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NLRP3 inflammasome was reported to be involved in the 
pathogenesis of chronic kidney disease and acute kidney in-
jury. However, the underlying mechanisms are not fully un-
derstood. Therapies targeting the activation of the NLRP3 
inflammasome or blocking its downstream effectors appear 
attractive for the pursuit of neuropathy treatments. 

 © 2015 S. Karger AG, Basel 

 The notion of inflammasomes was first reported by 
Tschopp and colleagues  [1]  in 2002 to describe a cas-
pase-activating complex, which is a critical component 
of innate immunity. In recent years, the role of the in-
flammasomes has been gradually recognized in genetic 
syndromes, idiopathic autoinflammatory diseases, en-
vironmental diseases and cancer. In addition, increas-
ing knowledge has implicated that inflammation may 
contribute to the development of kidney diseases. Al-
though inflammation means to repair an initial insult, 
once the reaction becomes uncontrollable, it leads to tis-
sue injury and inflammatory disorders. Pattern recogni-
tion receptors (PRRs) are essential to pass signals of 
pathogens, or damage and then induce immune re-
sponses. Under both physiological and pathological 
conditions, PRRs are widely expressed in the kidney  [2] . 
Therefore, it is very likely that inflammasomes are in-
volved in the pathogenesis of nephropathy. Here, we 
primarily discuss the recent progress in research on the 
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 Abstract 

  Background:  The inflammasome is a complex of proteins in 
the cytoplasm that consists of three main components: a 
sensor protein (receptor), an adapter protein and caspase-1. 
Inflammasomes are the critical components of innate immu-
nity and have been gradually recognized as a critical media-
tor in various autoimmune diseases; also, their role in chron-
ic kidney disease and acute kidney injury has been gradually 
accepted.  Summary:  Inflammasomes triggered by infec-
tious or sterile injuries transfer proinflammatory mediators 
into mature ones through innate danger-signaling plat-
forms. Information on inflammasomes in kidney disease will 
help to uncover the underlying mechanisms of nephropathy 
and provide novel therapeutic targets in the future.  Key 

Messages:  The inflammasomes can be activated by a series 
of exogenous and endogenous stimuli, including pathogen-
and danger-associated molecular patterns released from or 
caused by damaged cells. The NACHT, LRR and PYD domain-
containing protein 3 (NLRP3) in the kidney exerts its effect 
not only by the ‘canonical’ pathway of IL-1β and IL-18 secre-
tion but also by ‘noncanonical’ pathways, such as tumor 
growth factor-β signaling, epithelial-mesenchymal transi-
tion and fibrosis. In both clinical and experimental data, the 
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NACHT, LRR and PYD domain-containing protein 3 
(NLRP3) inflammasome in the pathophysiology of kid-
ney diseases.

  Introduction of the Inflammasome 

 The inflammasome is a complex of proteins in the cy-
toplasm that consists of three main components: a sensor 
protein (receptor), an adapter protein and caspase-1  [3] . 
According to the receptor, inflammasomes are divided 
into two families: the NOD-like receptor (NLR) family 
and the pyrin (PYD) and HIN200 domain-containing 
protein (PYHIN) family. The sensor protein in inflam-
masomes includes NLRP1, NLRP2, NLRP3, NLRP6, 
NLRP12, IPAF (also called ‘NLRC4’), AIM2 and IFI16 
 [4] , of which the NLR families are the ones most men-
tioned. The inflammasomes can be activated by a series 
of exogenous and endogenous stimuli. The stimuli in-
clude pathogen-associated molecular patterns, such as 
bacterial toxins and viral nucleic acids  [5] , and danger-
associated molecular patterns (DAMPs) released from or 
caused by damaged cells, such as reactive oxygen species 
(ROS), adenosine triphosphate (ATP), hypotonic stress, 
uric acid crystals, noxious exogenous factors and so forth 
 [6] .

  Globally, the NLRP3 inflammasome is the best char-
acterized; it is a multiprotein complex (>700 kDa) in the 
cytoplasm. It consists of specific members of the NOD-
like receptor protein (NLRP) subfamily, an adaptor pro-
tein of apoptosis-associated speck-like protein contain-
ing a CARD (ASC) and procaspase-1  [7] . In detail, the 
receptor protein (NLRP) contains a NACHT structure in 
the central region (which is also called ‘the NOD do-
main’), a C-terminal leucine-rich repeat (LRR) domain 
and a caspase recruitment domain (CARD) or PYD in the 
N terminus. The ASC protein is a compound of PYD and 
CARD, which could interact with N-terminal PYD in 
NLRP3 and subsequently activate procaspase-1  [8] . The 
NLRP3 inflammasome is activated by germline-encoded 
PPRs by recognizing the antigens of pathogen-associated 
molecular patterns or DAMPs, and its activation leads to 
the secretion of IL-1β, IL-18 and a novel form of pro-
grammed cell death, pyroptosis  [9] . There are two signal-
ing pathways associated with the activation of the NLRP3 
inflammasome. The first one is derived from Toll-like re-
ceptors (TLRs), tumor necrosis factor receptor or IL-1R 
on the cell membrane, and activation of these PPRs re-
sults in increased transcription and translation of pro-IL-
1β and pro-IL-18 through nuclear factor-κB  [10] . To date, 

a variety of families of PRRs have been found in the kid-
ney. The crosstalk between the NLRP3 inflammasome 
and PRRs in the kidney has drawn a great deal of attention 
from researchers. For example, TLR2 upregulated the ex-
pression of pro-IL-1β and inflammasome components, 
inducing NLRP3 activation and subsequent renal tubular 
epithelial cell necrosis  [11] . Potassium efflux through the 
P2X7R channel, ROS and phagocytosis, namely, second 
signals, are supposedly three models of the activation of 
the NLRP3 inflammasome  [12] . However, the detailed 
mechanism is still unclear. Through these two kinds of 
signals, the NLRP3 receptor proteins interact with ASC 
by PYD-PYD interactions, and ASC subsequently acti-
vates procaspase-1 by binding to its CARD. Then, the ac-
tivated caspase-1 performs enzymatic cleavage on the 
promature cytokines to produce the mature IL-1β and 
IL-18, which will later be secreted as inflammatory cyto-
kines  [12] . Additionally, accumulating evidence revealed 
that NLRP3 in the kidney exerts its effect not only by this 
‘canonical’ pathway mentioned above but also by ‘nonca-
nonical’ pathways, such as through tumor growth factor-β 
signaling, epithelial-mesenchymal transition and fibrosis 
 [9] , which will be mentioned in detail below.

  The inflammasome is regulated at both the transcrip-
tional and posttranscriptional levels. Overwhelming 
NLRP3 activation induces inflammatory renal damage, 
yet the regulation of this process remains unclear. One of 
the ASC isoforms colocalized with caspase-1 but not with 
NLRP3, showing an inhibitory effect against NLRP3  [13] . 
Yang et al.  [14]  found that the orphan nuclear receptor 
small heterodimer partner (SHP) negatively regulated the 
NLRP3 inflammasome by competitively binding ASC 
with NLRP3. SHP deficiency in mouse models of kidney 
tubular necrosis and peritoneal gout has led to mitochon-
drial dysfunction and proinflammatory cytokine secre-
tion. Moreover, the pyrin-only proteins, pyrin-contain-
ing NOD proteins, CARD-only protein, inhibitory CARD 
and ICEBERG also inhibit the formation of an active in-
flammasome  [15, 16] .

  The expression of inflammasome components inside 
the kidney is not fully understood. Lech et al.  [17]  detect-
ed the mRNA expression profiles of NLR genes in human 
and mouse solid organs, which suggests that the expres-
sion of inflammatory-related genes in the kidney is much 
lower than that in the spleen, except for NLRP2 and 
NLRP10. However, mice express higher levels of NLR 
genes compared with levels in the spleen, except for 
NLRP3. Lichtnekert et al.  [18]  showed that in antiglomer-
ular basement   membrane nephritis mice, a lack of IL-1R 
partially protected against segmental lesions and crescent 
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formation as well as against tubular atrophy, while IL-18 
deficiency was only able to reduce partial tubular atrophy. 
They further found that ASC, NLRP3 and caspase-1 defi-
ciency did not affect glomerular pathology in the antiglo-
merular basement   membrane disease model. Isolated 
glomeruli were unable to secrete mature IL-1β, but bone 
marrow dendritic cells could. Kidney immune cells, but 
not intrinsic glomerular cells, are capable of either secret-
ing active IL-1β or activating caspase-1. Similar results 
were verified in samples of patients with different pro-
gressive glomerulopathies. NLRP3, ASC, caspase-1 and 
IL-18, but not IL-1β, were expressed by tubular epithelial 
cells  [18, 19] . They believed that the infiltrating immune 
cells rather than glomeruli local cells might induce in-
flammatory signaling. However, a study by Niemir et al. 
 [20]  revealed that podocytes are the major source of glo-
merular IL-1β production. Zhang et al.  [21]  further 
showed that murine podocytes expressed NLRP3, ASC 
and caspase-1, and in mice with hyperhomocysteinemia, 
IL-1β increased in the glomeruli. Given that podocytes 
act like dendritic cells and infiltrating macrophages  [22] , 
their ability to participate in inflammation is convincing. 
Whether these controversial results are the result of dif-
ferent stimuli remains unknown. However, more data 
and research are needed to verify the expression of in-
flammation in the kidney. Knockout of targeted inflam-
matory genes in specific cells might help to resolve this 
issue.

  Inflammasome and Chronic Kidney Disease 

 In tissue from human renal biopsies, increased expres-
sion of NLRP3 mRNA was detected in nondiabetic kid-
ney diseases and associated with renal function, indicat-
ing that NLRP3 could be involved in chronic kidney dis-
ease (CKD) pathogenesis  [23] . IL-18 and caspase-1 are 
expressed in human renal tubular epithelium, which were 
elevated with CKD  [24, 25] . Bone marrow chimeras re-
vealed that NLRP3 mediated the inflammatory processes 
in both hematopoietic and nonhematopoietic cellular 
compartments. However, it is likely that the NLRP3 ex-
pressed in kidney resident cells, instead of that expressed 
in bone marrow-derived cells, plays a more critical role in 
diabetic nephropathy  [26] . 

  The unilateral ureteral obstruction (UUO) model is a 
conventional CKD animal model. Renin-angiotensin sys-
tem blockade inhibited NLRP3 inflammasome activation 
and then increased water channel AQP2 expression in the 
UUO mouse model  [27] . Vilaysane et al.  [23]  observed 

less tubular injury, inflammation and fibrosis in associa-
tion with a reduction in caspase-1 activation, as well as 
maturation of IL-1β and IL-18 in NLRP3 kidney-specific 
knockout mice 2 weeks after UUO operation. However, 
the mechanism of NLRP3-induced injury in the UUO 
model remains confusing. Pulskens et al.  [28]  reported 
that NLRP3 prevented early renal interstitial edema and 
preserved vascular integrity through the noncanonical ef-
fect, with little impact on renal fibrosis and inflammation. 
Wang et al.  [29]  identified that NLRP3 was required for 
tumor growth factor-β signaling and Smad activation, 
which led to epithelial-mesenchymal transition and fi-
brosis. Furthermore, the process was independent of the 
inflammasome. Therefore, the effect of NLRP3 on kidney 
injury remains controversial and should be evaluated 
comprehensively. 

  Proteinuria has been recognized as a critical prognos-
tic factor for CKD. Previous studies have shown the tox-
icity of ultrafiltered proteins to the renal proximal tubule 
cells, which activated the expression of abundant chemo-
kines, adhesion molecules and proinflammatory cyto-
kines  [30] . Therefore, it is reasonable to speculate that 
inflammatory activation is involved in the pathogenesis 
of CKD. Fang et al.  [31]  reported that inflammasome ac-
tivation, including caspase-1, IL-1β and IL-18, in the kid-
neys of patients with proteinuria was associated with the 
severity of albuminuria on human renal biopsies regard-
less of the pathology type (IgA nephropathy, focal seg-
mental glomerulosclerosis, minimal change disease, or 
membranous nephropathy). They further investigated 
the mechanism and found that the endocytosis of ultra-
filtered albumin in tubules might induce endoplasmic re-
ticulum stress, which plays an important role in NLRP3 
inflammasome activation. Meanwhile, our study showed 
that the NLRP3 inflammasome/caspase-1/mitochondria 
axis mediated the mouse proximal tubular cell defect 
 [32] , which might be the mechanism of the mouse proxi-
mal tubular cell tight junction injury by albumin  [33] . In 
albumin-overloaded mice, we observed severe tubular 
structure damage, cell apoptosis and epithelial cell phe-
notype transition, as well as mitochondrial dysfunction. 
Meanwhile, the inflammatory cascade was activated. By 
applying a mitochondrial SOD2 mimic, MnTBAP, the 
damaged condition was improved. Furthermore, genetic 
disruption of NLRP3 could attenuate albumin-induced 
renal tubular cell injury. Although the crosstalk of mito-
chondria and the endoplasmic reticulum stress signaling 
pathway has been widely investigated  [34–36] , it remains 
unclear whether this crosstalk affects inflammatory acti-
vation. Other than tubules, podocytes could also be dam-
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aged by inflammasome activation in albuminuria. The 
endocytosis of albumin into human podocytes from urine 
samples upregulated IL-1β and tumor necrosis factor 
RNA expression  [37] . Studies have found that thiore-
doxin-interacting protein (TXNIP) signaling activated 
NLRP3 and subsequently triggered podocyte injury  [38, 
39] . Moreover, Chang et al.  [3]  mentioned the possible 
involvement of inflammasomes in the transformation 
from minimal change disease to focal segmental glomer-
ulosclerosis, which needs further investigation.

  Additionally, many DAMPs released during kidney 
injury can trigger NLRP3, such as ROS, uric acid, extra-
cellular ATP and extracellular matrix components such 
as biglycan  [40] . Oxidative stress has been reported to be 
associated with NLRP3 inflammasome activation. Abais 
et al.  [39]  demonstrated that TXNIP, the endogenous in-
hibitor of the antioxidant thioredoxin and ROS sensor, 
binding to NLRP3 is the key signaling mechanism for
the activation of inflammasomes by NADPH oxidase-
derived ROS in hyperhomocysteinemia. Mitochondrial 
ROS activated the NLRP3 inflammasome, triggering ster-
ile inflammation in the kidneys  [26, 41] . Meanwhile, ATP 
produced by mitochondria released from damaged cells 
triggered the NLRP3 inflammasome  [42] . Uremic toxic-
ity has also been one of the killers of CKD. Soluble uric 
acid acts like a DAMP and stimulates the NLRP3 inflam-
masome through mitochondrial ROS generation in mac-
rophages. Meanwhile, uric acid promotes chemokine se-
cretion by tubular cells, which further results in macro-
phage recruitment  [43] . The NLRP3 inflammasome also 
contributes to the development and maintenance of en-
dothelial dysfunction in response to uremic toxicity  [44] . 
Furthermore, the downstream molecules of NLRP3 in-
flammasome activation, IL-1 and IL-18, are blamed for 
CKD-related complications, such as vascular injury  [45–
47]  and sepsis  [48, 49] .

  Inflammasome and Acute Kidney Injury 

 Noninfectious inflammation is the nightmare that 
haunts kidney diseases. Acute kidney injury (AKI) is ex-
acerbated by proinflammatory cytokines and leukocytes, 
whereas regulatory cells and immunomodulatory cyto-
kines attenuate injury  [50] . Both human and animal 
models of AKI have shown an increase in IL-1β and/or 
IL-18. Cisplatin treatment and ischemic/reperfusion 
mouse models are the two main animal models of AKI. 
Data from these two models indicate that inflammasomes 
contribute to AKI  [51] . However, recent studies on these 

two models have revealed some confusing but intriguing 
results. Lee and colleagues  [52]  demonstrated that cas-
pase-1 is a mediator of both cisplatin-induced AKI and 
ischemic AKI. However, in cisplatin-induced AKI, the ac-
tivation of caspase-1, IL-1β and IL-1α was independent of 
the NLRP3 inflammasome, indicating that NLRP3 might 
only have a small impact on cisplatin-induced AKI. In-
stead, the NLRP1 protein was increased in cisplatin-in-
duced AKI, probably upstream of caspase-1 activation. A 
further study has shown that the caspase-1 inhibitor pro-
tected proximal tubular cells from cisplatin-induced in-
jury, while another study found that the renal function of 
AKI was exacerbated because of the prevention of au-
tophagy via caspase inhibition  [53] , suggesting that there 
are two sides to the coin. However, research data on the 
ischemic/reperfusion AKI model remain inconsistent. 
The protective role of NLRP3 deficiency in AKI was con-
firmed, but neither the ASC deficiency nor the IL-1/IL-18 
blockade had a defined effect  [42, 54] , which suggests the 
noncanonical effect of NLRP3. Actually, NLRP3 may ad-
ditionally exert inflammasome-independent effects fol-
lowing tissue injury, revealing a novel noncanonical ef-
fect of NLRP3 in preserving renal integrity and protection 
against early tubular injury and interstitial edema follow-
ing progressive renal injury  [28] . In a study from Shigeo-
ka et al.  [54] , decreased apoptosis was observed. It has 
been shown that the inhibitors of apoptosis proteins can 
influence NLRP3 activation positively or negatively, and 
there are some striking similarities between inflamma-
somes and apoptosomes  [55–57] . Meanwhile, a recent 
study indicated that endoplasmic reticulum stress was in-
volved in angiotensin-II-induced NLRP3 inflammasome 
activation  [58] . Angiotensin II increased the expression 
of NLRP3, ASC, caspase-1, IL-β and IL-18, which could 
be inhibited by pretreatment with the endoplasmic re-
ticulum stress inhibitor 4-PBA. Furthermore, the mecha-
nism of uric acid crystal-induced AKI is now believed to 
be more than just a urinary tract obstruction. Monoso-
dium uric, the culprit of uric nephropathy, is phagocy-
tized and subsequently induces lysosomal rupture, im-
pairing mitochondrial function. The damaged mitochon-
dria generate ROS and affect NLRP3 activation  [59] . 
Akira and colleagues  [60]  have recently proposed a mod-
el of mitochondrial dysfunction-induced NLRP3 activa-
tion. The concentration of NAD +  decreases because of 
aberrant mitochondria homeostasis, which inactivates 
SIRT2 and results in the accumulation of acetylated 
α-tubulin. Acetylated α-tubulin mediated the dynein-de-
pendent transport of mitochondria. ASC on mitochon-
dria interacts with the NLRP3 on the endoplasmic reticu-
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lum and activates the inflammasome. Autophagy seques-
ters and isolates the damaged lysosomes, protecting 
proximal tubular cells against inflammation  [61] . There-
fore, the crosstalk between inflammasomes and other sig-
naling pathways is worthy of further research.

  Additionally, both in vivo and in vitro studies have 
shown that the NLRP3 inflammasome could translate the 
stimuli of crystals or particles into innate immune activa-
tion via the secretion of proinflammatory cytokines, such 
as IL-1β and IL-18. This finding brings up the novel 
mechanism of crystalline nephropathies and kidney stone 
disease  [62] . Activation of the inflammasome complex is 
required for the generation of renal IL-17A, an important 
proinflammatory cytokine in AKI  [63] . The underlying 
mechanism recognized will give support to the therapeu-
tic inhibition of IL-17A in AKI. 

  Treatment 

 Sterile inflammation is undoubtedly an important 
component of kidney diseases. Therapies targeting the 
activation of the NLRP3 inflammasome or blocking its 
downstream effectors appear attractive for the pursuit of 
neuropathy treatments. Although the related drug re-
search is still limited in this area, research on other dis-
eases is inspiring. Mutations in the gene encoding NLRP3 
have been recognized to be associated with various auto-
inflammatory syndromes, including familial cold autoin-
flammatory syndrome, the Muckle-Wells syndrome and 
neonatal-onset multisystem inflammatory disease, which 
also belongs to cryopyrin-associated periodic syndrome 
 [64] ; nephropathy was also involved  [65, 66] . Excessive 
production of IL-1 by monocytes/macrophages triggered 
by the NLRP3 inflammasome is the central pathophysiol-
ogy of cryopyrin-associated periodic syndrome. The IL-1 
receptor antagonist anakinra (the fusion protein of the 
IL-1 receptor), IgG Fc rilonacept and canakinumab (a hu-
man anti-IL-1 monoclonal antibody) have been used as 
agents for treatment. Drugs inhibiting IL-1, P2X 7 R and 
caspase-1 have also been studied. Phase 1 and 2 studies of 
a P2X 7 R antagonist have shown the agent’s safety, but the 
clinical efficacy has not been determined  [67, 68] . There 
is also limited evidence about the efficacy of caspase-1 in-
hibitors. Although there are few data regarding the in-
flammasome mutation in renal diseases, interventions 
targeting the NLRP3 inflammasome/IL-1β/IL-18 axis are 
still the most promising candidates for alleviating renal 
inflammation.

  Perspective and Conclusions 

 To date, the research on inflammasomes in kidney dis-
eases is still very limited. Further studies might focus on 
the pathophysiological changes in cell-specific knockout 
animal models for inflammasome-related proteins. The 
signaling pathways of inflammasomes should be further 
explored. Furthermore, the noncanonical effects of 
NLRP3 are interesting. In clinical research, examining in-
flammasomes obtained from serum and tissues might fa-
cilitate the finding of promising biomarkers for diseases. 
Drugs that are inflammasome-related antagonists, such 
as IL-1, caspase-1 and P2X 7 R inhibitors, have been devel-
oped, but their application still has a long way to go. Ther-
apeutic agents targeting the NLRP3 inflammasome are 
still lacking and should be further examined.

  In conclusion, inflammasomes triggered by infectious 
or sterile injuries transferred proinflammatory mediators 
into mature ones through innate danger-signaling plat-
forms. The NLRP3 inflammasome plays a critical but also 
unexplored role in the pathophysiology of kidney diseas-
es and is likely to be a therapeutic target in the future.
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