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Abstract
WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival,

and metastasis of malignant cells. To counteract WWOX’s suppressive effects, cancer cells have developed many strategies

either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those

cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent

studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expres-

sion through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a

potential to block canonical NF-kB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia

virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-kB

pathway. On the other hand, latent membrane protein 2A of Epstein–Barr virus physically interacts with WWOX and redirects its

function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be

just ‘‘the tip of the iceberg’’ regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this

direction should expand our understanding of infection-driven oncogenesis.

Keywords: WW domain-containing oxidoreductase, infection-associated cancers, Helicobactor pylori, human T-cell leukemia

virus, Epstein–Barr virus

Experimental Biology and Medicine 2015; 240: 329–337. DOI: 10.1177/1535370214561957

Introduction

Human WW domain-containing oxidoreductase, namely
WWOX, WOX1 or FOR, participates in a broad spectrum
of biologic functions, including control of neoplasia, stress
response, metabolism, hematopoiesis, and cell differenti-
ation.1–5 WWOX is expressed in many tissues/organs (e.g.
skin, bones, nerve systems, reproductive/endocrine sys-
tems, immune systems, and various cancers) and has been
involved in homeostatic or pathogenic states therein. Its ver-
satile nature is attributed to the broad subcellular localiza-
tions of WWOX and a wide variety of WWOX-interacting
proteins.2,3 Depending on cell types and assay conditions,
WWOX has been detected in nuclei, perinuclear areas, mito-
chondria, Golgi, endoplasmic reticulum, and plasma mem-
brane.1,3 WWOX’s interactions with partner proteins, as well
as most of its known functions, predominantly depend on
the first WW domain at the N-terminus of WWOX.1–3 This
domain, categorized as the group I WW domain,

preferentially binds to a consensus PPXY motif present in
many WWOX-targeting proteins.6 A recent study reveals
another consensus LPXY motif as a novel WW domain/
WWOX-binding site, extending the spectrum of potential

WWOX-interacting partners.7 In addition, the C-terminus
of WWOX contains a short-chain alcohol dehydrogenase–
reductase domain, which is not only a putative steroid hor-
mone-binding domain but also involved in some critical
cases of WWOX’s protein–protein interactions.8,9

Tumor suppression is a well-documented function of
WWOX, and this function is majorly achieved by multiple
interactions between WWOX and its specific partners.1,2

Unsurprisingly, accumulating studies indicate that cancer
cells utilize many approaches to alter WWOX expression
or to withstand the anticancer effects of WWOX. On the
other hand, relatively unknown is what happens to
WWOX in those cancers associated with certain viruses or
bacteria. Being effective initiators or promoters of

ISSN: 1535-3702 Experimental Biology and Medicine 2015; 240: 329–337

Copyright � 2014 by the Society for Experimental Biology and Medicine



malignancy, these oncogenic microbes should have evolved
several ways to deal with WWOX and incorporated them
into their cancer-promoting mechanisms. Three recent stu-
dies support this idea, showing that some cancer-associated
microbes may either adapt anti-WWOX approaches similar
with those used by tumor cells, or even develop a novel
mechanism to redirect WWOX’s role in cancer progres-
sion.10–12 Here we start from an overview of WWOX-
mediated anticancer effects and their underlying mechan-
isms, followed by a summary of the anti-WWOX
approaches used by cancer cells. Subsequently, we will
focus on current knowledge about how oncogenic microbes
affect WWOX’s expression or function, and discuss poten-
tial directions to explore more interactions between WWOX
and infectious pathogens.

WWOX as a tumor suppressor

The association between WWOX and cancers has been
noticed since the gene encoding WWOX was initially iden-
tified within a common fragile site FRA16D, a chromosomal
region frequently affected in many human cancers.13,14

Although homozygous deletion or mutation of this gene
is rare, downregulation of WWOX at the mRNA and pro-
tein levels is frequently observed in clinical specimens and
cell lines of many human cancers. For example, compared
with control normal tissues, tumor tissues showing com-
plete loss or reduced expression of WWOX protein are
detected in about 30–60% of breast cancers, 30% of ovarian
carcinomas, 60% of osteosarcomas, 70% of cutaneous squa-
mous cell carcinomas, and 80% of prostate cancers.15–21 In
addition, the clinical impacts of WWOX reduction in tumor
tissues have been noticed. For breast cancers, absent or
decreased WWOX expression is associated with clinical
markers of poor prognosis, with poor overall survival,
with high risk of recurrence, and with the poor response
to tamoxifen treatment.16,17,22–24 For ovarian carcinomas
and renal cell carcinomas, reduced WWOX expression in
tumor tissues is detected only in some specific histotypes
but the expression reduction is also correlated with the
unfavorable clinical outcome.18,25 For breast cancers and
osteosarcomas, WWOX expression in metastatic tumors is
further reduced or even completely lost, suggesting that
WWOX potentially hampers tumor metastasis.19,23,26

Collectively these clinical observations shed light on
WWOX’s roles in tumor control.

The tumor-suppressive activity of WWOX is further
supported by several experiments manipulating WWOX
expression in cancer cell lines. For WWOX-null cell lines
of lung cancers, prostate cancers, pancreatic cancers,
breast cancers, osteosarcomas, and glioblastomas, ectopi-
cally forced expression of WWOX induces apoptosis and
inhibits cell growth, thus suppressing the tumorigenicity
of the cancer cells in immunocompromised mice.19,21,27–30

Overexpression of WWOX sensitizes, while knockdown of
WWOX attenuates, the cell death triggered by various
apoptosis inducers including tumor necrosis factor a
(TNFa), UV light, anticancer reagents, complement C1q,
and transforming growth factor b1 (TGF-b1), further sub-
stantiating the critical function of WWOX in regulation of

cell death.20,31–35 For cell lines of hetapocellular carcinomas,
gastric signet-ring cell carcinomas, osteosarcomas, and
ovarian cancers, ectopic expression of WWOX suppresses
cell adhesion to or cell invasion through extracellular
matrix, while knockdown of WWOX enhances the matrigel
invasion activity, suggesting that WWOX executes a func-
tion in control of cancer metastasis.19,36–38

The murine Wwox protein is 93.2% identical to human
WWOX in the amino acid sequence, implying their func-
tional conservation.32 To get more insight into the biologic
roles of WWOX, several mouse models with genetic
manipulations of the Wwox gene have been generated,
and these models corroborate the anticancer functions of
murine Wwox. Although the homozygous Wwox-deficient
(Wwox–/–) mice with targeted disruption of exons 2–4 of the
Wwox gene show severe metabolic disorders and die post-
natally within 2–3 weeks, spontaneous occurrence of osteo-
sarcomas in the juvenile is detected.39,40 The mice with
heterozygous Wwox deficiency (Wwoxþ/–) develop lung
papillary carcinomas spontaneously in adult, and upon
treatment with a chemical mutagen, Wwoxþ/– mice develop
more lung tumors and lymphomas than the wild-type
mice.39 In the Wwox-hypomorphic mice generated by a
gene-trap strategy, the insufficient Wwox expression results
in a higher incidence of spontaneous B-cell lymphomas in
female.41 In addition, the female Wwoxþ/– mice with the
C3H mammary tumor-susceptible genetic background
develop dramatically more mammary carcinomas than
the control Wwoxþ/þ mice with the same genetic back-
ground.42 As is an exception, the Wwox-knockout mice
with targeted disruption of the first exon of the Wwox
gene show severe metabolic and hematopoietic defects
without evidence of spontaneous neoplasia.43 Generally
these animal studies provide additional evidence of
Wwox-dependent tumor suppression.

Molecular mechanisms underlying
WWOX-mediated anticancer effects

As is mentioned, functions of WWOX, including those
involved in tumor suppression, are majorly determined
by protein–protein interactions between WWOX and spe-
cific partners. These interactions regulate downstream sig-
naling pathways and transcriptional programs, thus
affecting multiple biologic events. Here we summarize the
WWOX–partner interactions and some downstream
molecular mechanisms, with focus on those contributing
to anticancer effects of WWOX (Figure 1).

Cellular tumor suppressor proteins are considered as the
first group of WWOX-binding partners involved in the
anticancer activity. Two well-recognized examples of this
group are p53 and p73. Although p53 has no consensus
PPXY motif, its N-terminal proline-rich domain (amino
acid residuals 66–100) along with phosphorylation at the
adjacent serine 46 is responsible for the physical interaction
with the first WW domain of WWOX.32 Phosphorylation of
tyrosine 33 (Tyr33) in the first WW domain of WWOX acti-
vates WWOX and enhances its association with p53, result-
ing in stabilization of serine 46-phosphorylated p53.35 The
WWOX–p53 complex is translocated into the nucleus and
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mediates the cell death triggered by TNF, UV light, and
other apoptosis inducers.32,35 Steroid hormone 17b-estra-
diol induces WWOX activation and nuclear translocation
of the WWOX–p53 complex in the cells expressing no estro-
gen receptor, but fails to do so in estrogen receptor-positive
cells, suggesting that certain factors regulate the WWOX–
p53 pathway.26 On the other hand, p73 contains a PPPPY
motif serving as a binding site for the Tyr33-phosphorylated
WW domain of WWOX.44 The Src kinase is responsible for
the Tyr33 phosphorylation, and similar to that observed in
WWOX–p53 interaction, phosphorylation at this tyrosine
residual enhances WWOX binding to p73.44 The
WWOX–p73 interaction drives the nucleus-to-cytoplasm
redistribution of p73, and the cytoplasmic p73 mediates
the apoptosis-inducing effect of WWOX. A recent study
reveals that WWOX interacts with ITCH, an E3
ubiquitin ligase promoting polyubiquitination and
degradation of p73.7 WWOX reduces ITCH-mediated p73
polyubiquitination/degradation and enhances proapopto-
tic activity of p73, showing an additional effect of WWOX
on p73.

The second group of WWOX-binding partners involved
in tumor suppression includes oncogenic transcription fac-
tors that are functionally antagonized by WWOX. AP-2g,
c-Jun, ErbB-4, and RUNX2 belong to this category.40,45–47

The proline-rich motif of c-Jun, as well as the PPXY motifs
of other three proteins, interacts with WWOX, and the Tyr33
in the first WW domain of WWOX is required for the pro-
tein–protein interaction. Overexpressed WWOX binds to
AP-2g, c-Jun, and RUNX2 and inhibits their functions in
promoter transactivation mainly through sequestering
these transcription factors in the cytoplasm.40,45,46

Overexpressed WWOX also physically associates with
full-length ErbB-4 and keeps it in the cytoplasm, thus block-
ing nuclear translocation of the C-terminal fragment of
ErbB-4 and inhibiting YAP-mediated transcriptional

coactivation with this fragment.47 On the other hand,
endogenous WWOX physically interacts with CREB and
co-translocates with it to the nucleus in transected sciatic
nerves in rat, and this event may affect promoter activation
and neuronal survival.48

The third group of WWOX-binding partners for tumor
suppression includes various proteins regulating signal
transduction. For example, WWOX binds to Dvl-2 and
sequesters it in the cytoplasm, thus blocking activation of
the Wnt/b-catenin signaling pathway.49 Binding of TGF-b1
to membrane Hyal-2 facilitates interaction between the
catalytic domain of Hyal-2 and the Tyr33-phosphorylated
WW domain of WWOX.33 The Hyal-2-WWOX complex is
relocated into the nucleus, thereby enhancing Smad-
mediated transcription activity and sensitizing TGF-b1-
induced cell apoptosis.33 In T-cell leukemia cells, WWOX
physically interacts with mitogen-activated protein kinase
kinase 1 (MEK1) as an inactive complex; treatment with
phorbol ester releases WWOX from the complex and trig-
gers cell apoptosis.50

Certain molecular mechanisms underlying WWOX-
mediated inhibition of cancer metastasis have been uncov-
ered. For the cells of breast cancers and osteosarcomas,
ectopic WWOX suppresses cell invasion through functional
inactivation or expressional downregulation of RUNX2.
WWOX restoration reduces expression of a panel of
RUNX2-regulated genes linked to metastasis.19,40 For ovar-
ian cancer cells, WWOX decreases membrane expression of
intergrin-a3, thus reducing cell adhesion to fibronectin
in vitro and tumorigenesis in vivo.38

How cancer cells dodge or overcome
WWOX-mediated tumor suppression

As is summarized in Figure 2, WWOX can be counteracted
by cancer cells in multiple ways. WWOX expression can be
abrogated at genomic, transcriptional, post-transcriptional,

Figure 1 WWOX contains domains for protein–protein interaction. WWOX is a 414-amino-acid protein with two N-terminal WW (WW1 and WW2) domains and a

C-terminal short-chain alcohol dehydrogenase–reductase (ADH/SDR) domain. A tyrosine kinase Src phosphorylates WWOX at Tyr33, which activates WWOX and

enhances its interaction with partner proteins. Another tyrosine kinase Ack1 phosphorylates WWOX at Tyr287, which accelerates WWOX degradation. The first WW

domain of WWOX is responsible for interaction with most of known WWOX-binding proteins, while the ADH/SDR domain mediates the interaction with Tau and GSK-3b
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translational, and post-translational levels. Previous studies
have also revealed some cellular proteins that physically
interact with WWOX and inhibit its anticancer effects.

Although the WWOX gene spans the FRA16D common
chromosomal fragile site, the cases with absence of WWOX
owing truly to gene deletion or missense mutation in cancer
cells are rare.51–53 One exception is observed in primary
effusion lymphoma cell lines, of which 85% (11/13) show
WWOX gene deletion.54 Aberrant WWOX transcripts with
exon deletions have been detected in many tumor speci-
mens and cell lines, including those of breast cancers, ovar-
ian cancers, hepatocellular carcinomas, non-small cell lung
carcinomas, and esophageal squamous cell carcin-
omas.51–53,55,56 These transcripts have been associated
with low expression of full-length WWOX mRNA, abnor-
mal subcellular localization of WWOX protein, or advanced
cancer stages.30,51,56 Therefore, though it remains unclear
how the aberrant transcripts are generated, they should
contribute to the dysregulation of WWOX in cancer cells.
Downregulation of WWOX in cancer cells can also be attrib-
uted to transcriptional silencing by epigenetic modification.
For example, reduced WWOX expression has been asso-
ciated with promoter hypermethylation in various cancer
cells.29,57 Treatment with a DNA demethylating reagent or a
histone deacetylase inhibitor restores WWOX expression
and WWOX-mediated tumor-suppressive effects on pros-
tate cancer cells.21 On the other hand, absence of WWOX
protein in the presence of full-length WWOX mRNA has
been observed in breast cancer cell lines and tumor tissues
of cutaneous squamous cell carcinomas, suggesting a block-
age of WWOX expression at the translational/post-tran-
scriptional level.20,51 In addition, loss of WWOX in cancer
cells can be due to reduced protein stability. For prostate
tumorigenesis, an activated tyrosine kinase Ack1

phosphorylates WWOX at tyrosine 287, resulting in
WWOX polyubiquitination followed by accelerated
WWOX degradation.58

While WWOX expression is frequently downregulated
in cancer cells, there are still substantial cases showing the
presence of wild-type WWOX protein in malignancies.
A normal or even elevated level of WWOX expression has
been reported in certain tumor tissues or cell lines of gastric
carcinomas, prostate cancers, and breast cancers.13,26,59

These observations raise a possibility that there are other
strategies to antagonize WWOX’s tumor suppressive func-
tions. Some cellular proteins functionally inhibiting WWOX
have been identified. Phosphorylated JNK interacts with
Tyr33-phosphorylated WWOX and suppresses WWOX-
mediated apoptosis.60 Two PPXY-containing proteins,
TMEM207 and COTE1, interact with WWOX and counter-
act WWOX-mediated inhibition of cell invasion.36,37

Alteration of subcellular localization may be another way
leading to dysfunction of WWOX. For example, overex-
pressed Zfra sequesters WWOX in the cytoplasm and
blocks TNFa/UV light-induced nuclear translocation of
WWOX, thus disturbing the proapoptotic functions of
WWOX and p53.61

How oncogenic microbes deal with WWOX

The roles of WWOX in the cancers associated with infec-
tious pathogens are less explored, but it is reasonably
expected that the oncogenic microbes must deal with the
tumor-suppressive functions of WWOX in the context of
their infection-driven oncogenesis. As is illustrated in
Figure 3, distinct mechanisms utilized by three cancer-asso-
ciated microbes have been reported recently.

Figure 2 WWOX plays multiple roles in tumor suppression but it can be downregulated or functionally inhibited in many ways. Black boxes in the lower panel present

the anticancer mechanisms of WWOX, while white boxes in the upper panel indicate the potential mechanisms of cancer cells to overcome WWOX
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Epigenetic silencing of WWOX expression by
Helicobactor pylori10

H. pylori infection is an etiologic factor for chronic gastritis,
peptic ulcers, gastric adenocarcinomas, and gastric mucosa-
associated lymphoid tissue lymphomas.62 Gastric cancer
cells infected with H. pylori or co-cultured with the bacter-
ium-conditioned medium show alteration of cell morph-
ology and reduced apoptosis.63 These effects depend on
VacA, a vacuolating toxin of H. pylori, as an isogenic
strain losing the vacA gene exerts a mild influence on the
cells. A cDNA microarray analysis reveals that H. pylori
infection causes significant changes of expression of cellular
genes involved in cytoskeleton, cell cycle, cell death, and
proliferation. Among these genes, WWOX expression is
dramatically decreased at 24 h postinfection.63 Following a
precedent that H. pylori induces promoter methylation and
silencing of a tumor suppressor trefoil factor 2, the H. pylori-
triggered downregulation of WWOX is subsequently found
to be mediated by the similar epigenetic regulation.64

H. pylori infection induces expression of DNA methyltrans-
ferases, DNMT1 and DNMT3A, concurrently with hyper-
methylation of the WWOX promoter and reduction of
WWOX transcription.10 In addition, WWOX gene hyper-
methylation is associated with H. pylori infection in primary
gastric tumor tissues. Therefore, downregulation of
WWOX by epigenetic silencing is a convergent anti-
WWOX mechanism adapted by both H. pylori and
microbe-free cancer cells.

Reciprocal counteraction between WWOX and Tax of
human T-cell leukemia virus type 1 (HTLV-1)11

A relatively complex interaction is recognized between
WWOX and HTLV-1, a retrovirus causing adult T-cell leu-
kemia. HTLV-1 encodes an oncoprotein Tax, which triggers
multiple signaling pathways, regulates expression of viral
and cellular genes, and induces tumorigenesis in transgenic
mice.65 Tax activates both canonical and non-canonical

NF-kB pathways, which are pivotal to Tax’s oncogenic func-
tions.66–68 Notably, a recent study shows that WWOX is a
negative regulator of Tax.11 Knockdown of WWOX
enhances, while overexpression of WWOX suppresses, the
effects of Tax on cell transformation and tumorigenesis. It is
further revealed that WWOX interacts with Tax, thus block-
ing the Tax-activated canonical NF-kB pathway without
affecting the non-canonical NF-kB pathway. The underlying
mechanism involves WWOX-mediated interference with
Tax-induced recruitment of IKKa to the canonical NF-kB
subunit RelA, thus inhibiting the phosphorylation of RelA
at serine 536 and its activation. Interestingly, Tyr33-mutated
WWOX retains the ability to bind to Tax but fails to block
Tax-induced IKKa-RelA interaction, suggesting that the
first WW domain may not mediate WWOX–Tax protein
interaction but it contributes to the functional inhibition of
Tax. Another note is that WWOX-mediated NF-kB inhib-
ition is Tax specific, as WWOX does not affect the canonical
NF-kB pathway activated by other stimuli such as TNFa.
Further studies are required to identify the protein domains
involved in WWOX–Tax interaction and the exact mechan-
isms through which WWOX interferes with the Tax-specific
canonical NF-kB pathway.

To overcome WWOX’s negative effect, Tax downregu-
lates WWOX expression through activation of the non-
canonical NF-kB pathway.11 The Tax-driven, non-canonical
NF-kB-mediated reduction of WWOX expression occurs at
a transcriptional level, while WWOX protein is reduced by
Tax more prominently. Tax fails to reduce WWOX expres-
sion in the cells with deficiency of the non-canonical NF-kB
subunit p100/p52. Of note, the repression of WWOX
expression by the non-canonical NF-kB pathway is not
Tax specific, since the pathway activated by either p52 over-
expression or CD40 signaling can also decrease WWOX
expression.11,69 The p52-mediated gene silencing is prob-
ably attributed to the fact that p52 is a DNA-binding protein
lacking intrinsic transcriptional activity.11 Considering that

Figure 3 Oncogenic microbes use different strategies to deal with WWOX. H. pylori suppresses WWOX expression through epigenetic silencing. The HTLV-1

Tax-activated canonical NF-kB pathway is blocked by WWOX, while the Tax-activated non-canonical NF-kB pathway suppresses WWOX expression. EBV LMP2A

interacts with WWOX and redirects WWOX’s function to activation of a proinvasive ERK-Fra-1-MMP9 pathway
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hyperactivation of the non-canonical NF-kB pathway fre-
quently occurs in various tumors, it should be a general
mechanism to downregulate WWOX expression in cancer
cells.70

Functional redirection of WWOX by latent membrane
protein 2 A (LMP2A) of Epstein–Barr virus (EBV)12

EBV is a herpesvirus associated with nasopharyngeal car-
cinomas and various B-cell lymphomas. LMP2A is an EBV
oncoprotein contributing to growth, survival, and metasta-
sis of tumor cells.71,72 This membrane protein exerts onco-
genic functions through triggering multiple signaling
pathways.73 The N-terminal intracellular domain of
LMP2A, which is responsible for the signal-triggering
events, contains two PPPPY (PY) motifs. We have found
that, through the PY motifs, LMP2A activates extracelluar
signal-regulated kinase (ERK) and a downstream AP-1
transcription factor Fra-1, thus upregulating matrix metal-
loproteinase 9 (MMP9) and MMP9-mediated cancer cell
invasion.74 As is somewhat unexpected, our recent study
reveals that WWOX–LMP2A interaction is actually essen-
tial for the LMP2A-triggered ERK-Fra-1-MMP9 pathway.12

Firstly, WWOX physically interacts with LMP2A, which
requires Tyr33 in the first WW domain of WWOX and the
PY motifs of LMP2A. Knockdown of endogenous WWOX
by siRNA significantly inhibits the LMP2A-triggered ERK
activation, Fra-1 induction, MMP9 production, and cell
invasion. When endogenous WWOX is knocked down,
the LMP2A-induced ERK-Fra-1-MMP9 event can be
restored by exogenous wild-type WWOX but not by
Tyr33-mutated WWOX. Moreover, the ERK-Fra-1-MMP9
pathway cannot be induced by WWOX overexpression in
the absence of LMP2A, suggesting that WWOX positively
mediates the signaling pathway only when it interacts with
LMP2A.

Our data reflect that WWOX may be redirected by
LMP2A to a novel role in activation of a proinvasive signal-
ing pathway potentially linked to cancer metastasis, though
the underlying mechanisms remain to be explored. In pre-
vious studies, under conditions without EBV LMP2A,
WWOX exerts negative effects on the MEK1–ERK signaling
pathway and cancer cell invasion.9,19,36,50 As LMP2A serves
as a signaling adaptor that recruits not only WWOX but also
many other factors including protein kinases and ubiquitin
ligases, it is likely that WWOX–LMP2A interaction leads
WWOX to certain new partners and brings out new func-
tions of WWOX.75–78

After literature reviewing, we notice more examples
showing potentially opposite functions of WWOX and
EBV LMP2A (Table 1). While WWOX is a proapoptotic
tumor suppressor, LMP2A promotes cell survival and cell
transformation.21,27,29,35,71,79–81 Expression and activation of
WWOX are positively correlated with normal keratinocyte
differentiation, but LMP2A inhibits keratinocyte differenti-
ation and contributes to an undifferentiated feature of naso-
pharyngeal carcinoma.20,71,82 At a molecular level, both
WWOX and LMP2A can bind to and stabilize �Np63a, a
cellular oncoprotein driving cell proliferation and suppress-
ing epithelial cell differentiation, but they cause opposite

effects on �Np63a activity: inhibition by WWOX and acti-
vation by LMP2A.34,83 As for oncogenic signaling transduc-
tion, WWOX blocks the Wnt/b-catenin pathway and the
canonical NF-kB pathway, while both pathways can be acti-
vated by LMP2A.11,49,80,81,84 Therefore, we expect that
WWOX–LMP2A interaction may cause antagonism or
redirection of WWOX’s functions in many ways, potentially
resulting in other impacts on cancer cells.

Concluding remarks and perspectives

Clinical, biological, and molecular studies conclude the crit-
ical roles of WWOX in tumor suppression. Malignant cells
must have strategies to withstand this cancer blocker. These
strategies include downregulation of WWOX expression at
multiple levels and inhibition of WWOX’s functions
through protein–protein interaction and/or subcellular
mislocalization. An emerging study topic is how cancer-
associated microbes deal with WWOX. Some oncogenic
microbes may adapt the similar WWOX-targeting strategies
used by microbe-free cancer cells. For example, H. pylori
infection downregulates WWOX through promoter hyper-
methylation, an epigenetic mechanism known to suppress
WWOX expression in many cancer cells. On the other hand,
though WWOX has a potential to inhibit HTLV-1 Tax-trig-
gered canonical NF-kB activation and tumorigenesis, Tax
activates the non-canonical NF-kB pathway to successfully
suppress WWOX expression. The non-canonical NF-kB-
mediated WWOX downregulation is not only induced by
this viral oncoprotein but may also be an anti-WWOX strat-
egy shared with other cancers. In addition, EBV LMP2A
evolves a novel strategy to redirect WWOX to a proinvasive
signaling pathway. Since the N-terminal PPXY-containing
domain of LMP2A mimics a cellular signaling adaptor, cer-
tain cellular oncoproteins may also twist WWOX’s roles in a
LMP2A-like manner.

We believe that the current reports about WWOX–
microbe interaction are just ‘‘the tip of the iceberg.’’ PPXY,
LPXY, and other potential WWOX-binding motifs may exist
in other microbial proteins, especially for those intracellular
pathogens that closely interact with host cells.
Dysregulation of WWOX at expressional or functional
levels should be achieved by many cancer-associated
pathogens in various ways, and further studies in this dir-
ection should expand our understanding of infection-
driven oncogenesis. Meanwhile, the WWOX–microbe

Table 1 Opposite biologic or molecular effects of WWOX and EBV

LMP2A

WWOX’s effects LMP2A’s effects

Cell viability Proapoptosis21,27,29,35 Prosurvival71,79–81

Cell invasion Suppression19,36 Promotion72,74

Keratinocyte

differentiation

Positive correlation20 Inhibition71,82

�Np63 activity Inhibition34 Activation83

Wnt/b-catenin pathway Inhibition49 Activation84

NF-kB pathway Inhibition11 Activation80,81
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interaction may not be restricted to cancer-related patho-
gens; the broad biologic functions of WWOX can be
linked to host–microbe crosstalk in other ways. For exam-
ple, PPXY-containing motifs also exist in two EBV proteins,
BdRF1 (the internal scaffold protein) and BVRF2 (the mat-
urational protease), which are essential for viral capsid
assembly.85 Whether WWOX binds to these viral proteins
and is thus involved in the replicative stage of EBV is intri-
guing. We hope this review can trigger more study interests
in the potential interactions between WWOX and microbial
infection.
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