV2-pUL36 (P89459), VZV-ORF22 (P09278), PrV-pUL36
(G3G960), GHV-MDV049 (Q9E6N3), HCMV-pUL48 (P16785), HHV6-
pU31 (P52340), HHV7-pU31 (P52362), EBV-BPLF1 (P03186), KSHV-
ORF64 (Q2HR64), and MHV-68-ORF64 (O41965) to align the primary
sequence of HSV-1-pUL36 and its homologs among the Alpha-, Beta-,
and Gammaherpesvirinae.

Cells. Vero cells (ATCC CCL-81) and Vero-HS30 cells were cultured
in minimal essential medium (MEM) Eagle (CytoGen, Wetzlar, Ger-
many) supplemented with 7.5% (vol/vol) fetal calf serum (FCS) (Life
Technologies, Darmstadt, Germany). Vero-HS30 cells provide HSV-1
pUL36 in trans for complementation and contain the UL36 gene under
the control of its authentic promoter together with 2,100 kb upstream and
474 kb downstream flanking sequences and a neomycin resistance gene
(36); 500 �g/ml G418 was added to their culture medium in every 4th
passage (PAA Laboratories GmbH, Pasching, Austria).

Antibodies. We used mouse monoclonal antibody (MAb) 3B6 (Viru-
sys Corporation, Taneytown, MD) for detection of capsid protein VP5,
MAb DL6 for glycoprotein D (59), MAb 1501 for actin (Millipore, Bil-
lerica, MA), MAb 5F8 for mCherry (ChromoTek, Hauppauge, NY), and
rabbit polyclonal antibodies (pAbs) raised against residues 95 to 112 of
VP26 (60), against a pUL36 fragment of residues 1408 to 2112 (pAb 147
[26]), or a peptide of residues 936 to 951 (pAb 3; Eurogentec, Seraing,
Belgium), against full-length glutathione S-transferase (GST)-tagged
pUL37 (61), against VP16 (631209; BD Biosciences, NJ), pAb AGV30
against a GST-VP22 fusion protein (62), and pAb Romulus V raised
against numerous HSV-1 structural proteins (63, 64). Secondary goat
anti-rabbit and anti-mouse antibodies for fluorescence microscopy were
cross-adsorbed against other species and coupled to Alexa Fluor 488 or

Alexa Fluor 546 (Life Technologies, Darmstadt, Germany) and for immu-
noblotting coupled to infrared fluorescent dyes with emission wave-
lengths between 680 and 800 nm (LI-COR Biosciences, Lincoln, NE).

Ethics statement. Sera of healthy, HSV-1-seronegative volunteers
were obtained after written informed consent from blood donors. Permis-
sion was granted by the Internal Review Board of Hannover Medical
School (approval no. 893).

HSV-1 strains and construction of mutants. The strains HSV-
1(17�)Lox and HSV-1(17�)Lox-�UL36 as well as HSV-1(17�)Lox-
CheVP26 and HSV-1(17�)Lox-CheVP26-�UL36, in which the first 7 N-
terminal residues of the small capsid protein VP26 have been replaced by
the fluorescent protein monomeric Cherry (mCherry), have already been
characterized (15, 26, 65). All pHSV-1(17�)Lox bacterial artificial chro-
mosome (BAC) plasmids contain a floxed BAC cassette, inserted between
UL22 and UL23, and containing bacterial genes for replication and main-
tenance in Escherichia coli, a chloramphenicol resistance gene and a Cre
recombinase gene (15, 65–67). In eukaryotic cells, Cre recombinase cata-
lyzes the recombination between LoxP sites, and thus excises the BAC
cassette; the resulting HSV-1(17�)Lox strains contain one LoxP site be-
tween UL22 and UL23 and lack the OriL (67). To construct mutants
harboring point mutations in the tryptophan-acidic motifs, the kanamy-
cin resistance cassette was amplified from pEP-Kan-S2 and used as posi-
tive selection marker for two recombination rounds to perform a traceless
replacement of specific amino acid residues (68). For quality control, we
used seven different restriction enzymes to obtain fragments distributed
uniformly over the viral genome and sequencing. To reconstitute the
novel HSV-1(17�)Lox mutants, we transfected BAC DNA purified using
the NucleoBond BAC 100 kit according to the manufacturer’s instruc-
tions (Macherey & Nagel, Düren, Germany) into eukaryotic cells (67).
Parental Vero or Vero-HS30 cells were cultured to 80 to 85% confluence,
transfected with 10 �g/60-mm dish of BAC DNA (MBS Mammalian
transfection kit, Stratagene, CA), and cultured until cytopathic effects
developed. To obtain virus of passage one, the cells underwent three cycles
of freeze-thawing, and the released virus was used to generate the next
passage. The mutant viruses were propagated and titrated in the com-
plementing Vero-HS30 and the parental strains in Vero cells (26). The
parental strains HSV-1(17�)Lox and HSV-1(17�)Lox-CheVP26 had ge-
nome-to-PFU ratios of about 30, and the mutants HSV-1(17�)Lox-
pUL36-WD/AA-WE/AA, HSV-1(17�)Lox-CheVP26-pUL36-WD/AA-
WE/AA, and HSV-1(17�)Lox-CheVP26-�UL36 had genome-to-PFU
ratios of below 100, after DNase treatment, indicating a low concentra-
tion of defective particles (64). All experiments were conducted with
virus particles sedimented from the culture supernatant of infected
cells (15, 26).

Plaque assays and growth curves. Confluent Vero or Vero-HS30 cells
were inoculated with serial dilutions of the respective virus preparations
for 1 h at room temperature and then cultured for 2 days in medium
containing 20 �g/ml human pooled IgGs containing neutralizing anti-
bodies (Sigma-Aldrich, Schnelldorf, Germany). The cells were fixed in
water-free methanol at �20°C, and the number of plaques was deter-
mined (69). The plaque sizes were measured (software ImageJ version
1.49k; Wayne Rasband, NIH) after labeling with pAb Romulus V and
secondary antibodies conjugated to Alexa Fluor 488 and documentation
with an inverted microscope (AxioObserver Z1, ZEISS Göttingen, Ger-
many) equipped with a digital camera (Axiocam HRm) and controlled by
the Axiovision software (version 4.8.2). Subconfluent Vero cells were in-
oculated at a multiplicity of infection (MOI) of 5 PFU/cell, corresponding
to 1 � 107 PFU/ml, and incubated for 1 h on a rocking platform at room
temperature. After 6, 12, 18, 24, or 30 hours postinfection (hpi), the su-
pernatant and the cells were harvested. The intracellular virus was released
by three cycles of freeze-thawing. Intra- and extracellular virus yields were
titrated in duplicates.

Synchronous HSV-1 infection. Vero or Vero-HS30 cells were in-
fected synchronously as previously described (15, 26, 64, 70). Briefly, cells
were seeded at a concentration of 5 � 104/cm2 for about 14 h, inoculated
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with an MOI of 10 PFU/cell corresponding to 5 � 106 PFU/ml, and incu-
bated for 2 h on ice on a rocking platform to facilitate virus binding. Virus
internalization was initiated by adding growth medium and shifting to
37°C. After 1 h, residual extracellular but not internalized virions were
inactivated by a short treatment in 40 mM citrate at pH 3.0 with 135 mM
NaCl and 10 mM KCl (71, 72), and the cells were further incubated at
37°C and 5% CO2.

Immunoblotting. Vero and Vero-HS30 cells were infected synchro-
nously for 8, 10, or 12 h and lysed in a sample buffer (50 mM Tris-HCl [pH
6.8], 1% [wt/vol] SDS, 1% [vol/vol] �-mercaptoethanol, 5% [vol/vol]
glycerol, bromphenol blue) at 95°C and containing protease inhibitors
AEL (aprotinin, E-64, and leupeptin), ABP (antipain, bestatin, pepstatin),
and phenylmethylsulfonyl fluoride (PMSF). The cell lysates were main-
tained at 95°C for 5 min and loaded onto linear 5 to 15% gradient SDS-
PAGE gels. The proteins were transferred to nitrocellulose membranes
that were blocked in 5% (wt/vol) low-fat milk in phosphate-buffered sa-
line (PBS) and probed overnight with primary antibodies at 4°C. After
incubation with secondary antibodies (IRDye 800CW or IRDye 680RD)
at room temperature (RT) for 1 h, the membranes were imaged with a
digital camera (Odyssey infrared imaging system; LI-COR Biosciences,
Lincoln, NE).

Electron microscopy. Vero cells were seeded onto coverslips, infected
synchronously, and fixed at 10 or 14 hpi with 2% (wt/vol) glutaraldehyde
(Polysciences Inc., Warrington, PA) in 130 mM cacodylate buffer at pH
7.4 supplemented with 2 mM CaCl2 and 10 mM MgCl2 as previously
described (15, 26, 64, 70). The specimens were incubated for 1 h with 1%
(wt/vol) OsO4 (Polysciences) in 165 mM cacodylate buffer containing
1.5% (wt/vol) K3Fe(CN)6 followed by 0.5% (wt/vol) uranyl acetate (Agar
Scientific, Essex, United Kingdom) overnight at 4°C (73) and embedded
in situ in Epon stubs (Serva Electrophoresis GmbH, Heidelberg, Ger-
many). After removal of the coverslips, ultrathin sections of 50 nm were
cut parallel to the substrate (30, 74) and further contrasted with lead
citrate (75) and uranyl acetate (76). Images were taken with Morgani or
Tecnai G2 T20 electron microscopes (FEI, Eindhoven, The Nether-
lands) and further processed using ImageJ (version 1.49k) as reported
before (15, 26, 31, 44, 77). For quantitation, random images of non-
selected cells from the respective samples were taken at a low magni-
fication (6,000�). To image an entire nucleoplasm cross section or an
entire cytoplasm cross section of one cell, the corresponding images
were digitally stitched together using Adobe Photoshop CS (version
6.0, Adobe Systems, CA). All capsids were counted, and the respective
nuclear and cellular areas that had been sampled were measured using
an ImageJ plugin.

Immunofluorescence microscopy. Vero cells were cultured on cov-
erslips, infected synchronously, and at the indicated time points, fixed and
permeabilized with PHEMO fix (3.7% [wt/vol] paraformaldehyde, 0.05%
[wt/vol] glutaraldehyde, 0.5% [vol/vol] Triton X-100 in PHEMO buffer
of 68 mM PIPES, 25 mM HEPES [pH 6.9], 15 mM EGTA, 3 mM MgCl2,
10% [vol/vol] dimethyl sulfoxide [DMSO]) for 10 min and subsequently
washed twice with PHEMO buffer (69). The residual paraformaldehyde
was quenched with 50 mM NH4Cl for 10 min. To block unspecific protein
interactions, the samples were incubated with 10% (vol/vol) serum from
a healthy HSV-1-seronegative volunteer and 0.5% (wt/vol) bovine serum
albumin (BSA) in PBS for 1 h at RT (69) and then probed with primary
and secondary antibodies. DNA was stained by 0.05 �g/ml 4=,6-di-
amidino-2-phenylindole (DAPI) in PBS with 0.05% (vol/vol) DMSO,
0.0005% (vol/vol) NP-40, 0.025% (wt/vol) BSA, 0.05 mM Tris-HCl, pH
7.4, 0.73 mM NaCl, 0.01 mM CaCl2, and 0.11 mM MgCl2. Images were
acquired by confocal laser scanning microscopy (LSM 510 Meta [Zeiss] or
TCS SP8 [Leica Microsystems, Wetzlar, Germany]) with plan-apochro-
mat 63�/1.40 oil immersion objectives, and 405-, 488-, 561-, and 633-nm
lasers. The images were processed using either Adobe Photoshop CS or
ImageJ. Fluorescence intensities were measured in the 8-bit images along
a 1-pixel-thick line of different lengths using the “plot profile” tool of
ImageJ. The line profiles representing the plotted gray values were created

using the software GraphPad Prism (Version 5, GraphPad Software, CA)
(44).

RESULTS
Mutation of conserved tryptophan-acidic motifs of HSV-1
pUL36. To identify tryptophans in conserved neighborhoods, we
aligned the amino acid sequences of HSV-1-pUL36 (c.f. Fig. 1 for
Alphaherpesvirinae) with 10 orthologs of other herpesviruses. Of
the 32 tryptophans of the clinical isolate HSV-1 strain 17�, whose
sequence was the first to be determined (78), 4 are evolutionarily
maintained in all 11 human herpesviruses (W1711, W2072, W2213,
and W2270), 5 more in Alpha- and Gammaherpesvirinae (W913,
W1359, W1447, and W2227) or Alpha- and Betaherpesvirinae
(W2399), 12 more within the Alphaherpesvirinae (W100, W167,
W233, W356, W434, W1111, W1766, W1770, W1886, W2453, W2573, and
W3024), and 9 more among HSV-1 and HSV-2 strains (W707,
W1088, W1781, W1862, W2099, W2104, W2148, W2575, and W2704). To
summarize, 30 tryptophans are conserved among HSV-1 and
HSV-2 (Fig. 1A), but only 5 of these are flanked by conserved
acidic residues; namely 1765WD1767, 1862WE1863, and 2212DW2213

in all Alphaherpesvirinae and 706EW707 and 2453WE2454 in HSV-1
and HSV-2 strains. Furthermore, 26 other clinical isolates of
HSV-1, including the well-characterized strains F, KOS, H129,
and McKrae, contain these motifs (3; http://szparalab.psu.edu
/hsv-diversity/data).

To reveal potential functions of tryptophan-acidic motifs in
the middle third of pUL36, we replaced 1766WD1767 or/and
1862WE1863 with alanines in HSV-1(17�)Lox or HSV-1(17�)Lox-
CheVP26 (Fig. 1B). In the latter strain, the small capsid protein
VP26 has been tagged with mCherry (15, 26, 65; Döhner et al.,
submitted). We mutated the BAC plasmids pHSV-1(17�)Lox and
pHSV-1(17�)Lox-CheVP26 to encode pUL36-WD/AA, pUL36-
WE/AA, or pUL36-WD/AA-WE/AA. Restriction digest analyses
with AscI showed the expected band shift from 3.1 kb to 4.1 kb
upon a first recombination that had inserted a kanamycin resis-
tance cassette together with the AA codons (not shown). A second
recombination removed the cassette, as indicated by shifting back
to 3.1 kb (Fig. 2A). Further analyses with BamHI, EcoRI, HindIII,
NotI, SalI, and XhoI yielded the expected fragments (not shown).
However, there were some heterogeneous AscI bands between 2
and 2.5 kb as reported before (70, 79; Döhner et al., submitted).
The respective BAC plasmids were transfected into Vero-HS30
cells that provide pUL36 in trans and that complement the growth
of HSV-1-�UL36 mutants (26, 36). While all HSV-1-pUL36 mu-
tants formed plaques in Vero-HS30 cells within 3 days posttrans-
fection (dpt), it took HSV-1-pUL36-WD/AA and HSV-1-pUL36-
WE/AA 4 dpt, and HSV-1-pUL36-WD/AA-WE/AA 6 to 7 dpt to
form plaques in the parental Vero cells. Sequencing of different
HSV-1(17�)Lox stocks after the third passage in Vero-HS30 cells
validated the maintenance of the WD/AA, WE/AA, or WD/AA-
WE/AA mutations in pUL36 in the virus stocks (A. Pohlmann, L.
Ivanova, E. Hage, and B. Sodeik, unpublished data).

Characterization of HSV-1 strains with mutated pUL36
tryptophan-acidic motifs. Virions of HSV-1-pUL36-WD/AA or
-pUL36-WE/AA that had been complemented with pUL36 in
Vero-HS30 cells formed in the noncomplementing Vero cells
plaques of the same size as the parental HSV-1(17�)Lox (Fig. 2B).
However, mutants with pUL36-WD/AA-WE/AA formed only
small plaques, and mutants lacking pUL36 did not replicate at
all. In contrast, in the complementing Vero-HS30, the plaque
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FIG 2 Characterization of HSV-1-pUL36 mutants. (A) Agarose gels of AscI restriction digests of the parental BACs pHSV-1(17�)Lox and pHSV-1(17�)Lox-
mCheVP26 or the derived mutants pHSV-1-pUL36-WD/AA-WE/AA and pHSV-1-mCheVP26-pUL36-WD/AA-WE/AA. The sizes of the restriction fragments
and molecular size markers are indicated in kilobase pairs. (B) Plaque formation in Vero and Vero-HS30 cells. The plaque sizes in Vero cells were determined in
three independent experiments and those in Vero-HS30 cells in two independent experiments. Values are means 	 standard deviations (SD) (***, P 
 0.0001
as determined by Tukey’s multiple comparison test). (C) Vero cells were infected with an MOI of 5 PFU/cell (1 � 107 PFU/ml), and the samples were harvested
at the indicated time points. The extracellular and intracellular infectivities were determined in duplicates. The virus yields of the parental strains Lox (solid line)
and Lox-CheVP26 (dashed line) are depicted by closed circles, those of Lox-WD/AA (solid dark blue line), Lox-WE/AA (solid blue line), Lox-WD/AA-WE/AA
(solid light blue line), and Lox-CheVP26-WD/AA-WE/AA (dashed light blue line) by squares, and those of the deletion mutants HSV-1-�UL36 deletion mutants
are represented by open circles with a solid or dashed line for Lox and Lox-CheVP26, respectively.
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sizes of all strains were indistinguishable (Fig. 2B). Mutation of
the motifs in pUL36 changed the fraction of infectious particles
of an inoculum to a minor extent as the ratios of genomes to
PFU were only about 2-fold higher for HSV-1(17�)Lox-
pUL36-WD/AA-WE/AA strains than for their respective pa-
rental strains.

Next, we determined the amount of infectious virions after
inoculating Vero cells with an MOI of 5 PFU/cell (Fig. 2C). The
growth curves of HSV-1(17�)Lox, Lox-pUL36-WD/AA, and Lox-
pUL36-WE/AA were indistinguishable, and maximal amounts of
intracellular and extracellular infectivity had been produced within
18 h postinfection (hpi). The titers of both, HSV-1(17�)Lox-pUL36-
WD/AA-WE/AA and -Lox-mCheVP26-pUL36-WD/AA-WE/AA,
were about 3 logs lower for cell-associated and extracellular virions,
but there was a significant amplification. In contrast, there was no
virus production after inoculation with HSV-1(17�)Lox-pUL36
or -CheVP26-�UL36. Their low intracellular infectivity at 6 and
12 hpi was most likely derived from the inoculum that had been
trans-complemented with wild-type pUL36. Thus, pUL36-WD/
AA-WE/AA significantly reduced plaque sizes as well as produc-
tion of infectious intracellular and extracellular virions. There
were no differences in the growth properties of the respective
HSV-1(17�)Lox and HSV-1(17�)Lox-mCheVP26 strains indi-
cating that tagging VP26 did not aggravate the pUL36-WD/AA-
WE/AA phenotype.

To analyze the expression patterns of the different HSV-1-
pUL36 versions, Vero cells were inoculated with HSV-1(17�)Lox
or HSV-1(17�)Lox-mCheVP26 and the respective mutants at 10
PFU/cell for 8, 10 (not shown), or 12 h (Fig. 3A). In addition to
full-length HSV-1-pUL36 with an apparent molecular mass of
more than 250 kDa, the cells had synthesized several pUL36 forms
of lower molecular mass as reported before (26, 28, 44, 80). HSV-
1(17�)Lox-pUL36-WD/AA, -pUL36-WE/AA, and -pUL36-WD/
AA-WE/AA and the corresponding Lox-CheVP26 strains ex-
pressed the same size pattern of pUL36 proteins (Fig. 3A). Similar
results were also obtained for the HSV-1-�UL36 mutants upon
infection of Vero-HS30 cells that complemented pUL36 in trans

(Fig. 3B). Using a polyclonal antiserum generated against residues
1408 to 2112 (pAb 147), it appeared that less pUL36-WD/AA and
pUL36WD/AA-WE/AA had been synthesized compared to the
respective parental strains. Since these mutations are contained in
the protein fragment that had been used to generate pAb 147, we
generated another antibody against pUL36 residues 936 to 951
(pAb 3), which detected similar amounts of pUL36 in all strains.
Furthermore, mutation of 1766WD1767 and 1862WE1863 had no in-
fluence on the expression of pUL37 or VP26 from the neighboring
genes, UL37 and UL35. Thus, the codon changes apparently had
not influenced the stability of UL36 mRNAs, and these trypto-
phan acidic motifs did not contribute to the overall protein stabil-
ity, e.g., by influencing their rate of synthesis or their susceptibility
to proteases in a noncompensating manner.

HSV-1-pUL36 tryptophan-acidic motifs are required for ef-
ficient secondary envelopment. To characterize the morphogen-
esis of the novel mutants, Vero cells were infected synchronously
with 10 PFU/cell, fixed at 10 or 14 hpi, and processed for electron
microscopy. To achieve an optimal contrast for the HSV-1 capsids
and to reveal their typical hexagonal cross section of about 125
nm, we used very thin sections of about 50-nm thickness in which
the electron-dense HSV-1 DNA genome is often spread over two
or three consecutive capsid cross sections (Fig. 4A, inset). In cells
infected with HSV-1(17�)Lox (Fig. 4A) or HSV-1(17�)Lox-
mCheVP26 (not shown), all known assembly intermediates had
formed by 10 hpi (not shown) and could be easily detected by 14
hpi: nuclear A, B, and C capsids, primary virions between the
inner and the outer nuclear envelope, cytosolic capsids, capsids in
the process of secondary envelopment, intracellular vesicles har-
boring apparently intact virions (Fig. 4A), and extracellular prog-
eny virions attached to the plasma membrane (not shown). In
contrast, after infection with HSV-1(17�)Lox-pUL36-WD/AA-
WE/AA (Fig. 4B to G) or -Lox-mCheVP26-pUL36-WD/AA-
WE/AA (not shown), the cells contained a larger number of cyto-
solic capsids that clustered in a perinuclear region (Fig. 4B), few
capsids in the process of being wrapped by cytoplasmic mem-
branes (Fig. 4E), as well as rare vesicles harboring intact virions

FIG 3 HSV-1-pUL36-WD/AA-WE/AA does not affect the expression pattern of pUL36 proteins. Vero cells (A) and Vero-HS30 cells (B) were mock infected or
infected synchronously with the indicated HSV-1 strains and harvested at 12 hpi. The proteins were separated in gradient polyacrylamide gels and probed with
antibodies directed against pUL36 (pAb 147; residues 1408 to 2112), pUL36 (pAb 3; residues 936 to 951), pUL37 (pAb anti-pUL37), VP26 (pAb anti-VP26),
CheVP26 (MAb anti-red fluorescent protein), or as loading control actin (MAb 1501).
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FIG 4 Accumulation of cytosolic capsids and reduced secondary envelopment in cells infected with HSV-1(17�)Lox-pUL36-WD/AA-WE/AA. Vero cells were
infected synchronously with HSV-1(17�)Lox (A) or HSV-1(17�)Lox-pUL36-WD/AA-WE/AA (B to G) PFU, fixed at 14 hpi, and analyzed by electron micros-
copy. The inset in panel A contains three consecutive sections showing viral genomes within cytoplasmic capsids. A white asterisk indicates the microtubule-
organizing center, and N indicates the nucleus. The primary enveloped virion (C), cytosolic capsids (D), wrapping intermediate (E), enveloped virus particle (F),
and extracellular virions (G) were assembled upon infection with HSV-1-pUL36-WD/AA-WE/AA. Scale bars, 200 nm.
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(Fig. 4F) and extracellular virions bound to the plasma mem-
branes (Fig. 4G).

To quantify the relative amounts of the different assembly in-
termediates (Table 1), we systematically evaluated single cross sec-
tions of 11 randomly imaged cells infected with HSV-1(17�)Lox
and of 10 cells infected with HSV-1(17�)Lox-pUL36-WD/AA-
WE/AA. Due to the small volume that is sampled in thin sections,
there was a considerable heterogeneity among different cells. We
therefore expanded the analysis to a second experiment and sam-
pled more than 40 randomly imaged nuclei and more than 180
random snapshots from cytoplasmic regions for the parental
strains and the mutants expressing pUL36-WD/AA-WE/AA. In
reference to all cytoplasmic capsids, the percentage of cytosolic
capsids whose cross section showed no membrane association had
increased on average to 80% in the mutants compared to 49% in
the parental strains. In accordance, the amount of wrapping in-
termediates was reduced from 28% in the parental strains to 13%
and that of the enveloped virions from 23% to 7% in the mutants.
The number of nuclear capsids was a bit lower in the mutants than
in the respective parental strains. The abundance of the different
HSV-1 assembly intermediates was not influenced by adding the
mCherry tag to the small capsid protein VP26. The electron mi-
croscopy analysis shows that these tryptophan-acidic motifs in
pUL36 are important for efficient membrane association and sec-
ondary envelopment of cytosolic capsids and subsequent virus
formation and egress, but not for nuclear capsid formation and
nuclear egress.

Tegument acquisition of HSV-1 capsids lacking tryptophan-
acidic motifs in pUL36. Next, we investigated by confocal fluo-
rescence microscopy the subcellular localization of several
structural HSV-1 proteins after inoculation with HSV-
1(17�)Lox-pUL36-WD/AA-WE/AA (data not shown) or -Lox-
CheVP26-pUL36-WD/AA-WE/AA. For parental and mutated
HSV-1 strains, nuclear capsids were detected as early as 6 hpi by
antibodies against the major capsid protein VP5 or by CheVP26
expression (data not shown). As the infection progressed, increas-
ing amounts of VP5 or CheVP26 puncta appeared in the cyto-
plasm indicating successful nuclear egress (15, 26, 31, 65, 70).
There were also diffuse nuclear and cytoplasmic pUL36 signals in
addition to the capsid-associated pUL36 as reported before (15,

26, 65, 81). Cytoplasmic capsids of HSV-1(17�)Lox were distrib-
uted over the entire cytoplasm and also targeted to the cell periph-
ery as the infection proceeded (Fig. 5Ai).

In contrast, capsids of HSV-1(17�)Lox-pUL36-WD/AA-
WE/AA decorated with pUL36 had accumulated in a perinuclear
region of the cytoplasm (Fig. 5B). Such capsid clusters had already
formed at earlier time points and increased in size as the infection
progressed. They most likely corresponded to the cytosolic capsids
detected by electron microscopy in the neighborhood of the nu-
clear envelopes. In addition, there were few capsids with pUL36 in
the more peripheral cytoplasm. Parallel infections with HSV-
1(17�)Lox-�UL36 yielded no signals by the anti-pUL36 antibod-
ies (Fig. 5Cii), confirming their specificity as reported before (15,
26). Both wild-type pUL36 (yellow in Fig. 5Aiii) and pUL36-WD/
AA-WE/AA (yellow in Fig. 5Biii), were recruited onto cytosolic
but not onto nuclear capsids. However, the signal on the capsids of
HSV-1(17�)Lox-pUL36-WD/AA-WE/AA was lower, possibly
because the polyclonal antibodies had been raised against a re-
combinant fragment from aa 1408 to 2112 (pAb 147) that com-
prises the mutated residues. The subcellular localization of
pUL36-WD/AA-WE/AA suggested that its C-terminal region had
maintained its affinity for pUL25 since it had been recruited to
cytosolic capsids. A labeling for �-tubulin showed that the capsids
of HSV-1(17�)Lox-pUL36-WD/AA-WE/AA had clustered
around the microtubule-organizing center (data not shown).

We next analyzed the subcellular distribution of pUL37, an-
other inner tegument protein that depends on pUL36 to be re-
cruited onto progeny cytosolic capsids, and of the tegument pro-
tein VP16, which connects pUL36 to the outer tegument (10, 15,
44, 46, 53). pUL37 colocalized to a similar extent with cytoplasmic
capsids of HSV-1(17�)Lox (Fig. 6A) and -Lox-pUL36-WD/AA-
WE/AA (Fig. 6B)— both in the cell periphery and on cytosolic
capsids of Lox-pUL36-WD/AA-WE/AA that had accumulated in
a perinuclear region (yellow in Fig. 6Biii). pUL37 did not colocal-
ize with nuclear capsids, neither in the parental nor in the mutant
strains, as reported before (15, 28, 82, 83). After inoculation with
HSV-1(17�)Lox-�UL36, there was no pUL37 detected on the cy-
toplasmic capsids (Fig. 6Cii, green in Fig. 6Ciii) as reported before
(15, 26).

VP16 also colocalized to a similar extent with the cytoplasmic

TABLE 1 HSV-1(17�)-pUL36-WD/AA-WE/AA is impaired in secondary capsid envelopmenta

Exp no. and HSV-
1(17�) type

No. of cells or
snapshotsb No. of capsids Area (1,000 �m2)

No. of capsids/area
(1/1,000 �m2) % of cytoplasmic capsids

Nuclear Cytoplasmic Nuclear Cytoplasmic Nuclear Cytoplasmic Nuclear Cytoplasmic Cytosolic
Wrapping
intermediates

Enveloped
virions

Exp 1, Lox 11* 11* 940 715 1.9 3.5 493 204 42 32 26
Exp 2, Lox 22* 84# 1,362 910 3.5 1.9 387 479 51 26 22
Exp 2, Lox-CheVP26 20* 101# 1,541 908 4.3 2.0 356 454 54 26 20
Total or avg 53* 11*; 185# 3,843 2,533 9.7 7.4 412 379 49 28 23

Exp 1, Lox-WD/AA-
WE/AA

10* 10* 920 552 2.1 3.2 446 173 70 17 13

Exp 2, Lox-WD/AA-
WE/AA

22* 92# 905 1,867 3.2 1.9 279 983 84 12 4

Exp 2, Lox-CheVP26-
WD/AA-WE/AA

20* 100# 1,262 1,720 3.5 2.2 362 782 86 9 4

Total or avg 52* 10*; 192# 3,087 4,139 8.8 7.3 362 646 80 13 7

a Vero cells infected with HSV-1(17�)Lox, HSV-1(17�)Lox-pUL36-WD/AA-WE/AA, HSV-1(17�)Lox-mCheVP26, or HSV-1(17�)Lox-mCheVP26-pUL36-WD/AA-WE/AA were
analyzed by electron microscopy, and the numbers of nuclear capsids, cytosolic capsids, wrapping intermediates, and enveloped virions were determined.
b Shown are the number of cells of which the entire nucleus or the entire cytoplasm had been imaged (*) or the number of snapshots from a cytoplasmic region (#).
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capsids of HSV-1(17�)Lox (Fig. 7A) and of -Lox-pUL36-WD/
AA-WE/AA (Fig. 7B); both in the cell periphery and on cytosolic
capsids of -Lox-pUL36-WD/AA-WE/AA that had accumulated in
a perinuclear region (Fig. 7B). The colocalization of pUL36-WD/
AA-WE/AA with pUL37 and VP16 on cytosolic capsids suggests
that its N-terminal region had folded properly and maintained its

affinity for other HSV-1 structural proteins. After inoculation
with HSV-1(17�)Lox-�UL36, there was no VP16 detected on the
cytoplasmic capsids (Fig. 7Cii; green in Fig. 7Ciii).

The major outer tegument protein VP22 interacts with VP16
and links it to other tegument proteins as well as to envelope
proteins gE and gM (10, 84–86). VP22 was highly enriched in the

FIG 5 HSV-1-pUL36-WD/AA-WE/AA accumulates capsids in the perinuclear region and recruits pUL36. Vero cells were infected synchronously with HSV-
1(17�)Lox-CheVP26 (A), HSV-1(17�)Lox-CheVP26-WD/AA-WE/AA (B), or HSV-1(17�)Lox-CheVP26-�UL36 (C) and fixed at 10 hpi. The specimens were
labeled for pUL36 (pAb 147; white in panels ii and v and green in panels iii and vi) and analyzed by confocal microscopy. The capsids were visualized by fusion
protein CheVP26 (white in panels i and iv and red in panels iii and vi). The nuclei were identified by DAPI labeling and are depicted by dashed white lines. Scale
bars, 3 �m.
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nucleus as reported before (87–89). Many but not all cytoplasmic
capsids of HSV-1(17�)Lox colocalized with VP22 (Fig. 8Aii; yel-
low in Fig. 8Aiv). Similarly, some but not all capsids that had
accumulated in close proximity to the nucleus after infection with
HSV-1(17�)Lox-pUL36-WD/AA-WE/AA colocalized with VP22
(Fig. 8Bii; yellow in Fig. 8Biv). After inoculation with HSV-
1(17�)Lox-�UL36, there was no VP22 detected on the cytoplas-
mic capsids (Fig. 8Cii; red in Fig. 8Civ).

Further labeling experiments for the envelope proteins gB (not
shown) or gD (Fig. 8Biv) indicated that the perinuclear region in
which capsids had clustered after inoculation with HSV-
1(17�)Lox-pUL36-WD/AA-WE/AA was not enriched for cyto-
plasmic membranes (Fig. 8Biii; red in Fig. 8Bv), consistent with
the electron microscopy data. For a more quantitative evaluation,
we obtained line profiles from triple-labeling experiments of cy-
toplasmic viral structures. While there was a high degree of colo-
calization as indicated by a copeaking of the CheVP26, VP22 and
gD signals after infection with HSV-1(17�)Lox-mCheVP26 (Fig.
8Avi), cytoplasmic capsids colocalized to a lower extent with gD
(Fig. 8Bvi), gB (not shown), or VP22 (Fig. 8Bvi) after infection
with HSV-1(17�)Lox-CheVP26-pUL36-WD/AA-WE/AA. After

infection with HSV-1(17�)Lox-�UL36, there were several in-
stances in which VP22 copeaked with gD in the absence of a capsid
signal (Fig. 8Cvi). These structures most likely represented mem-
brane vesicles decorated by tegument on their limiting membrane
or L-particles within transport vesicles.

Thus, the N-terminal binding sites on pUL36 for pUL37 and
VP16 and the C-terminal binding site for capsids seemed to
operate normally in the mutated protein pUL36-WD/AA-WE/
AA. pUL36 and pUL37, which are both essential for secondary
envelopment, were associated with cytosolic capsids, and the
capsids had also gathered in a perinuclear region around the
microtubule-organizing center, but the electron and confocal
fluorescence microscopy data show that they did not associate
well with cytoplasmic membranes and were not enveloped ef-
ficiently.

DISCUSSION

The rare amino acid residue tryptophan contributes in a dispro-
portionally high frequency to short peptide motifs that mediate
protein-protein interactions (54–56). In the large tegument pro-
teins of the Alphaherpesvirinae, 21 of the 32 tryptophans are con-

FIG 6 The cytoplasmic capsids of HSV-1-CheVP26-pUL36-WD/AA-WE/AA recruit pUL37. Vero cells were infected synchronously with HSV-1(17�)Lox-
CheVP26 (A), HSV-1(17�)Lox-CheVP26-WD/AA-WE/AA (B), or HSV-1(17�)Lox-CheVP26-�UL36 (C) and fixed at 10 hpi. The specimens were labeled for
pUL37 (pAb �-pUL37; white in panels ii and green in panels iii) and analyzed by confocal microscopy. The capsids were visualized by CheVP26 (white in panels
i and red in panels iii). The nuclei were identified by DAPI labeling and are depicted by dashed white lines. Scale bars, 3 �m.

Conserved Tryptophan-Acidic Motifs in pUL36 of HSV-1

June 2016 Volume 90 Number 11 jvi.asm.org 5377Journal of Virology

http://jvi.asm.org


served. To identify further functional domains in these essential
proteins, we replaced the two most central of the conserved tryp-
tophan-acidic motifs by alanines using traceless BAC mutagenesis
and generated the HSV-1(17�)Lox and HSV-1(17�)Lox-
CheVP26 strains in which either one or both motifs in pUL36 had
been changed. HSV-1(17�)Lox mutants encoding pUL36-
1766WD/AA1767-1862WE/AA1863 were severely impaired in plaque
formation, secondary envelopment, and virion formation. Our
study therefore identified a novel important functional determi-
nant among residues 1700 to 1900 of HSV-1-pUL36. This region
has been suggested to be of functional importance since deletion
of a larger region of PRV-pUL36 of residues 1294 to 2025 includ-
ing the homologous residues cannot complement virus replica-
tion (90). The HSV-1 lysine at position 1799 located between our
tryptophan-acidic motifs is ubiquitinated and targeted by the au-
tocatalytic USP activity of pUL36; however it is not conserved
among the alphaherpesviruses (91). The novel HSV-1 mutants
were amplified to the same titers as their parental strains in the
complementing Vero-HS30 cells. This indicated that pUL36-WD/
AA-WE/AA did not operate as a dominant-negative competitor of
the authentic pUL36.

HSV-1 strains with mutated tryptophan-acidic motifs in
pUL36 are impaired in membrane association and secondary
envelopment of cytosolic capsids. Our quantitative electron mi-
croscopy analysis showed that the first steps impaired in the viral
cycle were the targeting to cytoplasmic membranes and secondary
envelopment of progeny capsids, while capsid assembly and their
nuclear egress into the cytosol seemed to proceed normally (c.f.
Table 1). The most prominent phenotype of the HSV-1-pUL36-
WD/AA-WE/AA strains was a strong accumulation of progeny
cytosolic capsids in a perinuclear region around the microtubule-
organizing center, with fewer capsids in the peripheral regions
of the cytoplasm. These perinuclear capsids had still recruited
pUL36-WD/AA-WE/AA and its partner pUL37, as in the parental
strains. The association of these two inner tegument proteins is
essential for secondary envelopment (15, 26, 28, 44). Further-
more, the capsids could still associate with the tegument protein
VP16 and to some extent with the tegument protein VP22. VP16
provides a major link to important abundant outer tegument pro-
teins such as VP22 (10, 45, 46). This is in contrast to the cytosolic
capsids of the complete deletion mutant HSV-1(17�)-CheVP26-
�UL36 that did not recruit any of these tegument proteins. How-

FIG 7 The capsids of HSV-1-CheVP26-pUL36-WD/AA-WE/AA acquire VP16. Vero cells were infected synchronously with HSV-1(17�)Lox-CheVP26 (A),
HSV-1(17�)Lox-CheVP26-WD/AA-WE/AA (B), or HSV-1(17�)Lox-CheVP26-�UL36 (C) and fixed at 10 hpi. The specimens were labeled for VP16 (pAb
631209; white in panels ii and green in panels iii) and analyzed by confocal microscopy. The capsids were visualized by CheVP26 (white in panels i and red in
panels iii). The nuclei were identified by DAPI labeling and are depicted by dashed white lines. Scale bars, 3 �m.
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FIG 8 Few capsids of HSV-1(17�)Lox-mCheVP26-pUL36-WD/AA-WE/AA undergo secondary envelopment. Vero cells were infected synchronously with
HSV-1(17�)Lox-mCheVP26 (A), HSV-1(17�)Lox-mCheVP26-pUL36-WD/AA-WE/AA (B), or HSV-1(17�)Lox-CheVP26-�UL36 (C), fixed at 10 hpi and
labeled for VP22 (pAb AGV30; white in panels ii and green in panels iii) and glycoprotein D (MAb DL-6; white in panels iv and green in panels v) and analyzed
by confocal fluorescence microscopy. The capsids were detected by mCheVP26 (white in panels i and red in panels iv and v). The nuclei were identified by DAPI
labeling and are depicted by dashed white lines. The fluorescence intensity of randomly selected capsids (white arrows) was measured in 8-bit images along a
1-pixel-thick and 2- to 2.5-�m-long line. The histograms represent the plotted gray values of CheVP26 (red), VP22 (green), and gD (blue) against the length of
the line in micrometers. Scale bars, 3 �m.

June 2016 Volume 90 Number 11 jvi.asm.org 5379Journal of Virology

http://jvi.asm.org


ever, although the known interaction partners of pUL36 still as-
sociated with cytoplasmic capsids, envelopment and virion
formation were inefficient. These results indicate that events con-
tributing to targeting progeny capsids to cytoplasmic membranes
during assembly were impaired by mutating the central
1766WD1767 and 1862WE1863 motifs to alanine.

Besides crystal structures of an N-terminal fragment of the
residues 1 to 236 of the MCMV homolog comprising the deubiq-
uitinating and deneddylating activity (41, 92, 93), and a fragment
of HSV-1 residues 1625 to 1758 (50), there is yet no further infor-
mation on the structure of HSV-1-pUL36 available. The algo-
rithm PredictProtein (94) suggests that 1766WD1767 may be part of
an �-helix and that 1862WE1863 might be located at a coiled-coil
region. Polyclonal antibodies that have been raised against resi-
dues 1408 to 2112 that include the mutated region detected several
pUL36 forms after infection with parental strains (15, 26, 95). This
complicated expression pattern of different versions of pUL36 was
unchanged upon infection with HSV-1-pUL36-WD/AA-WE/AA
strains indicating a similar usage of multiple translation start sites,
premature translation termination, and/or susceptibility to pro-
teases. The association of HSV-1-pUL36-WD/AA-WE/AA,
pUL37, and VP16 with cytosolic capsids implies that the C-termi-
nal binding domains for pUL25 on the capsid vertices and the
N-terminal regions had folded properly. These observations sug-
gest that the phenotype of the HSV-1-pUL36-WD/AA-WE/AA
strains is mainly due to conformational changes in its central re-
gion but that the N- and C-terminal domains still fulfilled their
bona fide functions.

Potential functions of the HSV-1-pUL36 tryptophan motifs.
One scenario to rationalize the phenotype of the novel HSV-1-
pUL36-WD/AA-WE/AA strains is to surmise that 1766WD/AA1767

and 1862WE/AA1863 constitute small peptide binding motifs that
may allow pUL36 to fold into a more rigid and compact confor-
mation by internal pUL36 interactions and/or to interact with
further as yet unknown host or viral factors. The inner tegument
proteins pUL36 and pUL37 of the Alphaherpesvirinae are consid-
ered to be likely receptors or regulators of microtubule motors on
the surface of cytosolic capsids, on the wrapping membrane me-
diating secondary capsid envelopment, and on the transport ves-
icles harboring fully enveloped virions (14, 15, 26, 95–103).

It has not escaped our notice that the 1766WD1767 and
1862WE1863 motifs in pUL36 bear some resemblance to tryptophan
motifs mediating binding to the C-terminal tetratricopeptide re-
peats of kinesin light chains; these repeats are required to recruit
kinesin-1 to host cargoes or to intracellular mature particles of
vaccinia virus via the vaccinia virus A36 envelope protein (104–
106). Based on several experimentally validated kinesin cargo in-
teractions, Dodding et al. defined mono- and bipartite kinesin
light chain binding motifs with conserved tryptophans embedded
by one or two hydrophilic (asparagine, N; glutamine, Q) or acidic
residues (104, 106). None of the HSV-1 tryptophans is accompa-
nied by such hydrophilic residues, but 9 are flanked by conserved
acidic aspartic acid (D) or glutamic acid (E). The linker within a
bipartite kinesin light chain binding motif should have a length of
20 to 100 residues but lack any additional tryptophans (104).
However, there are two further tryptophans W1770 and W1781 lo-
cated between 1766WD/AA1767 and 1862WE/AA1863, while other
tryptophans are, at least in the primary sequence, too far away. An
inability to recruit kinesin-1 would be consistent with the accu-
mulation of HSV-1 particles around the microtubule-organizing

center during assembly after infection with HSV-1-pUL36-WD/
AA-WE/AA. Transport along microtubules is required to ensure
efficient meeting of tegumented cytosolic capsids with the cyto-
plasmic membranes mediating secondary envelopment and thus
virion formation; if microtubule transport is impaired during as-
sembly, HSV-1 particle formation is not completely blocked but
severely reduced (15, 16, 107; Döhner et al., submitted). Further-
more, kinesin-1 can bind to isolated capsids exposing pUL36 and
pUL37 on their surfaces (96), and kinesin-1 colocalizes with trans-
port vesicles harboring fully assembled virions in epithelial cells
(108).

Biochemical and live cell imaging experiments are required to
elucidate potential differences in binding of host and viral factors
to the central region of pUL36-WD/AA-WE/AA in comparison to
authentic pUL36 and to unravel further functional consequences
of these mutations. It may furthermore be possible to obtain
structural data on these central domains of pUL36 or other large
tegument proteins of the Herpesviridae. Our analysis of the HSV-
1-pUL36-WD/AA-WE/AA mutants has identified a novel deter-
minant in the central region of pUL36 that fulfils important func-
tions in intracellular targeting of the capsids during assembly. It is
tempting to speculate that the phenotype of HSV-1-pUL36-WD/
AA-WE/AA might be explained by a reduced affinity of kinesin-1
for viral particles and that kinesin-1-mediated transport is re-
quired for efficient transport of capsids and possibly other HSV-1
particles along microtubules. However, structural rearrange-
ments that impair other functions of pUL36 may also contribute
to the phenotype of the HSV-1-pUL36-WD/AA-WE/AA mutants.
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