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Abstract

Pyrrolidine and 1,2,3,4-tetrahydroisoquinoline (THIQ) undergo redox-neutral α-amidation with 

concurrent N-alkylation upon reaction with aromatic aldehydes and isocyanides. Reactions are 

promoted by acetic acid and represent a new variant of the Ugi-reaction.

Graphical abstract

Ugi reactions are among the most powerful multicomponent transformations; their many 

variants provide rapid access to a remarkable wealth of structures.1 Reactions of isocyanides 

with secondary amines and aldehydes/ketones represent a special case, as the prototypical 

Mumm rearrangement cannot take place.2
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In recent years, a number of oxidative Ugi-variants have been reported.3 Secondary amines 

can be oxidized in situ to the corresponding imines which subsequently participate in typical 

Ugi reactions that provide diamide products (eq. 1). When tertiary amines are used as 

starting materials, oxidation leads to iminium ions that are subsequently trapped by an 

isocyanide. In the presence of a carboxylic acid reaction partner, imides are obtained as the 

final products (eq. 2). Alternatively, the intermediate nitrilium ion can be trapped by water, 

leading to the formation of aminoamides (eq. 3). Mechanistically distinct from the reactions 

outlined in eqs 1–3, a decarboxylative version of the Ugi reaction was recently reported, 

employing proline as the starting material (eq 4).4,5 Here we report a new type of Ugi-

variant that enables the α-amidation of cyclic amines via redox-neutral α-C–H bond 

functionalization (eq 5).6,7

As part of a continuing program, our group developed a range of transformations that enable 

the redox-neutral α-C–H bond functionalization of amines.8–10 As is commonly the case in a 

number of classic name reactions such as the Strecker, Mannich and Friedel-Crafts 

reactions, these redox-reactions involve the condensation of a secondary amine with an 

aldehyde/ketone in the presence of a (pro)nucleophile. C–H functionalization is achieved via 

an isomerization step in which azomethine ylides feature as reactive intermediates.8a 

Carboxylic acids play important roles as catalysts or promotors in most of these 

transformations. The scope of this chemistry was shown to be remarkably broad and 

includes intra- and intermolecular variants.

In order to determine whether our general concept is applicable to Ugi-type reactions with 

isocyanides as the nucleophiles, we selected pyrrolidine, fluorenone and cyclohexyl 

isocyanide as test substrates. While we have recently identified 2,6-dichlorobenzaldehyde as 
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an efficient carbonyl reaction partner for pyrrolidine in these types of transformations, it was 

subsequently shown by Jana et al. that fluorenone is particularly suitable to bring about 

redox-isomerization,9c a prerequisite for C–H functionalization. Key results of our initial 

survey are summarized in Table 1. Heating of a 5:2:1 mixture of pyrrolidine, fluorenone and 

cyclohexyl isocyanide under reflux in toluene resulted in the formation of desired product 1a 
in trace amounts only (entry 1). Addition of acetic acid (20 mol%) allowed for the isolation 

of 1a in 6% yield (entry 2). A gradual increase in the amount of acetic acid led to 

dramatically improved results, with 5 equivalents proving optimal (entry 4). Xylenes, n-

butanol and DMF were inferior to toluene as the solvent (entries 6–8). 2-Ethylhexanoic acid 

and benzoic acid were also capable of promoting the title transformation but did so less 

effectively than acetic acid (entries 9, 10).11 A significant improvement in efficiency was 

observed upon increasing the concentration from 0.1 to 0.25 molar. In this instance, product 

1a was isolated in 89% yield (entry 11). A further increase in molarity to 0.5 led to a 

reduction in yield (entry 12). Lowering the amount of pyrrolidine from five to three 

equivalents also led to a drop in yield (entry 13). Interestingly, addition of 10 equivalents of 

water (later shown to be beneficial for most substrate combinations, vide infra) had little 

effect on the overall transformation (entry 14).12

The scope of the new transformation was evaluated under the optimized conditions (Scheme 

1). Isocyanides other than cyclohexyl isocyanide engaged in redox-Ugi reactions with 

pyrrolidine and THIQ. In addition to fluorenone, mesitaldehyde and 2,6-

dichlorobenzaldehyde were viable substrates in reactions with pyrrolidine. The scope of the 

aldehyde in reactions with THIQ was found to be broad. Aromatic aldehydes with various 

substitution patterns provided moderate to good yields of amide products. Electron-donating 

and electron-withdrawing substituents in all ring positions were well tolerated. In addition, 

heterocyclic aldehydes also participated in redox-Ugi reactions.

Selected redox-Ugi products were subjected to a number of subsequent transformations. 

Cleavage of the N-benzyl group in 1h was achieved via hydrogenolysis to provide 

tetrahydroisoquinoline 2 in 65% yield. Interestingly, under the reaction conditions, N-ethyl 

product 3 was obtained as a byproduct in 20% yield. Exposure of 1k to Pd/C in the absence 

of hydrogen gas under reflux in mesitylene led to cleavage of the PMB group and 

aromatization of the ring system to provide isoquinoline 4 in 71% yield.

In conclusion, we have demonstrated the ability of isocyanides to act as nucleophiles in Ugi-

type reactions that incorporate an amine α-C–H bond functionalization step. This process is 

facilitated by simple acetic acid.
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Scheme 1. 
Substrate scope.
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Table 1

Evaluation of Reaction Conditionsa

entry solvent
(molarity)

additive
(equiv)

time
[h]

yield 1a
(%)

1 PhMe (0.1) – 36 trace

2 PhMe (0.1) AcOH (0.2) 48 6

3 PhMe (0.1) AcOH (1) 48 28

4 PhMe (0.1) AcOH (5) 20 73

5 PhMe (0.1) AcOH (10) 20 52

6 xylenes (0.1) AcOH (5) 20 53

7 n-BuOH (0.1) AcOH (5) 20 55

8b DMF (0.1) AcOH (5) 18 52

9 PhMe (0.1) 2-EHA (5) 20 32

10 PhMe (0.1) BzOH (5) 20 63

11 PhMe (0.25) AcOH (5) 18 89

12 PhMe (0.5) AcOH (5) 15 75

13c PhMe (0.25) AcOH (5) 20 53

14d PhMe (0.25) AcOH (5) 20 85

a
Reactions were performed with 0.5 mmol of cyclohexylisocyanide. Yields are isolated yields of chromatographically purified compounds.

b
Reaction was performed at 135 °C.

c
With 3 equiv of pyrrolidine.

d
With 10 equiv of H2O.
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