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Abstract

Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of
the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-
style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed
at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevi-
siae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from
South America, North America, Australasia, and Asia, but only interspecies hybrids have
been isolated in Europe. Here, using genome sequence data, we examine the relationships
of these wild S. eubayanus strains to each other and to domesticated lager strains. Our
results support the existence of a relatively low-diversity (1r = 0.00197) lineage of S. eubaya-
nus whose distribution stretches across the Holarctic ecozone and includes wild isolates
from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager
yeasts. This Holarctic lineage is closely related to a population with higher diversity (11 =
0.00275) that has been found primarily in South America but includes some widely distributed
isolates. A second diverse South American population (1T = 0.00354) and two early-diverging
Asian subspecies are more distantly related. We further show that no single wild strain from
the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the
genome portray different phylogenetic signals and ancestry, likely due to outcrossing and
incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic line-
age of S. eubayanus is responsible for genetic variation still segregating among modern
lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubaya-
nus and their domesticated hybrids reflect complex biogeographical and genetic processes.
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Author Summary

Yeasts are key industrial microbes, most notably Saccharomyces cerevisiae, which is used
to make a variety of products, including bread, wine, and ale-style beers. However, lager-
style beers are brewed with interspecies hybrids of S. cerevisiae x Saccharomyces eubaya-
nus. After its discovery in South America in 2011, rare strains of S. eubayanus have also
been isolated outside of South America. Here we compare the genome sequences of several
new and recent isolates of S. eubayanus from South America, North America, Australasia,
and Asia to unravel the relationships of these wild isolates and their domesticated Euro-
pean hybrids. Two South American populations have the highest genetic diversity. One of
these populations is closely related to a relatively low-diversity lineage that is spread across
the Northern Hemisphere and includes the S. eubayanus parents of lager yeasts. Interest-
ingly, we find that none of the wild isolates of S. eubayanus is the sole closest relative of
lager-brewing hybrids. Instead, we show that standing variation among wild S. eubayanus
strains contributed to the genetic makeup of lager yeasts. Our findings highlight the com-
plex ancestries of lager yeasts and the importance of broader sampling of wild yeasts to
illuminate our understanding of the sources of genetic variation among industrial hybrids.

Introduction

Humans changed from living in hunter-gatherer societies to agricultural societies in part
through the domestication of animals and plants [1,2]. At the same time, humans began unwit-
tingly domesticating microorganisms for the production of fermented beverages and foods, but
the underlying source populations and genetic processes for microbial domestication are not
well understood [3]. Beer is the most common fermented beverage in the world and can be
classified as ale or lager, depending on the fermentation conditions and yeasts used. Ale-style
beers are mainly produced by strains of S. cerevisiae [4]. In contrast, 94% of the beer market is
dominated by lager-style beers, which are fermented at colder temperatures by allopolyploid
hybrids of S. cerevisiae x S. eubayanus (syn. S. pastorianus syn. S. carlsbergensis) [5].

Two hybrid lineages of lager-brewing yeasts have been described based on genome content
and phenotypic traits [6-9], leading to extensive debate about their origins. The two simplest
models proposed to explain the origins of the Saaz and Frohberg lineages are through a single
shared hybridization event [9-11] or through two or more independent hybridization events
[6,12-15]. More complex models involving backcrossing have also been discussed by several
authors [9-11,14,15]. All known modern lager strains are aneuploid. Genetic contributions
from S. eubayanus have been argued to confer enhanced cold-tolerance, while genetic contri-
butions from S. cerevisiae may confer other adaptions to the brewing environment, such as
maltotriose fermentation [16-19].

Although the S. cerevisiae parent of lager yeasts seems to be closely related to modern ale
strains [6,13,15], identifying close relatives of the S. eubayanus parent has proven more chal-
lenging. Since the discovery of the species in 2011 in Patagonia, South America [5], rare strains
of S. eubayanus have been isolated in North America [20], Asia [21], and New Zealand [22].
Other than interspecies hybrids [5,23], no European isolates of S. eubayanus have been
reported. Genome sequence comparisons have shown the Patagonian type strain to be 99.56%
identical to the S. eubayanus subgenome of a lager-brewing hybrid [5], while a Tibetan isolate
was shown to be 99.82% identical [21].

Previous population and phylogenetic studies of S. eubayanus suggest that it may contain
up to five known phylogenetically distinct clades. Two distinct and highly diverse populations
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have been described in South America (Patagonia A and Patagonia B) where they have been
commonly associated with Nothofagus [20], as well as Araucaria araucana [24]. Recently, an
isolate from New Zealand was shown to belong to the Patagonia B clade by multi-locus phylo-
genetic analysis [22]. Previously isolated North American strains were shown to be the result of
recent admixture between the two Patagonian populations [20]. Three lineages have been iso-
lated in Asia, mostly in association with Quercus, including the Tibetan lineage and two early-
diverging lineages that could be regarded as distinct subspecies (Sichuan and West China)

[21]. Analyses of population differentiation and genetic diversity have not been performed on
the latter three lineages, and all five lineages have not been thoroughly analyzed together in the
same phylogenetic study.

To improve our understanding of the genetic diversity and phylogeography of S. eubayanus
and its domesticated European hybrids, we have integrated existing multi-locus datasets and
added several new isolates from North America (North Carolina, Washington, and New
Brunswick). To extend these analyses, we have also performed whole genome sequencing
(WGS) on available isolates. These results support the existence of a relatively low-diversity
Holarctic lineage, which includes wild isolates from Tibet and North Carolina, as well as the
hypothetical ancestor of the European interspecies hybrids. Depending on the region of the
genome examined, this Holarctic lineage is embedded within or sister to one of the Patagonian
populations of S. eubayanus. Genomic analyses further show that none of the known wild S.
eubayanus strains is the sole closest relative to the lager-brewing hybrids. Instead, we infer that
lager yeasts drew from alleles that were segregating among a Holarctic lineage of S. eubayanus.

Results

Broad Saccharomyces eubayanus geographic and ecological
distribution

Our ongoing high-sugar enrichment surveys of yeast from soil, leaves, bark, mushrooms, and
other natural substrates in North America isolated seven new strains of S. eubayanus: one from
Washington State, USA; two from North Carolina, USA; and four from New Brunswick, Can-
ada (Fig 1A, S1 Table). The new S. eubayanus strains were isolated from novel tree hosts,
including the bark of Cedrus sp., the bark and soil of Pinus taeda, and the bark of Quercus
rubra. North American isolates of S. eubayanus remained quite rare overall (<1% of yeast iso-
lates), except at specific sampling sites, and were only slightly biased toward the tree order
Fagales (S1 Text, S1 Fig).

Some North American strains are closely related to lager-brewing yeasts

To determine how the new North American strains are related to South American [5,20],
Asian [21], and New Zealand strains [22], we performed multi-locus phylogenetic analyses.
Specifically, we partially sequenced nine nuclear coding sequences and three nuclear intergenic
regions, consisting of a total of ~9.8 kbp, as well as one mitochondrial gene (500 bp). Existing
multi-locus data was utilized at this stage, rather than WGS data, because the Chinese strains
are not available for study.

North American strains displayed three different types of ancestry: 1) the strain from Wash-
ington was embedded within the Patagonia B clade and was more closely related to the strain
from New Zealand than any other Patagonia B strain, 2) the strains from New Brunswick were
identical at these loci to three previously characterized admixed strains from Wisconsin, USA
[20], and 3) the strains from North Carolina were closely related to the strains from Tibet and
lager beer (Fig 1B, SI Text). This latter "Holarctic" subgroup of strains (Tibet, North Carolina,
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Fig 1. S. eubayanus distribution and phylogeography. A) Geographic distribution of S. eubayanus isolates. B) Maximum-Likelihood (ML) phylogenetic
tree reconstructed using the concatenated multi-locus Dataset A (S1 Text). Bar colors are defined in the legend in panel A. Asterisks highlight new
isolates or strains not previously studied together [20]. EU: Europe; Ql: Qinghai (China); LA: Lanin (Argentina); NC: North Carolina (USA); NH: Nahuel
Huapi (Argentina); NZ: New Zealand; SH: Shaanxi (China); Sl: Sichuan (China); T: Tibet (China); VP: Villa Pehuenia (Argentina); WA: Washington (USA).
C) ML phylogenetic tree reconstructed using the complete genome sequence data. Phylogenetic trees were rooted using S. uvarum (CBS7001) as the
outgroup. The scale bars show the number of substitutions per site. The strain FM1318 is a monosporic derivative of CRUB1568" (= CBS12357" =
PYCC6148"). Bootstrap values above 50 are reported at their corresponding nodes. D) Neighbor-Net phylogenetic network reconstructed with the SNP
dataset. In phylogenetic networks, incongruent data are represented by nodes subtended by multiple edges. Blue and red arrows indicate the fractional
genomic contributions from PB-1 and PA-2, respectively. The scale bar represents the number of substitutions. Note that the admixed strains from
Wisconsin [20] and New Brunswick (Fig 2) are only shown in panel D to avoid implying a linear bifurcating ancestry.

doi:10.1371/journal.pgen.1006155.g001

and Lager) was well supported phylogenetically and was more closely related to the Patagonia

B clade than to any other population (Fig 1B). Phylogenetic supernetwork analysis and exami-
nation of the individual gene trees revealed a complex history for the strains in the Patagonian
populations and their close Holarctic relatives, but it failed to unambiguously identify the clos-
est relative of lager yeasts (S2 and S3 Figs, S1 Text).

To determine the consensus relationships among the wild populations of S. eubayanus and
the domesticated lager-brewing hybrids, we compared the complete genome sequences of 33
strains, including representatives of both known lager yeast lineages (Saaz and Frohberg) and
S. uvarum as the outgroup. In contrast to previously reported topologies citing a personal com-
munication [25] and weak support in a multi-locus dataset [22], WGS data strongly agreed
with our multi-locus phylogenetic tree and placed the Patagonia A population as an outgroup
to a clade containing the Patagonia B population plus the strains from the Holarctic lineage
(Fig 1C). Even with WGS data, it remained unclear whether the Holarctic subgroup was
embedded within the Patagonia B population or was sister to it. In contrast, the New Zealand
strain was closely related to the Washington strain, both falling within Patagonia B. These anal-
yses further showed that, on average, the S. eubayanus subgenomes of both the Saaz and
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Frohberg lager yeast lineages were more closely related to the representative strain from Tibet
than to known strains from North Carolina or Patagonia. Nonetheless, analysis of the full sin-
gle nucleotide polymorphism (SNP) dataset revealed extensively conflicting phylogenetic sig-
nals, which are displayed by the presence of nodes subtended by multiple edges in a
phylogenetic network (Fig 1D).

No wild isolate is the sole closest relative of lager-brewing yeasts

Concatenated phylogenies display the consensus topology supported by a dataset, which can
obscure phylogenetic incongruence due to recombination, incomplete lineage sorting, and
other biological processes. When genome-scale datasets are used, maximum support values
can be obtained, even when different loci strongly support conflicting topologies [26,27]. To
explore how recombination within and between populations has influenced the ancestry of S.
eubayanus strains, we developed a simple and easily visualized test statistic and assessed its per-
formance on one of the seven nearly identical admixed strains from North America (Fig 2D).
First, across the genome, we plotted the average pairwise nucleotide sequence divergence (and
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Fig 2. Genome-wide analysis of admixed strains. A) Pairwise nucleotide sequence divergence of the admixed strain yHKS210 compared to strains
from the Patagonia A and Patagonia B populations. Average pairwise divergence comparisons are represented with red and blue dots for Patagonia A
and Patagonia B, respectively. Standard deviations of pairwise divergence among Patagonia A and Patagonia B are represented by shadows, with
broader regions corresponding to higher genetic diversity within populations. B) To directly visualize which population is closest to each region of the
genome, we calculated the log, ratio of the minimum PB-Admixed nucleotide sequence divergence (dg-aq) and the minimum PA-Admixed nucleotide
sequence divergence (da-aq) in 50-kbp windows. log, < 0 or >0 indicate that part of the genome is more closely related to Patagonia A or Patagonia B,
respectively. Regions lacking values are due to filters imposed based on coverage, data quality, or their absence in some strains (see S1 Text). C)
Admixture ancestry assignment based on PCAdmix (i.e. an inference of which population is contributed that portion of the genome). Portions are defined
by 20 SNPs. Blue indicates a chromosomal region inferred to share ancestry with PB-1, red indicates shared ancestry with PA-2, and white indicates that

the method cannot make an inference. Roman numerals represent chromosomes. D) Unrooted ML phylogenetic tree reconstructed using SNPs. The
scale bar shows the number of substitutions per site, corrected for invariant sites.

doi:10.1371/journal.pgen.1006155.9002
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standard deviation) of this strain compared to the Patagonia B and Patagonia A strains, clearly
demonstrating regions more closely related to one population or the other (Fig 2A). This
approach also revealed genomic regions of high genetic diversity within populations (Fig 2A)
(e.g. the broader standard deviations of the left arm of chromosome IV among Patagonia A,
and of the left arm of chromosome VII among Patagonia B strains). Next, for each window, we
calculated the log, of the pairwise divergence ratio using the strain with the minimum pairwise
divergence value from each population. This ratio produced sharp transitions between positive
and negative values, which corresponded to likely recombination breakpoints (Fig 2B). Our
quantitative log, ratio approach was generally concordant with a well-established program
(PCAdmix) that uses a principal component analysis (PCA)-based method with hidden Mar-
kov model smoothing to assign ancestry to chromosomal regions according to the population
contributing to it (Fig 2C). All seven admixed strains shared the same population ancestry in
each chromosomal region, suggesting a recent radiation of this admixed lineage across the
Great Lakes-Saint Lawrence Seaway.

Similar plots were constructed to determine whether the sequenced Tibetan strain was the
closest relative of lager yeasts at all loci or whether there was indeed evidence for a more com-
plex ancestry (Fig 3). Although most of the genomes of both the Saaz and Frohberg lager
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Fig 3. Genome-wide pairwise nucleotide sequence divergence to lager yeasts. A) and C) are pairwise nucleotide divergence comparisons to a Saaz
and a Frohberg representative, respectively. Comparisons are made to the Patagonia A population, the Patagonia B strains, the two North Carolina
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doi:10.1371/journal.pgen.1006155.g003
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representatives were more closely related to the Tibetan genome than to the North Carolina
genomes (i.e. log, divergence ratio values < 0), 19 regions were more closely related to the
North Carolina genomes in both the Saaz and Frohberg strains (i.e. log, divergence ratio >
0.118 or 0.096 for Saaz and Frohberg, respectively, unbiased P < 0.019, permutation test) (Figs
3B, 3D and 4A). Each of these regions was supported by PCAdmix (Fig 4B), and PCAdmix
detected several additional regions where the lager strains seemed to be more closely related to
the North Carolina strains than to the Tibetan strain. The log, ratio statistic and PCAdmix
define windows differently, either based on physical genomic distance or the number of SNPs,
respectively. Therefore, as expected, the methods did not always partition genomes in exactly
the same places.

Strong support for this alternative topology was confirmed by conventional phylogenetic
analyses (Fig 4C and 4D, $4 Fig). In a handful of cases, a Patagonia B representative was actu-
ally more closely related to the parent of one or both of the lager lineages than the Tibetan
strain was (S5 and S6 Figs). These regions could be due to incomplete lineage sorting,
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size of each alignment is shown in each panel. The scale bar shows the number of substitutions per site. Phylogenetic trees were rooted using S. uvarum
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doi:10.1371/journal.pgen.1006155.g004
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introgression, or different rates of evolution among wild S. eubayanus strains, but overall, they
show that lager yeasts and wild strains of S. eubayanus have complex ancestries. In particular,
none of the known wild isolates of S. eubayanus is the sole closest relative to lager-brewing
strains. Instead, as in the case for most natural, sexually reproducing species, the data suggest
an important role for outcrossing and incomplete lineage sorting in maintaining genetic varia-
tion and creating recombinant individuals.

Standing genetic variation in S. eubayanus persists in hybrid lager-
brewing yeasts

Surprisingly, comparison of the log, divergence ratio values of the Saaz and Frohberg represen-
tatives against the North Carolina strains and the reference of Tibet (Fig 4, S5A and S6A Figs)
highlighted at least five genomic regions where the ancestries of the Saaz and Frohberg repre-
sentatives differed dramatically (Fig 4A). Several additional loci also had non-overlapping log,
ratios between Saaz and Frohberg, which provides further evidence of the complex ancestries
of these lineages (Fig 4A). We closely inspected seven regions where the log, divergence ratio,
PCAdmix, or both methods suggested that the lager lineages had different alleles (Fig 4). The
discordant ancestries of three of these regions were strongly supported by conventional phylo-
genetic analyses (Fig 4E-4G). In each case, the North Carolina strains were more closely related
to one lager strain, while the Tibetan strain was more closely related to the other.

To ensure that the phylogenetic signals in these three regions were not artifacts, we closely
inspected them using several orthogonal methods, including de novo assembly, PCR, local
investigation of conflicting phylogenetic signals, examination of heterozygosity, and examina-
tion of copy-number variants. For example, the strongest phylogenetic signal for the region on
chromosome X came from a 3-kbp region that placed the Frohberg and Tibetan strains sister
to each other on a long branch (S7 Fig). Although this region contains a solo LTR in most
strains, de novo assembly confirmed that the solo LTR was absent in the Tibetan and Frohberg
strains and was not responsible for the phylogenetic signal. Additionally, although the Froh-
berg strain had multiple copies of the S. eubayanus subgenome in this region, there was no
detectable heterozygosity. Heterozygosity was also too low in the other regions of phylogenetic
interest to confound results (S8 Fig); indeed, overall these regions had less heterozygosity
(1.08*10™* and 8.49* 10~ heterozygous sites/bp for Saaz and Frohberg, respectively) than the
genome as a whole (2.08"10™* and 4.86*10~* heterozygous sites/bp for Saaz and Frohberg,
respectively) (S9 Fig). Differences between the regions of interest and the genome as a whole in
copy-number variation (S8 and S9 Figs) and genetic diversity (S8 Fig, S2 Table) were also not
the cause of the phylogenetic incongruence. Instead, we infer that the Saaz and Frohberg strains
examined possess different alleles that were drawn from standing variation segregating among
wild strains of S. eubayanus.

Evidence that lager-brewing yeasts are descended from a Holarctic
lineage of S. eubayanus

To delineate the number of populations of S. eubayanus and determine how well differentiated
they are, we analyzed the multi-locus data from the complete strain set using STRUCTURE (S1
Text). Strains from West China were inferred to be an independent population and excluded
from subsequent analyses. Analyses of WGS data using multiple methods suggested that Pata-
gonia A and Patagonia B-Holarctic were independent populations and recovered the admixed
strains (Fig 5). Although divisions beyond K = 2 were not significant with STRUCTURE (Fig
5A), principal component and coancestry analysis with fineSSTRUCTURE provided some sup-
port for dividing Patagonia A into two subpopulations (PA-1 and PA-2, Fig 5B and 5C).
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doi:10.1371/journal.pgen.1006155.g005

Similarly, these analyses split Patagonia B-Holarctic into three subpopulations, one containing
most of the non-admixed strains from Holarctic ecozone (Holarctic: North Carolina, Lager,
Tibet), one containing only S. eubayanus strains from South America (PB-2), and a final sub-
population containing South-American and non-South American strains (PB-1).

These analyses also provided additional information about closest relatives of the admixed
and lager strains. The fineSSTRUCTURE coancestry heatmap suggested that PB-1 and PA-2
were the closest relatives of the admixed strains (Fig 5B). These results were also supported by
analysis of D-statistics, where the most significant values were obtained when PB-1 and PA-2
were tested as donors to the admixed strains (S3 Table). Analysis with PCAdmix suggested
that PB-1 contributed about 58% of the genome to the admixed strains, whereas PA-2 contrib-
uted 42%, results consistent with the phylogenetic analyses and an f4-ratio test (S3 Table, Fig
1D). Analysis with PCAdmix for the lager genomes further suggested that strains more closely
related to the Tibetan strain contributed 66% of the S. eubayanus genetic material, whereas
strains more closely related to those from North Carolina contributed 34% (S1 Text). Nonethe-
less, we caution that the few available data are best interpreted as pointing to the existence of
standing variation across the Holarctic lineage, rather than direct ancestry or admixture involv-
ing these specific extant strains.

PLOS Genetics | DOI:10.1371/journal.pgen.1006155 July 6, 2016
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These results, together with the nucleotide diversity statistics (Fig 6A), the pairwise compar-
ison of F, the distribution of SNPs (Fig 6B), and phylogenetic analysis (Fig 1B) support at
least four distinct populations of S. eubayanus: Patagonia A, Patagonia B-Holarctic, Sichuan,
and West China (Fig 6A). The nucleotide diversities of the West China population and the
Holarctic lineage were lower than either population from Patagonia (Fig 6A, S4 Table). In con-
trast to the other populations or groups, including the Holarctic lineage as a whole, only the 10
strains from Tibet had significantly negative values for Tajima’s D, Fu and Li's D, and Fu's F
(54 Table). The Tibet group’s Fay and Wu’s H value was not significantly different from zero
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doi:10.1371/journal.pgen.1006155.g006
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(H=0.76 P > 0.05, calculated using Patagonia B strains as an outgroup), which is consistent
with a neutral demographic explanation, such as a recent local population expansion across the
vast region of Tibet surveyed.

Discussion

Parallels between the biogeography of S. eubayanus and its sister
species

The patterns of diversification and differentiation between S. eubayanus populations are
remarkably reminiscent of those described recently for its sister species, S. uvarum (510 Fig)
[23]. Specifically, both species include early-diverging subspecies in East Asia or Australasia.
Both species have two highly diverse, partially sympatric populations in Patagonia that are
about 1% divergent in DNA sequence. In both cases, one of these populations is closely related
to a relatively low-diversity lineage with a Holarctic distribution that gave rise to domesticated
hybrid yeasts that ferment economically important products. In contrast to the process of
introgression seen in domesticated strains of S. uvarum, lager yeasts were generated through
allopolyploidization of S. eubayanus and S. cerevisiae. Genetic mechanisms of hybridization
aside, the deep parallels between the diversifications of these two sister species in the wild sug-
gest that similar biogeographical and ecological forces may explain their distributions. The
presence of wild S. uvarum in Europe further suggests that Holarctic representatives of S.
eubayanus are present, or may have been present in the past, somewhere in Europe.

The importance of understanding the Holarctic lineage of S. eubayanus

Although non-hybrid isolates of European S. eubayanus remain elusive, we expect European
strains of S. eubayanus would have relatively low genetic diversity, belong to the Holarctic line-
age, and be genetically similar to isolates from Tibet and North Carolina, as well as to the
parents of lager yeasts. Importantly, any European strains that might eventually be discovered
will not be the closest relative to all lager yeasts at all loci because, as this study shows, standing
genetic variation in S. eubayanus made it through the bottleneck of hybridization that
generated modern lager yeasts. All of the currently proposed models of hybridization are com-
patible with this data, including multiple hybridization events [6,12-15], differential loss-of-
heterozygosity among heterozygous ancestors [11], or more complicated backcrossing scenar-
ios [9-11,14,28]. The complexity of lager yeast ancestry means that identifying the alleles rele-
vant for specific traits may require a broad sampling of S. eubayanus genetic diversity from
across the Holarctic ecozone.

In contrast to the frequent isolation of S. eubayanus from Nothofagus in Patagonia [5], the
rare Northern Hemisphere strains of S. eubayanus described here and in other recent studies
[20,21] were isolated in association with several different tree genera (S1 Fig). These findings
suggest that our understanding of S. eubayanus ecology is still quite limited or may be an indi-
cation of its generalist character, as has recently been argued for S. cerevisiae [29]. Expanded
sampling of substrates beyond the conventional hosts of Quercus and Nothofagus [30], even in
South America [24], may be critical to gaining a fuller view of the ecological and genetic diver-
sity of S. eubayanus.

Additional isolates will also be key for evaluating competing demographic models to explain
the relationship between the Holarctic lineage and the Patagonia B population. One possibility
is that a large ancestral population was split by vicariance, perhaps as the climate warmed fol-
lowing the last glacial period. Alternatively, long-range dispersal could have occurred between
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the Northern Hemisphere and South America, potentially in either or both directions. The rel-
ative diversities of the Holarctic and Patagonia B lineages and the confinement of a signature of
recent demographic expansion to the Tibetan strains argue that dispersal from South America
into the Holarctic may be more likely. Nonetheless, the distribution of clades defies a simple
explanation and appears to require cladogenic events in multiple locations, both for S. eubaya-
nus and its sister species S. uvarum.

Human activity is not required to explain the dispersal of S. eubayanus to
Europe

Although humans undoubtedly played a role in selecting for the allopolyploid hybrids that
became lager yeasts, human activity is not required to explain the spread of wild S. eubayanus
across the Holarctic ecozone. Even conservative molecular clock estimations place all S.
eubayanus cladogenic events, including the origin of the Holarctic lineage, well outside of the
range of written human history (S11 Fig). Moreover, no known strain is a close enough relative
to the ancestor of lager yeasts to be compatible with human-mediated transfer to Europe via
the Silk Road [21] or any hypothesis involving colonial era transfer to Europe from South
America [5] or North America.

How yeasts migrate is still controversial. Proposed natural mechanisms include long-range
dispersal by birds [31,32], short-range dispersal by insects [33], or dispersal by wind [34]. The
former may be particularly relevant because some bird migration flyways from Patagonia to
Greenland or Alaska, overlap with European or Asian migration routes, respectively [35].
Clear cases for human-associated yeast dispersal have been made for industrial strains of S. cer-
evisiae, including the dispersal of Wine/European strains to wine-making regions all over the
world [36-41], as well as some interspecies hybrids used in wine production [42]. Interestingly,
Wine/European strains of S. cerevisiae have retained considerable genetic diversity, perhaps
because large effective population sizes were maintained and because of the semipermeable
nature of the vineyard environment [41]. European strains of S. paradoxus have also been
inferred to have been dispersed to North America and New Zealand, possibly in association
with Quercus [25,39,43]. A recent population genomic analysis of the former case revealed
extremely low levels of diversity and a coalescence date consistent with colonial era dispersal
[44].

The genomic diversity that we observed among the admixed strains of S. eubayanus from
Wisconsin and New Brunswick is also consistent with a very recent dispersal to opposite ends
of the Great Lakes-Saint Lawrence Seaway. The number of inferred breakpoints (40 total cross-
overs, Fig 2B) is similar to the number observed in one round of meiosis in S. cerevisiae [45],
and each Patagonian population seems to have contributed approximately half of their
genomes. Since all seven admixed strains share the same breakpoints and have nearly identical
genome sequences (of 325 variable SNPs, only 37 differentiate Wisconsin from New Bruns-
wick, Fig 2D), they are likely descended quite recently from a single individual that underwent
haploselfing after an outcrossing event and one round of meiosis. Although we cannot be cer-
tain whether this dispersal across North America and the dispersal of S. paradoxus to North
America were anthropic [44], they demonstrate that recent continent-scale dispersal is detect-
able in yeast using WGS data. In contrast, the mean genetic distance among S. eubayanus Hol-
arctic genomes is well over 100 times higher (0.1989% for the Tibetan, North Carolina, and
lager strains versus 0.0013% for the admixed strains of S. eubayanus and 0.0009% for the
North American strains of S. paradoxus from Europe).
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Conclusion

In conclusion, S. eubayanus biogeography and the origins of lager yeasts have proven more
complex, but also much richer, than initially hypothesized. Here we have presented evidence
that lager yeasts are derived from a relatively low-diversity lineage of S. eubayanus with a Hol-
arctic distribution. These strains from the Holarctic lineage diversified from within one of two
diverse populations found primarily in Patagonia. This pattern of diversification is similar to
that of its sister species, S. uvarum. Although the S. eubayanus subgenomes of lager yeasts were
drawn from the Holarctic lineage, none of the known S. eubayanus isolates is their sole nearest
relative. Indeed, for the first time, we have shown that variation segregating among wild S.
eubayanus persists among the allopolyploid lager-brewing yeasts. These findings strongly sug-
gest that further sampling of the Northern Hemisphere for S. eubayanus will, not only enhance
our understanding of the natural history and genetic diversity of this important species, but
offer valuable insight into the sources of diversity among modern brewing strains.

Materials and Methods
Yeast isolation

New S. eubayanus strains were isolated from two locations in the USA, Washington State
(yHKS509) and North Carolina (yHRVM107, yHRVM108), by following previously described
high-sugar enrichment protocols at 10°C [46]. Four new S. eubayanus were isolated by enrich-
ment from New Brunswick (yHDPN421-yHDPN424), Canada, as previously described [47],
with the exception that the samples were incubated in liquid medium for seven months at 4°C,
followed by a second culture step on solid medium for two weeks at 4°C. Strains were initially
identified by PCR and Sanger-sequencing of the ITS region of the 7rDNA locus (see S1 Text).
Complete results of these yeast biodiversity surveys will be reported elsewhere, and our recent
publications represent less than half of the yeast strains isolated [46,47].

Multi-locus sequence data generation

For the phylogenetic and nucleotide diversity analyses, we selected genes and intergenic
sequences to integrate the maximum amount of sequencing data available from previous stud-
ies [20-22] (S1 Table). Additional genes from Patagonian and the newly isolated S. eubayanus
strains were PCR-amplified and Sanger-sequenced (S4 Table). Reads from sequenced genes
were assembled using the STADEN Package v1.7 [48]. The COX2 sequence of strain
CDFM21L.1 was assembled in GENEIOUS v6.1.6 using the reads retrieved by BLASTing the S.
eubayanus COX2 sequence against SRR1507225 from the SRA database of NCBI [21]. Individ-
ual genes of strain P1C1 were retrieved by BLASTing against its genome assembly (S1 Text).
New sequences generated were deposited in GenBank under accession numbers KR871406-
KR871626.

Individual phylogenetic gene trees and supernetworks

Phylogenetic gene trees and the supernetwork were reconstructed following our previous
approach [20]. The supernetwork was reconstructed using the relative average for edge weights
and using the filter option to discard the splits from PDRI0 (a gene undergoing balancing selec-
tion or reciprocal introgression between some populations) (Dataset A) (S1 Text). An addi-
tional Neighbor-Net phylogenetic network was reconstructed for the SNP dataset using
SplitsTree v4.12.8 [49].

PLOS Genetics | DOI:10.1371/journal.pgen.1006155 July 6, 2016 13/20



@’PLOS | GENETICS

Holarctic Saccharomyces eubayanus

Genome sequencing and analyses

Genomic libraries for available S. eubayanus strains (S1 Table), one representative strain from
the Saaz lineage of lager yeast (CBS1503), and one representative strain from the Frohberg line-
age of lager yeast (W34/70) were generated as described previously [50] and sequenced using
Mumina paired-end sequencing (S5 Table). Details on the identification of high-quality single
nucleotide polymorphisms (SNPs) can be found in S1 Text. Illumina reads were deposited in
the SRA database of NCBI under accession number SRP064616.

After removing positions with gaps in any strain, whole genome nucleotide divergence
graphs were constructed by calculating the pairwise number of segregating sites per nucleotide
or divergence (d) in windows of 50,000 bp using the PopGenome package for R [51]. To com-
pare how closely related various strains of interest (i.e. lager or admixed) were to a portion of
the genome of two defined reference strains (e.g. North Carolina and Tibet), the value of the
log, of the ratio of the d values were calculated for each window (see S1 Text).

The whole genome phylogenetic tree was reconstructed from WGS data using RAXML v8.1
[52]. For phylonetwork and population analyses, SNPs were selected using strict coverage and
quality filters (details in S1 Text). Based on the comparisons of the log, divergence ratios or the
PCAdmix results, genomic regions of interest were extracted for phylogenetic analyses (see S1
Text). Regions of interest were extracted from whole genome assemblies reconstructed using
iWGSv1.01 [53].

Population genetics and genomics

A multi-locus concatenated alignment from Dataset A (~7.7 kbp) was generated using FAScon-
CAT v1.0 [54]. Multi-locus concatenated alignment and WGS data were used for diversity sta-
tistics, polymorphism comparisons, and population analyses (see S1 Text). The concatenated
alignment was also used to reconstruct a Maximum-Likelihood phylogenetic tree in RAXML
v8.1 using the same parameters as for the individual gene trees.

A second recombinant-free concatenated alignment of the coding sequences from Dataset B
(Dataset A where IntMD, MET2, and MLSI sequences, which had low information content,
were discarded) was generated using IMGC [55] and FASconCAT. The 380 fourfold degener-
ate sites in this alignment were used to estimate divergence times. Divergence time reconstruc-
tion was performed as we described previously [20].

The number of populations for the SNP dataset were inferred using STRUCTURE v2.3.4
[56]. fineSTRUCTURE v2 [57] was used to generate coancestry heatmaps and to perform
PCA. Parental contributions to the genomes of Wisconsin, New Brunswick, Saaz, and Frohberg
strains were estimated using a hidden Markov model of evolution implemented in PCAdmix
v1.0 [58], and chromosomes were partitioned according to the output results. Analyses of
f- and D-statistics were performed in ADMIXTOOLS v3.0 [59].

Supporting Information

S1 Text. Supplementary materials.
(DOCX)

S1 Table. Strains used in this study.
(XLSX)

S2 Table. Genes within the regions of interest.
(XLSX)
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S3 Table. f3-, D-statistics and f4-ratio tests performed in ADMIXTOOLS.
(XLSX)

$4 Table. Summary statistics for each population or group using multi-locus data.
(DOCX)

S5 Table. Summary of whole genome sequencing statistics.
(XLSX)

S6 Table. PCR primer sequences and conditions used in the present study.
(DOCX)

S1 Fig. Distribution of host trees for S. eubayanus isolates. A) Pie chart representing the tree
genera from which S. eubayanus was isolated. The asterisk indicates the tree host for the 13
strains isolated by Rodriguez et al. [24]. B) Proportion of S. eubayanus associated to different
tree orders. Populations were not designated by Rodriguez et al. [24], so these strains were
excluded from S1B Fig. The P1C1 strain [22] lacks host information and it was not included in
this figure.

(TIF)

S2 Fig. Multi-locus phylogenetic supernetwork summarizes cases of likely reticulation,
including introgression, gene flow, and hybridization. Phylogenetic supernetwork removing
splits, excluding PDRI0 (a gene under balancing selection or reciprocal introgression) from the
multi-locus dataset. Population assignment is represented by a blue, red, or brown shadow for
Patagonia B-Holarctic, Patagonia A, or West China, respectively. The scale bar in the phyloge-
netic supernetwork represents the inferred edges” weights using the average relative tree size
option to normalize for different individual tree scales.

(TTF)

S3 Fig. Individual gene trees. Each panel represent the phylogenetic tree reconstructed using
A) CCAL, B) FSY1, C) FUN14, D) GDH1, E) HIS3, F) Intergenic region between APPI1 and
YPT53, G) Intergenic region between FAR8 and RSF1, H) Intergenic region between MSLI and
DSN1,1) MET2,]) MSL1, K) PDR10, L) RIP1, and M) COX2 sequence. Cases of introgression
or incomplete lineage sorting can be observed between Patagonia A and Patagonia B strains,
such as yHCT96 (Patagonia A) whose FUN14 allele is identical to the FUN14 allele of several
Patagonia B-Holarctic strains (S9C Fig). Bootstrap values above 50 are reported to the left of
their respective nodes. Scale bars represent nucleotide substitutions per site.

(PDF)

S4 Fig. Phylogenetic tree reconstruction of the regions of interest without collapsing the
Patagonia A and Patagonia B strains. Reconstruction of the phylogenetic tree of four of five
regions of interest. These trees are identical to those shown in Fig 4 but the Patagonia A and
Patagonia B clades were not collapsed. Bootstrap values above 50 are reported to the left of
their respective nodes. Scale bars represent nucleotide substitutions per site.

(TIF)

S5 Fig. Genome-wide log, ratios of pairwise divergence of the Saaz lager representative to
key populations and lineages. A) Tibet-Saaz versus North Carolina-Saaz, B) Tibet-Saaz versus
Patagonia B-Saaz, and C) North Carolina-Saaz versus Patagonia B-Saaz. Arrows indicate the
direction where log, ratios of pairwise divergence suggest a relatively closer relationship to a
particular lineage or population. The Patagonia B value reported is the lowest pairwise diver-
gence value of all Patagonia B strains for that window. The window size is 50-kbp.

(TIF)
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S6 Fig. Genome-wide log, ratios of pairwise divergence of the Frohberg lager representative
to key populations or lineages. A) Tibet-Frohberg versus North Carolina-Frohberg, B) Tibet-
Frohberg versus Patagonia B-Frohberg, and C) North Carolina-Frohberg versus Patagonia
B-Frohberg. Arrows indicate the direction where log, ratios of pairwise divergence suggest a
relatively closer relationship to a particular lineage or population. The Patagonia B value
reported is the lowest pairwise divergence value of all Patagonia B strains for that window. The
window size is 50-kbp.

(TIF)

S7 Fig. Region of interest on chromosome X. A) Alignment of the region of interest on chro-
mosome X. Genes annotated in this region are represented above the alignment. Black lines
represents nucleotide differences compared with the reference sequence of FM1318. Gaps are
represented as white spaces; gaps in FM1318 or CBS7001 are gaps in the alignment, rather
than gaps in the assemblies. B) and C) are ML phylogenetic trees reconstructed using the seg-
ments of chromosome X region indicated by the light blue and dark blue colors, respectively.
Bootstrap values above 50 are reported to the left of their respective nodes. Scale bars represent
nucleotide substitutions per site.

(TIF)

S8 Fig. Copy number variation, heterozygosity levels, and gene annotations of the regions
of interest for the Frohberg and Saaz representatives. Copy number graphs of chromosomes
IIL, IV, VIII, X, and XI for the regions of interest for the Saaz (CBS1503) and Frohberg (W34/
70) representatives. These graphs were extracted from the complete chromosome representa-
tions in S9 Fig. The coordinates correspond to the FM1318 reference genome. The lower panels
correspond only to the regions demarcated by the dashed lines in the upper panels. The lower
panels report the coverage values (using 1-kbp windows) for the regions of interest, gene anno-
tations, and the absolute counts of homozygous and heterozygous SNPs (using 1-kbp win-
dows) compared with the FM1318 reference genome.

(PDF)

S9 Fig. Copy number and heterozygosity levels of S. eubayanus and Lager strains. Coverage
levels normalized using the median value of coverage for the complete genome are shown for
the S. eubayanus subgenome in the Saaz (CBS1503) and Frohberg (W34/70) in A) and B). Nor-
malized coverage levels for non-hybrid strains of S. eubayanus are shown in C) CDFM21L.1,
D) yHRVM108, E) yHCT61, F) yHCT70, G) yHCT96, H) yHCT114, I) yHKS212, and J)
FM1318. The chromosome copy numbers of hybrids were inferred by establishing the lowest
average coverage values for one copy (i.e. chromosome II of the Saaz, CBS1503, and chromo-
some I of the Frohberg, W34/70). Absolute counts of homozygous and heterozygous SNPs
(using 50-kbp windows) compared with the FM1318 reference genome are shown in the bot-
tom graph for each strain. High levels of heterozygosity were detected in subtelomeric regions
and a handful of other regions outside of the regions of interest (S9 Fig). These regions of high
heterozygosity were shared among strains, including the monosporic and homozygous strain
FM1318 (panel J), suggesting they were false positives. The regions of interest (S8 Fig) have less
heterozygosity (1.08*10™* and 8.49* 10~ heterozygous site/bp for Saaz and Frohberg, respec-
tively) than the average heterozygosity detected genome-wide (2.08*10™* and 4.86*10~* hetero-
zygous site/bp for Saaz and Frohberg, respectively). Moreover, heterozygosity was not
positively correlated with an increase in the number of copies inferred (linear regression r* =
0.097, p-value = 0.381). Nucleotide diversity levels of the annotated genes within the regions of
interest (S8 Fig, S2 Table) were, in general, lower than the average value found genome-wide
among the strains from the Patagonia A-Patagonia B-Holarctic clade (0.57%). For 14 of 44
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genes the values were higher but less than twice the genome-wide diversity values. Based on
comparisons to the multi-locus dataset, the false positive rate of our pipeline at calling non-het-
erozygous sites was low (4.63*10 °SNPs/site) and not sufficient to influence conclusions
regarding the regions of interest.

(PDF)

S10 Fig. S. eubayanus and S. uvarum phylogenetic tree comparison. S. eubayanus and S.
uvarum phylogenetic trees are shown in A) and B), respectively. Color bars represent popula-
tions for each species, and are colored according to the colors used in the previous S. eubayanus
phylogenetic tree figures. Demographically similar populations of S. uvarum use the analogous
colors from S. eubayanus. The multi-locus S. eubayanus phylogenetic tree is from Fig 1B, while
the S. uvarum phylogenetic tree is reconstructed from Almeida et al. [23] after correcting
branch lengths for the presence of invariant sites. Phylogenetic trees were rooted using S.
uvarum (CBS7001) or S. eubayanus (FM1318) as the outgroup in A) and B), respectively. The
scale bar represents the number of substitutions per site.

(TIF)

S11 Fig. Time-calibrated phylogenetic tree. Blue, red, and brown bars indicate the population
designation for Patagonia B-Holarctic, Patagonia A, and West China, respectively. The scale
bar represents divergence time in thousands of years (kya).

(TIF)

$12 Fig. The recombinant TTH27L.1 MLS1 gene sequence is likely an artifact. The
TTH27L.1 MLSI sequence reported in GenBank appeared to be a recombinant version
between S. eubayanus West China and S. uvarum. Black and gray colors represent polymor-
phisms from S. uvarum and S. eubayanus West China, respectively. The phylogenetic trees in
S2 Fig of Bing et al. [21] suggested that the TTH27L.1 and PYCC 6148" (= CRUB 1568")
MLSI sequences were not recombinant; however, the sequences deposited in GenBank
(KF892364 and KF892348, respectively) appeared to be recombinant. Our copy of the strain
PYCC 6148" did not possess a recombinant MLSI, but we could not check the strain
TTH27L.1 because it is not available for study. We noted that the apparent recombination
point for both strains is at the junction of the promoter and coding sequence, so we suspect
that errors were introduced in silico while the sequences were uploaded to GenBank or when
multiple Sanger sequencing reads were assembled. Absent further direct verification of
TTH27L.1 MLS1, we suggest that the apparent recombination is likely an artifact.

(DOCX)
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