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Abstract

Neutrophils have a crucial role in tumor development and metastatic progression. The contribution 

of neutrophils in tumor development is multifaceted and contradictory. On the one hand, 

neutrophils prompt tumor inception, promote tumor development by mediating the initial 

angiogenic switch and facilitate colonization of circulating tumor cells, and on the other hand, 

have cytotoxic and anti-metastatic capabilities.

Our understanding of the role of neutrophils in tumor development has greatly depended on 

different experimental animal models of cancer. In this review we cover important findings that 

have been made about neutrophils in experimental animal models of cancer, point to their 

advantages and limitations, and discuss novel techniques that can be used to expand our 

knowledge of how neutrophils influence tumor progression.
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 1. Introduction

There is growing evidence indicating that neutrophils have an important role in tumor 

development – from the inception of tumor formation and throughout the malignant 

progression [1-3]. Neutrophils both promote and prevent tumor progression (reviewed in 

[1]). The contradictory role of neutrophils in tumor development might be explained be the 

fact that neutrophils can have a pro- or anti-inflammatory phenotype [4-6]. Depending on 

their phenotype neutrophils appear to be either antitumoral (N1) or protumoral (N2) [4]. The 

occurrence of N1/N2 neutrophils has only been shown in murine tumor models and will 

have to be confirmed in other experimental animal models and more importantly in humans. 
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However, neutrophils with an activated phenotype, producing pro-inflammatory factors and 

stimulating T cell proliferation has been described in early human lung cancer, while 

immunosuppressive neutrophils has been reported in human colorectal cancer [5, 6].

Tumor-associated neutrophils (TANs) with a N1 phenotype have a pro-inflammatory 

cytokine profile, producing nitrate oxide and hydrogen peroxide (H2O2), and are cytotoxic 

towards tumor cells [4]. N2 TANs, on the other hand, are characterized by high levels of 

arginase 1 (ARG1) and by their ability to inhibit effector T-cell functions [4, 6].

The tumor microenvironment, evolving with tumor progression, can influence the 

polarization state of TANs [7]. Transforming growth factor-β (TGFβ) can differentiate 

neutrophils toward a protumoral phenotype [4]. Intriguingly, neutrophils initially recruited 

during the early stages of tumor development have an antitumoral N1 phenotype. However, 

with tumor progression the tumor-infiltrating neutrophils become more protumoral and 

acquire a N2 phenotype. In line with the polarization paradigm only depletion of neutrophils 

at a later stage of tumor development reduces tumor growth, further pointing to the fact that 

neutrophils can have an anti- or protumoral phenotype [7]. Transcriptional profiling of TANs 

from different mouse tumor models furthermore has revealed that TANs can have strikingly 

different protumorigenic transcriptional profiles [8]. Thus, even though neutrophils can be 

polarized into either N1 or N2, they presumably make up a continuum of different 

phenotypes.

Our understanding of the polarization of neutrophils and how neutrophils contribute to 

tumor development has largely been elucidated from experimental mouse models. However, 

alternative models, for example, the zebrafish model, have provided key insights into how 

neutrophils influence tumor development. In this review, we cover important findings that 

have been made about neutrophils in experimental animal models of cancer and point to the 

advantages and limitations of different models. We point to how different experimental 

animal models and novel techniques can be used to expand our knowledge of how 

neutrophils influence tumor progression.

 1.1 From men to mice

Experimental mouse tumor models have contributed to our understanding of tumor biology 

and the intricate role of neutrophils in tumor development. There are many advantages with 

mice; they are small in size, breed in captivity and have biological similarities with humans. 

However there are important differences between humans and mice [9, 10]. While 

neutrophils in humans make up the majority (50-70%) of leukocytes in the peripheral blood, 

they only account for 15-20% of the leukocytes in the peripheral blood of mice [11]. 

Furthermore, humans live longer, have a lower metabolic rate and undergo more cell 

divisions. One might therefore anticipate that cancer would be more common among 

humans, but, interestingly, the lifetime risk of developing cancer is comparable between 

humans and mice. Mice, however, more often get tumors of mesenchymal origin such as 

sarcomas and lymphomas, while tumors in humans most often originate from epithelial cells 

giving rise to carcinomas in, for example, colon, breast and lungs [12].
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Different mouse tumor models provide powerful experimental tools to study various cancers 

that normally develop in humans [13-18]. There are three major experimental mouse tumor 

models: 1) genetically engineered, 2) transplantable, and 3) humanized tumor models. Each 

model has different advantages and limitations for elucidating the role of neutrophils in 

tumor development.

 1.1.1 Genetically engineered tumor models—Genetic engineering has allowed for 

tissue-specific and time-specific induction of various oncogenes or dominant-negative 

tumor-suppressor genes triggering spontaneous tumor development in mice (Table 1) 

[13-15]. Spontaneous tumor growth in genetically engineered mouse models faithfully 

depicts the multistage tumor development seen in humans and, more importantly, the 

evolving interplay between the tumor microenvironment with neutrophils and initially 

premalignant tumor cells that with time will become malignant and evolve to full-blown 

cancer.

Genetically engineered mice can have an intact immune system, hence making the models 

suitable for studying the interaction, not only between tumor cells and immune cells, but 

also the intricate interplay between innate and adaptive immune cells during tumor 

development [19].

Genetic engineering can target different genes expressed by neutrophils and thereby depict 

how genes of interest contribute to the function of neutrophils in tumor development. By 

taking advantage of the Tie2:Cre deleter, Finisguerra et al. recently revealed that deletion of 

Met (coding for MET; the receptor for hepatocyte growth factor (HGF)) in neutrophils 

attenuated the recruitment of antitumoral, but not protumoral, neutrophils [20, 21]. MET is a 

prerequisite for the cytotoxic ability of antitumoral neutrophils and reduces tumor growth 

and metastasis [21].

 1.1.2 Transplantable tumor models—While tumor growth in genetically engineered 

mice can take from a few months up to over a year, transplantable tumor models have the 

advantage that they can develop full-blown tumors after only a few weeks. A wide range of 

different cancer cell lines has been extensively used in transplantable tumor models (Table 

1). These cancer cell lines have either originated spontaneously or from carcinogen-, 

transgene- or gene knockout-induced tumors [18].

Transplantation with cancer cell lines into syngeneic mice has the advantage that the mice 

have an intact immune system. However, the fact that the mice are of the same inbred mouse 

strain means that the model will not reflect the genetic heterogeneity found among human 

patients. Also, since the injected cells already are malignant and are put into a naïve 

microenvironment, the growth of the tumor will not reveal multistage tumor development 

and the evolving interaction between tumor cells and the tumor microenvironment.

Different strains of immunodeficient mice have made transplantation of human tumor cells, 

i.e., xenograft transplantation, feasible (Table 1) [22]. A major drawback of the xenograft 

transplantation model is that, to enable growth of human tissue and prevent rejection, the 

mice have to be devoid of functional immune system. Hence, even though the xenograft 

Hagerling and Werb Page 3

Semin Immunol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models have greatly contributed to our knowledge of how human cancer cells behave during 

tumor progression, they are not able to fully depict the functional contribution of tumor 

cells, innate- and adaptive immune cells and their bidirectional communicate.

 1.1.3 Humanized mice model—‘Humanized mice’ are immunodeficient mice that 

have gained a functional human immune system through the engraftment of human primary 

hematopoietic cells or tissues. Humanized mice are derived from various mouse strains of 

immunodeficient mice, which have in common that they have mutations in the interleukin-2 

(IL-2) receptor common γ-chain locus (Il2rg). Targeted mutation of Il2rg gives major 

impairments in the development and function of T, B and natural killer (NK) cells [23]. 

Currently, immunodeficient mice strains can be humanized with human adaptive immune 

cells and various innate immune cells including NK cells, monocytes and macrophages, 

however successful establishment of human neutrophils is a challenge yet to be conquered 

[24-27].

 1.2 Neutrophils and Gr-1+ immune cells

Neutrophils in mice are recognized as CD11b+Ly6G+ cells [28, 29]. However, until recently 

Gr-1 was broadly used as a marker for bone marrow-derived cells including immune cells of 

the neutrophil lineage. Gr-1 recognizes the two antigens, Ly6C on monocytes and Ly6G on 

neutrophils. Even though neutrophils are Gr-1high (while monocytes are Gr-1int), Gr-1 is not 

able to differentiate between monocytes and neutrophils efficiently [2, 28]. Moreover, Gr-1 

has been used to classify immature myeloid derived suppressor cells (MDSCs) as immune 

cells that primarily exert their protumoral effect through inhibition of antitumoral T-cells 

[30, 31]. Two subpopulations of MDSCs have been characterized; monocytic-MDSCs (Mo-

MDSCs), which are CD11b+Ly6C+, and granulocytic-MDSCs (G-MDSCs), which are 

CD11b+Ly6G+ [32, 33]. In addition to being classified by the same surface markers, G-

MDSCs are morphologically similar to immature neutrophils and have functional overlap 

with N2 neutrophils (both having immunosuppressive capacity) [32, 34]. The 

immunosuppressive function of G-MDSCs is however contradictory and accumulating 

evidence indicate that only Mo-MDSCs and not G-MDSCs mediate T-cell suppression 

[35-37]. Hence an important question to be unraveled is the exact role of G-MDSCs in 

tumor development and whether or not neutrophils and GMDSCs are two distinct immune 

cell populations or if they in fact are the same immune population but with different 

phenotypes. Due to the lack of definite markers for each population the relationship between 

neutrophils and G-MDSCs is still largely undefined. However, work by Youn et al. showed 

that tumor-derived neutrophils (CD11b+Ly6ClowLy6G+) have more functional 

characteristics in common with splenic G-MDSCs (CD11b+Ly6ClowLy6G+) from tumor-

bearing mice than with neutrophils from non-tumor bearing mice, which could imply that G-

MDSCs migrate to the tumor site and that TANs acquire a N2 phenotype prior to arriving at 

the tumor site [38]. On the contrary, transcriptomic analysis, comparing TANs 

(CD11b+Ly6G+), splenic GMDSCs (CD11b+Ly6G+) from tumor-bearing mice and naïve 

bone marrow neutrophils, revealed that TANs make up a unique neutrophil population quite 

distinct from splenic G-MDSCs, which were more closely related to naïve bone marrow-

derived neutrophils [39]. The lack of apparent transcriptomic similarity between TANs and 

splenic G-MDSCs could imply that factors, e.g., TGFβ, in the local tumor 
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microenvironment, indeed, dictate the fate of neutrophils and that TANs are not derived from 

G-MDSCs but from a peripheral neutrophil population. Indeed, different subpopulations of 

neutrophils exist in the circulation. Circulating high-density neutrophils are mature and 

predominant during early tumor development, while low-density neutrophils are 

immunosuppressive and accumulate with tumor progression [40]. Taken together the exact 

relationship between neutrophils and G-MDSCs is still largely unclear and more work is 

needed to determine how they relate. Similarities and differences between neutrophils and 

G-MDSCs have been reviewed in detail by Pillay et al [41]. Since there currently are no 

definite markers to distinguish neutrophils from G-MDSCs we cover both in this review and 

refer to them as neutrophils.

 2. Inflammation and tumor inception

Chronic inflammation, i.e., unresolved inflammation with infiltration of immune cells, tissue 

remodeling and angiogenesis, can prompt the genetic mutation and proliferation rate in 

mutated cells or directly initiate genomic instability through e.g. DNA damage or intruding 

on DNA repair pathways. Neutrophils, accompanying chronic inflammation, are involved in 

creating a mutagenic environment capable of initiating and promoting tumor development 

[42-45].

The Mutatect tumor model, which allows for the detection of mutagenic incidents in murine 

fibrosarcoma cells, has been used to study how neutrophils contribute to genetic instability 

[46]. The genetic damage is detected in a particular target gene, namely Hprt (hypoxanthine 

phosphoribosyltransferase). Mutatect cells that become mutated, i.e., gain inactivation of 

Hprt, have acquired a resistance to the cytotoxic drug 6-thioguanine (6-TG) and can be 

identified with a clonogenic assay. Initially it was revealed that the mutation frequency in 

this model was elevated in vivo compared to in vitro, implying that factors in the 

microenvironment contributed to the genetic instability [47]. Indeed, when various Mutatect 

cell lines are subcutaneously injected into immunocompetent syngeneic C57BL/6 mice, 

neutrophils are the predominate leukocyte population infiltrating the tumors and the 

mutation frequency strongly correlates with the number of neutrophils [46].

The significance of neutrophils in tumor inception related to chronic inflammation has 

further been shown in a model of ulcerative colitis (UC). UC is a form of inflammatory 

bowel disease that gives an elevated risk of colon cancer [48]. The administrating of 

azoxymethane (AOM) and dextran sulfate sodium (DSS) to mice recapitulates the chronic 

inflammation seen in the colon of UC patients [49, 50]. One of the main inflammatory 

mediators to recruit neutrophils in this model is CXCL2 [51, 52]. CXCL2 attracts CXCR2+ 

neutrophils, and the infiltration of neutrophils precedes the development of multiple tumors 

in the colon [51]. Moreover deletion of Cxcr2 in genetically engineered Cxcr2−/− mice 

impairs AOM/DSS induced colonic chronic inflammation, reduces tumor burden and 

inhibits malignant progression [52, 53].

Yet another model that has linked neutrophils to tumor inception in chronic inflammation is 

a model of skin inflammation where mice are topically treated with 7,12-dimethylbenz [a] 

anthracene (DMBA), followed by repeated application of 12-O-tetradecanoylphorbol-13-
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acetate (TPA) [53]. The combined treatment induces skin inflammation with persistent 

recruitment of neutrophil and papillomas eventually develop in the site of tissue perturbation 

[54]. Importantly, inhibition of CXCR2+ neutrophils prevents the inflammation driven tumor 

development in this model [53]. Common for both the UC and skin model is that CXCR2+ 

neutrophils promote early tumor development through the inhibition of antitumoral T-cell 

immunity.

 2.1 Neutrophils and adaptive immune cells

Adaptive immune cells are part of cancer immunosurveillance and can, once they are 

activated, efficiently eradicate premalignant tumor cells [55-58]. Hence, for a tumor to thrive 

it must gain capabilities that enable it to evade antitumoral adaptive immune control. Tumors 

can, for example, recruit protumoral neutrophils that will inhibit the generation and function 

of cytotoxic T-cells [52, 53]. Since neutrophils are key producers of ARG1, an enzyme that 

is involved in the impairment of antitumoral T-cells, they can modulate T-cell immunity and 

thereby control tumor progression. However, adaptive immune cells can exert an effect on 

neutrophils, emphasizing the two-directional communication between innate and adaptive 

immune system [2, 59, 60].

Richards et al. showed, in a model of subcutaneous injection of the mouse melanoma cell 

line B16FasL, that skin-resident regulatory T-cells (Treg) are rapidly mobilized to the site of 

injection where they limit early recruitment and survival of neutrophils [61]. Interestingly, 

neutrophils significantly contribute to early tumor rejection in this model, in line with 

previous data showing that neutrophils arriving during early tumor development are 

antitumoral [7, 61-63].

 2.2 Acute inflammation – what can be learned from zebrafish

It is now generally appreciated that chronic inflammation can accelerate and induce 

development of cancer [64]. However, recent evidence from a zebrafish model indicates that 

even acute inflammation can be detrimental for tumor development (Figure 1) [65]. The 

zebrafish has emerged as an attractive animal model to study tumor biology and the role of 

neutrophils in tumor development [66]. An important advantage with the zebrafish model, 

besides being suitable for genetic manipulation, is the fact that their embryos and larvae are 

transparent. The transparency of the model allow for efficient live imaging revealing how 

tumor cells and infiltrating immune cells interact [67-69]. Compared to the mouse model, 

where the animal number is a limitation both physically and financially, large numbers of 

zebrafish can by included in each experiment, making the data from each experiment more 

powerful. Contrary to what one first might think, zebrafish tumor biology has important 

similarities with human cancers at both histological and genetic levels. Zebrafish neutrophils 

are an abundant leukocyte population in the circulation similar to humans [70, 71]. 

Moreover, zebrafish have both an innate and an adaptive arm of the immune system. During 

the embryonic and larvae stage they will, however, only have innate immune cells, making it 

an attractive model to study the specific role of neutrophils in tumor inception and early 

tumor development [72].
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Using a zebrafish model where the melanocyte-specific promoter mitfa (microphtalmia-

associated transcription factor a) drives oncogenic human HRasG12V expression in 

melanocytes, Antonio et al. revealed that neutrophils are attracted from the site of acute 

injury toward premalignant cells where the neutrophils promote tumor progression through 

PGE2 production (Figure 1) [65, 73, 74]. H2O2, derived from transformed cells but also from 

non-tumoral neighbors, is the key neutrophil-attractant and inhibiting the generation of 

H2O2 attenuates infiltration of neutrophils and the proliferation of transformed cells [75]. 

The finding that neutrophils, not only in chronic, but also in acute inflammation promote 

tumor development will have to be confirmed in other experimental animal models of cancer 

and could, if holding true, have important clinical implications.

 3. Tumor progression

Tumor development starts in a single or a few cells that have acquired genetic and epigenetic 

alterations. The abnormal activation of oncogenes or the loss of tumor suppressor genes 

initiate stable blockade of cell proliferation, i.e., senescence. For a pre-malignant tumor to 

become malignant it will have to evade senescence [76]. In a model of prostatic tumor 

development inactivation of the tumor suppressor gene Pten in mouse prostate epithelium 

induces the formation of benign tumors. Benign Pten−/− tumors are characterized by strong 

senescence, but over time the tumors grow and become invasive [77, 78]. Intriguingly 

CD11b+Gr-1+ cells counteract the tumor senescence and promote the development of 

cancer. CD11b+Gr-1+ cells infiltrate the PTEN null tumors at the onset of senescence and 

secrete IL-1RA, which antagonizes senescence. Moreover, inhibition of CXCR2 and 

adoptive transfer of Il1ra knockout myeloid cells to Pten−/− mice enhances senescence of 

PTEN null tumors [79].

 3.1 Neutrophil recruitment in spontaneous tumor models

Human cancer development is a multistage malady that can be depicted in different 

genetically engineered spontaneous tumor models (Table 1). An important advantage with 

spontaneous tumor models is that one can elucidate at what stage of tumor development 

neutrophils are being recruited.

The KrasG12D pancreatic model faithfully recapitulates the development of human 

pancreatic ductal adenocarcinoma (PDA), which starts with noninvasive pancreatic 

intraepithelial neoplasia (PanIN) that progresses to invasive cancer [80]. Conditional 

expression of the mutated allele of Kras in pancreatic islets, specifically drives the 

progression from early pre-malignancy toward malignancy [81]. The mutational activation 

of Kras in pancreatic islets induces production of granulocyte-macrophage colony-

stimulating factor (GM-CSF) recruiting protumoral CD11b+Gr-1+ cells that inhibit 

antitumoral T-cell immunity and thereby promote tumor progression. Inhibition of tumor-

derived GM-CSF abrogates the recruitment of CD11b+Gr-1+ cells, which inhibits tumor 

development in an antitumoral T-cell dependent manner, once again emphasizing the 

important interplay between innate and adaptive immune cells [82, 83].

The MMTV-PyMT is another genetically engineered mouse model that depicts spontaneous 

tumor development in humans. The mouse mammary tumor virus long terminal repeat 
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(MMTV-LTR) drives mammary gland-specific expression of the oncogenic polyoma virus 

middle T antigen (PyMT) and, at the age of 6 weeks, MMTV-PyMT mice have developed 

hyperplasia in their mammary glands, that progresses to adenoma two weeks later, followed 

by early carcinoma (week 10); by week 11-15 the mice have late-stage carcinoma with 

metastatic burden, primarily in the lungs [84, 85]. Even though breast cancer is not preceded 

by chronic inflammation it recruits inflammatory cells. Recently, our group revealed that 

neutrophils start to expand systemically at the time of malignant transformation from 

adenoma to early carcinoma. The only hematopoietic growth factor elevated in MMTV-

PyMT mice at this time point is granulocyte-colony stimulating factor (G-CSF). G-CSF 

expands multi-potent progenitors in the bone marrow that give rise to Rblow T-cell 

immunosuppressive CD11b+Ly6G+ neutrophils [84].

The MMTV promoter has also been used to drive the transforming rat oncogene cerbB-2 

(HER2/neu) [86]. The main attractant for neutrophils in this model is the major 

proangiogenic factor vascular endothelial growth factor (VEGF) [87].

 3.2 Angiogenic switch

For a tumor to thrive and grow beyond 1-2 mm2 in size it must acquire an angiogenic 

phenotype [88, 89]. Neutrophils have a prominent role in tumor angiogenesis both directly 

and indirectly (reviewed in [90]). Neutrophils have a large intracellular pool of VEGF that 

can become available upon degranulation. Interestingly, neutrophils in mice deficient in Hck 

and Fgr (hck−/−fgr−/−), two Src family protein tyrosine kinases expressed by granulocytes 

and monocytes, have impaired VEGF degranulation [91].

Using the transgenic multistage pancreatic tumor RIP-Tag2 model, where the rat insulin 

promoter (RIP) induces production of simian virus 40 (SV40) large T-antigen (Tag) 

oncoproteins in pancreatic islets, Nozawa et al. revealed that the initial angiogenic switch is 

mediated by MMP-9 derived from infiltrating neutrophils [92, 93]. Also in transplantable 

tumor models of murine melanoma (B16F10), fibrosarcoma (L929), Lewis lung carcinoma 

(LLC) and human prostate cancer cells (PC-3), infiltrating neutrophils are the major source 

of MMP-9 [94]. Importantly unlike other immune cells that also produce MMP-9, 

neutrophils supply the tumor with a TIMP-free form of MMP-9 that more efficiently induces 

angiogenesis [94-97]. Activate MMP9 remodels the extracellular matrix and thereby 

enhances the bioavailability of VEGF and fibroblast growth factor (FGF-2), another 

angiogenic factor, that otherwise are captured in the extracellular matrix [98, 99]. 

Intriguingly, neutrophil-derived MMP-9 is also a potent, direct and VEGF-independent 

angiogenic factor [100]. Transplantable tumor models and the RIP-Tag2 model have 

furthermore revealed that prokineticin-2 is expressed by CD11b+Gr-1+ cells and promotes 

not only CD11b+Gr-1+ cell mobilization but also angiogenesis [101, 102].

In contrast, interferon-β (IFNβ) negatively regulates neutrophil-induced angiogenesis [103]. 

In a tumor mouse model where melanoma B16F10 cells and MCA205 fibrosarcoma cells 

are transplanted in Ifnb1−/− or Ifnar1−/− syngeneic C57BL76 mice, the tumors grow faster 

compared to syngeneic control mice. The acceleration in tumor growth in IFNβ deficient 

mice is due to an increase of proangiogenic neutrophils recruited by CXCR2 ligands [103, 

104]. The researchers concluded that adaptive immune cells are not involved in the IFNβ-
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dependent inhibition of tumor angiogenesis by repeating the experiments in Ifnb1−/−Rag2−/− 

and Rag2−/− mice that lack T and B-cells [103, 105]. Moreover, in the Ifnb1−/− mice model 

deficiency of IFNβ delays the apoptosis of pro-angiogenic neutrophils infiltrating the tumor 

[106].

 4. Neutrophils in metastatic progression

Metastatic progression begins with tumor cells in the primary tumor gaining invasive and 

migratory capabilities that enable them to intravasate local blood and lymphatic vessels and 

thereby reach distant organs with the circulation. Neutrophils play a crucial role during 

metastatic progression – beginning in the primary tumor where they favor tumor invasion.

Murine breast cancer cells with Tgfbr2 deletion produce the CXCR2 ligand, CXCL5, and 

their tumors have enhanced infiltration of CD11b+Gr-1+ cells, which promote tumor 

invasion through MMP production [107]. Similar results have been obtained in the 

RETAAD model, a model of uveal melanoma where mice are transgenic for the activated 

oncogene RET [108]. In the RETAAD model CXCR2+ neutrophils infiltrate the primary 

tumors where they favor melanoma cell migration and induce an invasive phenotype of 

melanoma cells [109]. In yet another model of invasive and metastatic melanoma (due to 

transgenic overexpression of HGF and oncogenic mutation of CDK4(R24C) giving an 

impaired cell cycle control) ultraviolet radiation induces inflammation. The inflammation is 

mediated by neutrophils recruited by high mobility group box 1 (HGMB1) produced by UV-

damaged epidermal keratinocytes. The infiltration of neutrophils promotes metastatic 

progression to the lungs through enhanced growth of melanoma cells along the abluminal 

side of endothelial cells with occasional perivascular invasion [110].

In addition to promoting metastatic progression in the primary tumor neutrophils expand 

systemically in tumor-bearing mice [33, 84, 111, 112]. Intriguingly, the recruitment of 

neutrophils begins before circulating tumor cells actually reach the metastatic sites. Hence, 

neutrophils are part of the pre-metastatic niche [113-115]. Tumor-derived G-CSF is an 

important attractant for neutrophils in many experimental models of cancer and recruits 

neutrophils to the lung pre-metastatic niche, while tumor-derived COX2 and PGE2 

accumulate CD11b+Gr-1+ cells in the pre-metastatic niche of the brain [116, 117]. Recent 

work by Wculek and Malachani has further revealed that neutrophils accumulate in the lungs 

prior to tumor cell arrival; at the metastatic site they produce leukotrienes, which facilitate 

the colonization of a particular population of tumor cells that have high tumorigenic capacity 

[113]. The metastatic colonization of circulating tumor cells can further be facilitated by β2-

integrin and Mac-1 on neutrophils, which bind ICAM on circulating tumor cells and thereby 

anchor the circulating tumor cells at the metastatic site [118, 119]. Moreover, neutrophils 

promote metastatic colonization with neutrophil extracellular traps (NETs) [120]. NETs are 

extracellular neutrophil-derived DNA structures used by neutrophils to capture circulating 

tumor cells at the metastatic site. Intriguingly, neutrophils in tumor-bearing mice are more 

prone to form NETs [113-115].

Although mounting evidence points to the fact that neutrophils promote metastatic 

progression, there are contradicting data. In a model of renal cell carcinoma deletion of 
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important chemoattractants for neutrophils attenuates recruitment of neutrophils and 

increases metastatic tumor burden revealing an anti-metastatic role of neutrophils [121]. 

Furthermore, Granot et al. showed in a model of breast cancer that CCL2 derived from the 

primary tumor induces an anti-metastatic phenotype of neutrophils, which significantly 

inhibits the formation of lung metastases [122].

 5. Future perspectives and conclusions

It is becoming evident that neutrophils have a prominent role, both preventing and 

promoting tumor development and metastatic progression. Their dual role indicates that 

neutrophils are not a homogenous population but make up a continuum of different 

phenotypes. Accordingly, there are different populations of circulating neutrophils and 

depending on the stage of tumor development, tumors appear to be infiltrated by either anti- 

(N1) or protumoral (N2) neutrophils [4, 7, 40]. Intriguingly, protumoral neutrophils can have 

strikingly different transcriptional profiles implying that there are far more distinct 

populations of neutrophils [8]. Single-cell analysis could provide a powerful tool to uncover 

the complex heterogeneity of neutrophils, not only in experimental animal models of cancer, 

but more importantly in human specimens, and give key insights into the plasticity of 

neutrophils [123, 124].

The differentiation of neutrophils is dictated by the tumor context. Tumor-derived TGFβ, for 

example, promotes the differentiation of N2 TANs and high-density neutrophils are able to 

differentiate into immunosuppressive low-density neutrophils in a TGFβ-dependent manner 

[4, 40]. Presumably, there is a plethora of other factors, acting autonomously or in 

combinations that can determine the fate of neutrophils. To develop therapeutics that can 

tune neutrophils into becoming antitumoral it will be vital to identify the factors that can 

induce a N1 phenotype. Importantly, N1 and N2 neutrophils have only been explored in 

murine tumor models; hence the classification of N1 and N2 neutrophils and the factors 

dictating the fate of neutrophils will have to be further confirmed in human cancers.

Tumor-derived factors will not only differentiate neutrophils but also cause their expansion 

and recruitment. It is however becoming evident that non-tumoral cells in the tumor 

microenvironment also attract neutrophils. UV-damaged keratinocytes recruit neutrophils 

that promote metastatic progression of melanoma cells; H2O2 derived from transformed 

melanocytes but also from their wounded non-tumoral neighbors attracts neutrophils in a 

melanoma zebrafish model and in a model of metastatic breast cancer, tumor cells produce 

IL-1β, activating γδ T-cells, which causes neutrophil expansion [74, 110, 125, 126]. Hence, 

not only tumor cells but also non-tumoral cells recruit neutrophils and have to be taken into 

account when elucidating how neutrophils are being recruited during tumor progression.

The exact origin of recruited neutrophils is still unknown. One possibility could be that N1 

TANs originate from high-density circulating neutrophils, which are more predominant 

during early tumor development, while N2 TANs emanate from circulating low-density 

neutrophils, which are immunosuppressive and accumulate with tumor progression[40]. On 

the contrary, TANs might be the origin of different circulating neutrophil populations 

(Figure 2). Indeed, retrograde migration of neutrophils, from the site of tissue perturbation, 

Hagerling and Werb Page 10

Semin Immunol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



back to the circulation has been reported in the context of inflammation but still has to be 

proven in experimental animal models of cancer [127-129]. Recently, a new genetically 

engineered mouse model exhibited successful intravital imaging of neutrophils giving it an 

important advantage when, e.g., attempting to visualize neutrophil-retrograde migration 

[130].

Taken together neutrophils have an important role in tumor progression, which cannot be 

overlooked, independent of whether it is anti- or protumoral. The contradictory role of 

neutrophils in tumor development and metastatic progression can be attributed to the 

heterogeneity within the neutrophil population. The identification and importance of 

different neutrophil populations will be uncovered with single-cell technology and 

functionally attributed with recent development of cluster regularly interspersed short 

palindromic repeats (CRISPR)-Cas9 [131, 132]. The use of experimental animal models has 

been and will hence continue to be important in our effort to expand our knowledge about 

how neutrophils influence tumor development and metastatic progression.
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Highlights

• Neutrophils have a dual role in tumor development and metastatic 

progression

• Neutrophils are not a homogenous population but make up a continuum of 

phenotypes

• Mouse and zebrafish models provide key insights into how neutrophils 

influence tumor development
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Figure 1. 
The zebrafish model. A) The transparency of the zebrafish embryo and larvae makes the 

model suitable for live imaging of neutrophil- and tumor interactions. B) Neutrophils are 

attracted from the site of acute injury toward pre-malignant cells where the neutrophils 

promote tumor proliferation through PGE2 production.
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Figure 0002

Figure 0003

Figure 2. 
Neutrophils make up a continuum of phenotypes. The tumor microenvironment can 

influence the polarization state of TANs. TGFβ can differentiate neutrophils toward a 

protumoral N2 phenotype. The exact origin of recruited neutrophils is still unknown. N1 

TANs might originate from high-density circulating neutrophils, while N2 TANs emanate 

from immunosuppressive low-density neutrophils. Another alternative could be that the local 

tumor microenvironment dictates the fate of recruited neutrophils. On the contrary, TANs 

might be the origin of different circulating neutrophil populations.
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Table 1

Examples of experimental mouse models of cancer

Genetically engineered models

Genetic model Cancer type

RIP-Tag2 Pancreatic cancer

KrasGD12 Pancreatic cancer

K14-HPV16 Papilloma

MMTV-PyMT Breast cancer

MMTV-Neu Breast cancer

Transplantable models

Transplantable mouse cancer cell lines Cancer type

Lewis lung carcinoma Lung cancer

B16 Melanoma

CT26 Colon cancer

4T1 Breast cancer

Transplantable human cancer cell lines Cancer type

PC-3 Prostate cancer

MDA-MB-231 Breast cancer
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