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Abstract
Murine Oct4þ, very small embryonic-like stem cells (VSELs), are a quiescent stem cell population that requires a supportive

co-culture layer to proliferate and/or to differentiate in vitro. Gene expression studies have revealed that the quiescence of these

cells is due to changes in expression of parentally imprinted genes, including genes involved in cell cycle regulation and insulin and

insulin-like growth factor signaling (IIS). To investigate the role of microRNAs (miRNAs) in VSEL quiescence, we performed miRNA

studies in highly purified VSELs and observed a unique miRNA expression pattern in these cells. Specifically, we observed

significant differences in the expression of certain miRNA species (relative to a reference cell population), including (i) miRNA-

25_1 and miRNA-19 b, whose downregulation has the effect of upregulating cell cycle checkpoint genes and (ii) miRNA-675-3 p

and miRNA-675-5 p, miRNA-292-5 p, miRNA-184, and miRNA-125 b, whose upregulation attenuates IIS. These observations are

important for understanding the biology of these cells and for developing efficient ex vivo expansion strategies for VSELs isolated

from adult tissues.
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Introduction

First identified by our group in murine bone marrow (BM),
Oct4þSSEA-1þLin�CD45�, very small embryonic-like stem
cells (VSELs) can, under favorable conditions, differentiate
into cells from all three germ layers.1 These small cells are
mobilized into peripheral blood (PB) during organ injury,
which suggests that they contribute to the regeneration of
damaged tissues.2,3 Interestingly, unlike embryonic stem
cells (ESCs) or induced pluripotent stem cells, VSELs do
not grow teratomas in vivo and do not proliferate in vitro
if cultured without feeder-layer support.4,5

The molecular characterization of VSELs has enabled the
discovery of several factors that may contribute to the qui-
escent state of these cells. VSELs exhibit very high expres-
sion of the cell cycle kinase inhibitors p57Kip2 and p21CIP,
which are involved in inhibiting exit from the cell cycle.6,7

In addition, evidence has accumulated that epigenetic
changes of certain imprinted genes related to insulin and
insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) signaling
(IIS) also contribute to the VSEL quiescent state.8–10 As

reported more recently, some VSELs share molecular char-
acteristics with primordial germ cells (PGCs), and epigen-
etic changes in some of the imprinted genes involved in exit
from the cell cycle and IIS that regulate the quiescence of
VSELs are also responsible for the quiescence of PGCs.11,12

The expression of several genes involved in IIS is regu-
lated in VSELs and PGCs at the epigenetic level by imprint-
ing within differentially methylated regions (DMRs). The
Igf-2-H19 locus, imprinted both in mice and humans,
plays the most important role in the regulation of IIS gene
expression. While the Igf2 gene encodes the autocrine/para-
crine mitogen IGF-2, the H19 gene gives rise to a non-coding
RNA, which is a precursor of several microRNAs (miRNAs)
that negatively affect cell proliferation.9,13

Mounting evidence indicates that miRNAs contribute to
the pluripotency, self-renewal, and differentiation of ESCs.14

In support of these roles, global loss of miRNAs results in
defects in proliferation and differentiation of ESCs in vitro,15

and Dicer-deficient animals die in the early stages of devel-
opment.16 Thus, since several genes are regulated at the
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post-translational level by non-protein-coding miRNAs, we
became interested in the expression of miRNAs that regu-
late genes involved in cell cycle exit and IIS in VSELs.

We report here that VSELs exhibit differences in miRNA
levels (relative to a reference cell population) that have the
effect of regulating the cell cycle kinase inhibitor p57Kip2 and
display a unique miRNA expression pattern that attenuates
IIS. These miRNAs may in future be targeted by antagomirs
to facilitate ex vivo expansion of these cells for purposes of
regenerative medicine.

Materials and methods
Isolation of VSELs, HSCs, and mononuclear cells
from murine BM

This study was performed in accordance with the guide-
lines of the Animal Care and Use Committee of the
University of Louisville, School of Medicine and with the
Guide for the Care and Use of Laboratory Animals
(Department of Health and Human Services, Publication
No. NIH 86-23).

BM was isolated from pathogen-free C57BL/6 mice
(4–6 weeks old; Jackson Laboratory, Bar Harbor, ME,
USA). The preparation of mononuclear cells (MNCs) from
BM and the isolation of VSELs (Sca-1þLin�CD45�) and
HSCs (Sca-1þLin�CD45þ) by multiparameter live-cell
sorting (MoFlo, Dako) were performed as previously
described.17

MicroRNA expression profiling

VSELs and MNCs were obtained from the BM of WT
C57BL/6 mice. Total RNA was isolated from freshly puri-
fied cells from both populations using TRIzol reagent (Life
Technologies). We used MNCs as a reference population for
miRNA profiling analyses as in our previous gene expres-
sion studies.

The miScript PCR System was employed following the
manufacturer’s instructions (Qiagen, Valencia, CA). For
reverse transcription of total RNA containing miRNA, the
miScript II RT kit was used, followed by real-time quanti-
tative PCR detection of miRNA using the miScript.

Results and discussion

Murine VSELs were purified by FACS from murine BM,
and their purity was confirmed by enrichment for Oct-4
mRNA expression as described.1 Initial screening for
miRNA expression employing an miRNA PCR array spe-
cific for cell differentiation and development revealed
miRNA species significantly upregulated in VSELs relative
to MNCs. Based on our miRNA assay results, the literature,
and existing bioinformatics databases (miRBase, Target
Scan), we focused on miRNAs that contribute to cell cycle
control, cell proliferation, and IIS. Accordingly, quantitative
RT-PCR was employed to evaluate expression of miRNAs
that are well-established participants in these processes,
both in VSELs and in BM-derived MNCs.

As demonstrated in Figure 1, we observed several dif-
ferences in expression pattern for miRNA genes that inhibit
the cell cycle in murine BM-purified VSELs relative to

MNCs. One of the most important genes that inhibits exit
from the cell cycle and is regulated by paternal imprinting is
the cell cycle kinase inhibitor p57Kip2, and it is known that
this gene is negatively regulated by miRNA-25_1.18 We
found that miRNA-25_1 was significantly downregulated
in VSELs compared with MNCs (P< 0.05), which could
explain the previously reported relatively high expression
level of p57Kip2 in VSELs.11 Furthermore, miRNA-25 not
only inhibits several G1 cyclin/Cdk complexes but also tar-
gets two ubiquitin ligases that may regulate Oct4, c-Myc,
and Klf5.19 Hence, miRNA-25_1 may regulate the cell cycle
in VSELs and may be additionally involved in their re-pro-
gramming and self-renewal.

In contrast to p57Kip2, there are many genes involved in
cell cycle regulation and proliferation that are unregulated
by paternal imprinting, and we also analyzed their expres-
sion. For example, miRNA-19 b and miRNA-92 b, which
together with miRNA-17-5 p belong to the miRNA-17
family, are known to regulate cell cycle entry and self-
renewal and to target proteins that suppress Wnt-b-catenin
signaling.20–22 In particular, miRNA-19 b has an important
role in cell proliferation by regulating expression levels of
its downstream proteins, including PTEN, p-AKT,
p-MDM2, p53, and PCNA.23 Fan et al.24 determined that
high expression of miRNA-19 b in human cancer cells pro-
motes the cell cycle by diminishing levels of p53 protein,
which subsequently decreases levels of Bax and p21. We
found that both miRNA levels were significantly changed
in VSELs (P< 0.05), although miRNA-19 b was downregu-
lated, while miRNA92b was upregulated.

Our initial miRNA microarray analysis also revealed
high expression of miRNA-429-3 p in VSELs, which was
confirmed by RT-qPCR analysis (P< 0.05). It has been
reported that c-Myc in ESCs upregulates expression of
miRNA-429-3 p that is involved in self-organizing network
that maintains pluripotency of ESCs by inhibiting genes
involved in cell differentiation.25 Significant upregulation
of miRNA-429-3 p in VSELs corroborates with high expres-
sion of c-Myc in the cells.11

Our miRNA studies also revealed some changes in
expression of several miRNA species, such as miRNA-221
and miRNA-222 (regulators of p27Kip1 and p57Kip2),26,27

the miRNA let-7 a (regulator of cyclin D1 and pS2),28

miRNA-129-5 p (inhibitor of Cdk6 expression and G1

phase progression),29 and miRNA-16 (regulator of cancer
cell proliferation)30; however, these changes were not stat-
istically significant.

Furthermore, we also analyzed the signature of several
miRNAs involved in IIS. It is well established that inhib-
ition of IIS promotes the VSEL quiescent state.9,10 In par-
ticular, VSELs highly express the H19 non-coding RNA that
gives rise to miRNA-675-3 p and miR-675-5 p, both of which
negatively affect expression of the IGF-1 receptor31 and INS
R,32 which, in turn, plays an important role in IGF-1 and
insulin signaling.9 As expected, we confirmed high expres-
sion of both miRNAs in murine BM-purified VSELs by RT-
qPCR (P< 0.05). Furthermore, another gene regulated by
parental imprinting in mouse is RasGRF1, which encodes
a small GTP exchange factor for H-Ras that is associated
with postnatal growth and is involved in IIS.33 In support
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of changes in miRNA expression that may additionally con-
tribute to attenuation of IIS, we found that miRNA-184,
which exhibits a complementary sequence to the mRNA
sequence of the RasGRF1 gene, is upregulated in murine
VSELs (P< 0.05).

Due to erasure of paternal imprinting at the Igf2-H19
locus, murine VSELs also display very low levels of IGF-2
expression.11 Since expression of IGF-2 may be additionally
regulated at the miRNA level,34,35 we evaluated the

expression of miR-292-5 p, miR-125 b, and miR-665, all of
which negatively regulate IGF-2 expression. Murine
VSELs exhibited upregulation of all three miRNAs, and
changes in expression of miR-292-5 p and miR-125 b were
significant (P< 0.05).

While IGF-1 R is the signaling receptor for IGF-1 and
IGF-2, the IGF-2 receptor (IGF-2 R) is a non-signaling pro-
tein expressed on the cell surface that binds IGF-2 and
prevents its binding to IGF-1 R. Thus, high expression of

Figure 1 Changes in expression of miRNAs regulating the cell cycle (panel A) and insulin/insulin-like growth factor signaling (panel B). Combined data from four

independent experiments are pooled together. *p<0.05
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IGF-2 R inhibits IIS. In fact, IGF-2 R is an imprinted gene,
and VSELs highly express it on their surface as this receptor
binds IGF-2 and prevents IGF-2 binding to signaling IGF-
1 R and INSR.9 As reported, miRNA-15 b plays an inhibi-
tory role in Igf2R expression, and our RT-qPCR studies
revealed that miR-15 b is strongly downregulated in
VSELs (P< 0.05).

Finally, we also tracked changes in expression of certain
other miRNA species that are involved in regulation of IIS.
First, we found changes in expression of miRNA-470,
miRNA-669 b, and miRNA-681, which are involved in IGF-
1/growth hormone signaling.36 As reported, these miRNAs
negatively regulate IGF-1, IGF1R, and PI3 kinase expres-
sion,36 and upregulation of these three miRNAs in growth
hormone receptor knockout mice led to a decrease in down-
regulation of IGF1, IGF1R, and PI3 kinase genes.36 We also
found that miRNA-470 and miRNA-669 b are slightly upre-
gulated in VSELs; however, our predetermined level of sig-
nificance was not reached. This suggests that this group of
miRNAs contributes to attenuation of IIS but is unlikely to
play a major role in regulating IIS in murine VSELs.

In conclusion, our results defined an miRNA signature
contributing to the quiescent state of VSELs (Figure 2). We
demonstrate significant changes in the expression level of
several miRNAs species that (i) upregulate cell cycle check-
point genes (e.g. miRNA-25_1) and (ii) attenuate IIS (e.g.
miRNA-675-3 p and miRNA-675-5 p, miRNA-292-5 p,
miRNA-125 b, and miRNA-184). In future, these miRNAs
may be targeted using antagomirs in order to facilitate

ex vivo expansion of these cells for the purposes of regen-
erative medicine.
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