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Abstract
The capability to modify the genome precisely and efficiently offers an extremely useful tool for biomedical research. Recent

developments in genome editing technologies such as transcription activator-like effector nuclease and the clustered regularly

interspaced short palindromic repeats system have made genome modification available for a number of organisms with relative

ease. Here, we introduce these genome editing techniques, compare and contrast each technical approach and discuss their

potential to study the underlying mechanisms of human disease using patient-derived induced pluripotent stem cells.
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Introduction

The development of recombinant DNA technologies has
provided scientists with the fundamental tools to modify
DNA sequences. These tools paved the way for the intro-
duction of conditional alleles at specific genomic loci. To
edit the genome, the introduction of a targeting construct
coupled with homologous recombination (HR) was trad-
itionally employed. Unfortunately, this approach could
prove inefficient and labor intensive.1–3 Moreover, genomic
targeting in eukaryotes was restricted to model organisms
due to the ease of embryonic stem cell manipulation.2,4,5

Recently, the development and application of the sequence-
specific endonucleases transcription activator-like effector
nucleases (TALENs)6–10 and the clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-asso-
ciated (Cas) system11–15 have made a revolutionary
contribution to the genome editing toolbox. The advent of
these technologies now enables researchers to readily manipu-
late any gene of interest in numerous model organisms.

TALEN and CRISPR technologies provide precise and
efficient genetic modification by inducing a double-strand
break (DSB) at a specific target site – an essential step for
performing targeted genomic editing. The presence of
a DSB activates innate cellular DNA damage repair mechan-
isms,16 including the dominant error-prone non-
homologous end joining (NHEJ) pathway17,18 and the less

frequent homology recombination-directed repair (HDR)
pathway.19 DNA repair by NHEJ has the potential to lead
to gene disruption by introducing deletions or mutations,
while the HDR-repair pathway can be used to introduce
precise changes in the presence of a donor DNA template.

In this review, we introduce TALEN and CRISPR tech-
nologies and review the extensive scientific progress made
using these novel approaches. We also summarize the appli-
cation of these tools in modeling human disease and discuss
the future prospect of utilizing these techniques coupled
with induced pluripotent stem cells (iPSCs) for future
gene therapies.

TALEN-mediated genome editing

TAL (transcription activator-like) effectors or TALEs are
site-specific DNA-binding proteins derived from the plant
pathogen Xanthomonas sp., which uses TALE proteins to
weaken host defenses by activating genes favorable to bac-
terial infection.6–8 Each DNA-binding module of a TALE
protein typically consists of 34 amino acids arranged in
tandem. These repeats are nearly identical in sequence
except for two highly variable amino acids in the 12th and
13th amino acid positions (termed the repeat variable dir-
esidue or RVD). The RVD position establishes base-recogni-
tion specificity, and thus distinct RVDs allow TALEs to
recognize a specific target DNA base (NI¼A, HD¼C,
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NG¼T, NH¼G or NN¼G/A). An array of four different
repeat units has been shown to be sufficient to generate
TALEs with novel DNA recognition sites.9,10,20,21

The ability to recognize and subsequently cut DNA at
specific sites is accomplished by fusion of the catalytic
domain of the FokI endonuclease to TALE repeats,22

which subsequently generate a TALEN protein
(Figure 1(a)). Since dimerization of the catalytic domain of
FokI is mandatory for nuclease activity, a pair of TALENs
must be designed to recognize DNA sequences to the left
and right of the intended cut site.6–10 Consequently,
TALENs can be employed to generate site-specific DSBs
to facilitate genome editing through NHEJ or HDR.

To date, TALENs have been used to target genomic loci
in a number of human cell lines, including embryonic stem
cells (hESCs) and iPSCs.7,23–27 Furthermore, TALEN-
mediated genome targeting has been shown to also function
in plants,6 fruit flies28,29 worms,30 frogs,31 and zebrafish.8,32–

34 Most recently, TALEN proteins have been used for rapid
gene modification in mouse, rat, and rabbit by embryo
microinjection.35–37

CRISPR/Cas9-mediated genome editing

CRISPR are segments of repetitive DNA sequence found in
the bacterial genome.38 These segments serve to protect the
organism from invading foreign nucleic acids, such as
viruses or plasmids.39–41 CRISPR systems have been
shown to integrate invading foreign DNA between repeats.
This integration provides a novel DNA template for the
transcription of hybrid RNA molecules (crRNAs) that con-
tain sequences from both the adjacent CRISPR arrays and
the invading DNA (termed the protospacer sequence).
Following transcription, each crRNA hybridizes with a
second RNA (known as the transactivating CRISPR RNA

or tracrRNA), and together, these molecules form a complex
with the Cas9 (CRISPR associated protein 9) nuclease.42,43

DNA cleavage by the Cas9 nuclease targets DNA by relying
on the protospacer-encoded region of the crRNA to direct
the complex to a region called the protospacer adjacent
motif or protospacer adjacent motif (PAM).

The type II CRISPR/Cas9 system that has been adapted
from Streptococcus pyogenes is capable of inducing sequence-
specific DSBs that allow targeted genome editing
(Figure 1(b)). This modified CRISPR/Cas9 system requires
the interaction between the Cas9 nuclease and a newly
engineered guide RNA (gRNA).11,12,43 The gRNA is a
single RNA chimera that is constructed from the fusion of
a crRNA and a tracrRNA, and modification of 20 nucleo-
tides at the 50 end of the gRNA (corresponding to the pro-
tospacer region of the crRNA) serves to guide Cas9 to
putative cleave sites to generate DSBs. CRISPR/Cas9 has
been demonstrated to induce targeted cleavage at predicted
sites in a number of different mammalian cell lines, includ-
ing stem cells, and in a number of eukaryotes.13–15,44–56

Moreover, Cas9 has also been engineered into a nicking
enzyme to increase specificity and facilitate homology-
directed repair with minimal off-target rates.57–60

Additional studies have demonstrated that the CRISPR/
Cas9 system is additionally capable of multiplex genome
engineering by simultaneous introduction of multiple
gRNAs, easing programmability and exhibiting broad
applicability of this system.14,15,44

Efficiency and specificity of TALENs and
CRISPR/Cas9 systems

The efficiency of genome targeting has always depended on
a number of technical factors, including the cell type
being targeted and the location of the targeting site.

Figure 1 Genome targeting by TALEN and CRISPR/Cas9 systems. (a) TAL (transcription activator-like) effector (TALE) proteins (shown as blue and green spheres)

bind to target sequences (shown in red) to generate a site-specific double-stranded break (DSB) upon dimerization of fused FokI endonucleases (shown in grey). TALE

targeting sites are typically preceded by a thymine (T) at the 50 end. N is any base. (b) The CRISPR/Cas9 system relies on an engineered guide RNA (gRNA) to target

DNA. The gRNA is constructed from the fusion of a crRNA and a tracrRNA (transactivating CRISPR RNA) (see text). The gRNA complexes with Cas9 (shown in purple) to

induce cleavage of target DNA sites complementary to 20 nucleotides of the gRNA and located adjacent (50) to the PAM sequence. Studies have demonstrated that the

12 base pairs closest to the PAM sequence are the most important for specificity (shown in red). N is any base
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Importantly, the targeting efficiencies of TALEN and
CRISPR/Cas9 technologies are much higher in a number
of different cell types compared to traditional genome edit-
ing methods.7,8,12,14 However, when targeting hESCs and
iPSCs, studies have shown that use of the CRISPR/Cas9
system is substantially better at promoting NHEJ and
HDR to generate mutant clones than TALENs.61,62

One significant concern related to the use of TALENs
and/or CRISPR/Cas9 is the risk of off-target mutagenic
effects that can be introduced during the genome targeting
processes. In principle, TALENs only function when dimers
between the FokI nuclease domains come together, thus, the
specificity is determined by the combination of two TALEN
DNA-binding domains. The specificity of the CRISPR/Cas9
system is instead determined by the presence of the PAM
sequence and the 20 nucleotides upstream of the PAM site
in the target genome (included in the gRNA). Recent stu-
dies on CRISPR/Cas9 have demonstrated that the 12 base
pairs closest to the PAM sequence are the most important
for specificity.11,63

Transformed human cell lines, such as embryonic kidney
293T cells and erythromyeloblastoid leukemia K562 cells,
have been used to study the off-target effects.64–66 Higher
levels of off-target mutagenesis suggested that the CRISPR/
Cas9 system is susceptible to cleavage at off-target loci due
to mismatches in the gRNA. However, controlling the con-
centration of the Cas9 mRNA appears to diminish these off-
target effects. The inducing single-stranded DNA breaks
(nicks) generated by the CRISPR/Cas9-D10A nickase
nuclease have been shown to reduce the off-target rate by
more than 1500 fold.57,64 Notably, whole-genome sequen-
cing of TALEN and CRISPR/Cas9 gene targeted cells has
also shown that off-target mutations are extremely rare in
hESCs and iPSCs.67–69

Generation of disease models using TALENs
and CRISPR/Ca9 targeting

On-going genome targeting in human cells using TALENs
and/or CRISPR/Cas9 will help establish disease models
that more accurately reflect the pathogenesis observed in
patients and provide proof-of-principle approaches for
future gene therapies. To that end, iPSCs derived from the
somatic cells of patients can provide a useful tool for study-
ing the underlying mechanism of human disease and may
serve as a promising source for cell replacement
therapies.70,71

Due to the unpredictable genetic variations of patient-
derived iPSCs, researchers have been challenged to distin-
guish minor, disease-related phenotypic changes from
otherwise normal variations in different genetic back-
grounds. Therefore, one of the best ways to study the func-
tion of disease-related gene mutations is to utilize TALENs
or CRISPR/Cas9 technologies to introduce mutations in a
more controlled environment. Recently, mutations in 15
genes related to metabolic diseases were introduced using
TALENs to provide isogenic control cell lines and to dem-
onstrate cell-autonomous phenotypes.25 The generation of
additional isogenic iPSCs that differ exclusively at disease

causing genomic loci will provide invaluable tools towards
finding a solution to this problem.

Conversely, other laboratories have utilized TALENs
and CRISPR/Cas9 technologies to repair mutations in
patient-derived iPS cells. TALENs have been used to correct
a mutation found in patients suffering from alpha-1 anti-
trypsin (AAT) deficiency, a genetic liver disorder that pre-
disposes patients to liver cirrhosis and hepatocellular
carcinoma, cystic fibrosis, and Gaucher’s disease.72,73

Moreover, CRISPR/Cas9 has been used to study cystic
fibrosis by correcting a mutation found in the transmem-
brane conductor receptor (CFTR) gene in primary adult
stem cells.74 TALENs and the CRISPR/Cas9 system have
also been used to target mutations found in iPS cells
derived from Duchenne muscular dystrophy (DMD)
patients. This correction leads to the generation of skeletal
muscle cells that express a wild type version of dystrophin,
a protein that is fundamental in supporting muscle fiber
strength. Together, these reports demonstrate that
genome-modifying systems provide an invaluable tool for
generating and investigating models of human disease.

Generation of mouse models using TALENs
and CRISPR/Cas9

TALENs and CRISPR/Cas9 are being employed to quickly
and directly generate mouse models of human disease. The
direct microinjection of TALENs and CRISPR/Cas9 into
zygotes enables instant germline modifications and acceler-
ates the generation of mouse models.75–77 In addition to
germline manipulation, a Cre recombinase-(Cre) dependent
Cas9 knock-in mouse model was recently shown to enable
the introduction of genetic alterations via the expression of
gRNAs in specific tissues (brain, bone marrow, and lung)
through adeno-associated virus (AAV), lentivirus or parti-
cle-mediated delivery.78 This technology allows genetic
modifications to be introduced in the genome of somatic
cells (in vivo or ex vivo) for immediate analysis of pheno-
types associated with disease-causing mutations. Moreover,
another study has shown viral-mediated delivery of the
CRISPR/Cas9 system to alter the somatic cells of mice to
introduce the fusion of the EML4-ALK oncogene. This
fusion is detected in a subset of human non-small cell
lung cancers (NSCLC). The fusion of EML4 (echinoderm
microtubule-associated protein like 4) and ALK (anaplastic
lymphoma kinase) results from an inversion of the short
arm of chromosome 2, and modeling of this particular
fusion event in the mouse (via traditional methods) had
been previously problematic.

Conclusions and future perspectives

TALENs and CRISPR/Cas9 genome editing technologies
have dramatically boosted the ability to manipulate a
diverse set of genomes. These novel approaches are aggres-
sively being applied to study a wider set of biological ques-
tions, including several human disorders. Naturally,
limitations exist for each system, including the requirement
of generating TALEN pairs to target one site and
slightly higher off-target rates for CRISPR/Cas9.
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Targeting efficiencies between TALENs and/or CRISPR/
Cas9 in certain cell types is an additional problem that
will need to be resolved by further study. Moreover, the
application of these technologies in the clinical setting has
yet to be established, and it will be imperative to under-
stand potential complications after genetic correction. In
summary, TALENs and CRISPR/Cas9 systems are invalu-
able genetic manipulating tools that will continue to be
improved and applied to countless future studies. These
systems hold the key to revolutionize biological research
and facilitate the promise of personalized medicine in the
future.
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