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Abstract
Store-operated Ca2þ entry (SOCE) is mediated by the store-operated Ca2þ channel (SOC) that opens upon depletion of internal

Ca2þ stores following activation of G protein-coupled receptors or receptor tyrosine kinases. Over the past two decades, the

physiological and pathological relevance of SOCE has been extensively studied. Recently, accumulating evidence suggests

associations of altered SOCE with diabetic complications. This review focuses on the implication of SOCE as it pertains to various

complications resulting from diabetes. We summarize recent findings by us and others on the involvement of abnormal SOCE in

the development of diabetic complications, such as diabetic nephropathy and diabetic vasculopathy. The underlying mechanisms

that mediate the diabetes-associated alterations of SOCE are also discussed. The SOCE pathway may be considered as a

potential therapeutic target for diabetes-associated diseases.
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Introduction

Store-operated Ca2þ entry (SOCE), previously known as
Ca2þ release activated Ca2þ influx1,2 or capacitative calcium
entry3, is an essential Ca2þ entry mechanism in both excit-
able and non-excitable cells. This Ca2þ entry is mediated by
store-operated Ca2þ channel (SOC) which is activated by
depletion of internal Ca2þ stores i.e. endoplasmic reticulum
(ER)/sarcoplasmic reticulum (SR).4 Therefore, circulating or
locally produced hormones that activate either G protein-
coupled receptors or receptor tyrosine kinases can open
SOC through activation of the phospholipase C/inositol 1,
4, 5-triphosphate (IP3) pathway.5 It is important to note that
any channel that exhibits Ca2þ store-dependent activity can
be referred to as a SOC. Electrophysiological studies of cells
with depleted ER stores have shown membrane currents
with diverse properties, indicating that different classes of
cells express distinct SOC.4 The most studied and best-
characterized SOC is the Ca2þ release-activated Ca2þ chan-
nel (CRAC) that is mainly expressed in the immune cells.1,2

In this review, we do not specify Ca2þ entry mediated by
different types of SOC (CRAC or general SOC). Instead, we
use SOCE to refer Ca2þ entry through any type of SOC.

Although SOCE was discovered about 30 years ago, its
molecular players were not identified with certainty until
recently. By high throughput RNAi screening, two protein
families, stromal interaction molecule (STIM)6,7 and
Orai,8–10 were identified as required components of SOCE.
STIM1 is a single-pass transmembrane protein located pri-
marily in the ER membrane and functions as an ER Ca2þ

sensor to sense ER luminal Ca2þ concentration. Orai1 is a
small plasma membrane protein, which constitutes the
pore-forming unit of SOC. Upon depletion of ER Ca2þ,
STIM1 aggregates and translocates to ER-plasma membrane
junctions, where it physically associates and subsequently
activates Orai1 causing Ca2þ entry into the cytosol.11,12 In
addition to STIM1 and Orai1, STIM2 (a mammalian homo-
log of STIM1), and Orai2 and 3 (two mammalian homologs
of Orai1) may also constitute/regulate SOC, but with
distinct functional properties.13–18 The Orai/STIM family-
constituted SOCE pathway has become more complicated
with the recent identification of splicing variants of Orai1
(Orai1a and Orai1b)19,20 and STIM1 (STIM1L),21–24 which
generate SOC with distinct signaling and regulatory proper-
ties. Furthermore, several isoforms of canonical transient
receptor potential (TRPC) proteins, which had been pro-
posed as the molecular components of SOC prior to the
discovery of Orai1 and STIM1, may also contribute to
SOCE by interacting with STIM1 and/or Orai1.25–33

Readers are referred to recent outstanding reviews for
more information on the molecular components and
gating/regulatory mechanisms of SOC.34–39

SOCE was initially considered as a major mechanism of
Ca2þ entry in non-excitable cells, such as immune cells,
platelets, and endothelial cells.4,40 Later, this Ca2þ entry
pathway was also found in many excitable cells, such as
neurons,17 cardiac myocytes,41 skeletal muscle cells,42 and
vascular smooth muscle cells.43 It is now widely accepted
that SOCE is a ubiquitous Ca2þ signaling pathway that
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regulates diverse cellular functions in a variety of tis-
sues and organ systems.44–51 Therefore, it is not surprising
that dysfunction of SOC can lead to a series of disorders,
such as immunodeficiency, myopathy, and vascular dis-
eases.44,51–60 Over the past decade, accumulating evidence
has demonstrated that many diabetic complications involve
alterations of SOCE and its signaling pathways.60–64 Since
diabetes and its complications are becoming epidemic
worldwide and there is no curative therapy currently avail-
able for diabetic complications,65–67 continued exploration
of the basic pathophysiology of diabetic complications and
of new therapeutic approaches is in need. This review sum-
marizes the published studies on the associations of abnor-
mal SOCE with the pathology of diabetic complications.
The aim of this review is to provide information that the
SOCE pathway may be a potential therapeutic target for
various organ and system disorders associated with
diabetes.

SOCE and the development of diabetic
complications
SOCE and diabetic nephropathy

Diabetic nephropathy, one of the most common complica-
tions of diabetes mellitus, is a major cause of end stage renal
disease.68,69 Early features of diabetic nephropathy include
glomerular hypertrophy with thickening of the glomerular
basement membrane and expansion of the glomerular
mesangium, which eventually develop into glomerulo-
sclerosis and renal insufficiency.70–74 Glomerular mesangial
cells are the major contributor to these structural changes in
diabetic kidney.75–77 Mesangial cell function is controlled by
intracellular Ca2þ signaling which involves several types of
Ca2þ channels, including SOC.78 The SOC in mesangial cells
was first reported by Menè et al.79 and later was electro-
physiologically and pharmacologically characterized by Ma
et al.50 Several protein components, such as TRPC1, TRPC4,
Orai1, and STIM1, which are required for SOCE were iden-
tified in human mesangial cells.62,80,81 Furthermore, studies
demonstrated that SOC participated in hormone-stimu-
lated Ca2þ responses in mesangial cells.82–85

Alterations of SOC function in mesangial cells under
conditions of diabetes have been extensively studied in
both in vitro and in vivo settings. In earlier studies con-
ducted in cultured rat and human mesangial cells, Mene
et al. demonstrated that arginine vasopressin- and angio-
tensin II-induced SOCE was attenuated by high glucose
treatment (30 mM for five days).84,86 However, both vaso-
pressin and angiotensin II not only activate SOC, but acti-
vate the receptor-operated Ca2þ channel as well.87,88

Therefore, the attenuation of the Ca2þ response by high glu-
cose in that study might be due to impairment of the recep-
tor-operated Ca2þ channel. Nutt and coworkers examined
the effects of high glucose on endothelin-1- (activates both
SOC and receptor-operated Ca2þ channel) and thapsigar-
gin- (selectively activates SOC)-induced Ca2þ response in
cultured rat mesangial cells. They revealed that high glu-
cose treatment at 30 mM for 5–7 days significantly reduced
endothelin 1-induced Ca2þ entry, but had no effect on thap-
sigargin induced Ca2þ response.85 Their study suggests that

in a time period of five days, high glucose treatment did not
impair SOCE, but significantly inhibited the Ca2þ entry
through the receptor-operated channel. Because diabetic
nephropathy is a progressive disease and biological pro-
cesses in kidney cells are altered along with the disease
development,70,73,89 we recently examined the time course
effect of high glucose treatment on SOC activity in cultured
human mesangial cells. Prolonged treatment with high glu-
cose (25 mM for >7 days) significantly enhanced cyclopia-
zonic acid-induced SOCE and IP3-induced SOC current
while a short-term treatment (<3 days) had a tendency to
reduce SOC activity.62 Although the mechanism for the ini-
tial suppression of SOC by high glucose was not clear, the
augmentation of SOCE in a later phase was attributed to
upregulation of STIM1 and Orai1.62 Importantly, the abun-
dance of STIM1 and Orai1 proteins was also significantly
increased in the renal glomeruli/cortices of 4-week, but not
2-week streptozotocin (STZ)-treated rats (type 1 diabetes)
and of high fat diet diabetic rats (type 2 diabetes) which
manifested overt diabetic nephropathy.62 Taken together,
studies from different groups suggest that high glucose/
diabetes effects on SOCE in mesangial cells are time
course dependent. Although the mechanism and signifi-
cance of the changes are not known at present, these studies
have at least established an association of abnormal SOCE
with diabetic kidney disease.

It is well known that over-production of extracellular
matrix proteins by mesangial cells contributes to glomeru-
lar damage in diabetic nephropathy.75–77 In general, SOCE
promotes protein synthesis and cell growth, for instance
contributing to cardiac hypertrophy.51,90 However, a
recent study revealed that the SOC-mediated Ca2þ influx
suppressed cell growth in mouse embryonic fibroblasts and
rat uterine leiomyoma cells through inhibition of AKT1.91

Thus, the effect of SOC on protein production is cell type
specific and/or cell context-dependent. We recently found
that activation of SOC abrogated high glucose- and TGF-b1-
induced fibronectin protein expression in cultured human
mesangial cells.92 Consistently, downregulation of SOC
function in mesangial cells significantly increased extracel-
lular matrix protein expression in cultured mesangial cells
or in glomeruli/renal cortices in animals.92 Thus, SOC in
mesangial cells is an anti-fibrotic mechanism in kidney. It is
possible that the early attenuation of SOCE in mesangial
cells caused by high glucose described above62 contributes
to the early pathological changes in diabetic glomerulus
(deposition of extracellular matrix proteins and mesangial
expansion), but the later enhancement of SOCE is a com-
pensatory response to counteract detrimental pathways in
diabetic kidneys.

It should be noted that in addition to mesangial
cells, several other types of kidney cells are also involved
in the development of diabetic nephropathy, such as
podocytes,93–95 tubular epithelial cells,70,71,96,97 and
smooth muscle cells in the renal arterioles.98–101 Studies
have shown that SOC is present in some of those
cells.102–106 However, an association of SOC in those cells
with the development of diabetic kidney disease has not
been established.
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SOCE and diabetic vasculopathy

An early indicator for the development of microvascular
and macrovascular complications of diabetes is endothelial
dysfunction, defined as a reduction in the vasodilatation
response to an endothelium-dependent vasodilator (such
as acetylcholine) or to flow-mediated vasodilatation.107–110

Studies have linked the diabetes-associated dysfunction of
the vascular endothelium to disturbances in Ca2þ homeo-
stasis.61,111 Prolonged exposure (4 days) of human umbilical
vein endothelial cells to high glucose medium (30 mM)
resulted in a significant increase in apoptosis, which was
associated with increased SOC activity (assessed by whole
cell patch clamp).112 Furthermore, blockade of SOC with 2-
aminoethoxydiphenyl borate (2-APB) and La3þ reversed
the hyperglycemia-induced apoptosis. Similarly, in bovine
aortic endothelial cells, Bishara and Ding showed that high
glucose treatment at 25 mM for 24 and 72 h resulted in a
sustained increase in SOCE following activation of the
P2Y receptor by ATP.113 They proposed that the TRPC1 pro-
tein contributed to the enhanced SOCE because TRPC1 pro-
tein expression was elevated after 72-h high glucose
treatment, and antisense TRPC1 treatment attenuated the
ATP-induced Ca2þ response. However, it is not clear
whether the TRPC1 protein functions as an SOC itself or
as a regulator/modulator of SOC in that study. Recently,
Daskoulidou et al. provided a molecular basis for high glu-
cose-enhanced SOCE in vascular endothelial cells. They
demonstrated that hyperglycemia (25 mM for three days)
augmented SOCE which was accompanied by increased
abundance of Orai1-3 and STIM1-2 proteins.63 Expression
levels of the Orai1-3 and STIM1-2 mRNAs were signifi-
cantly increased in the abdominal aortae of Akita diabetic
mice and STZ-diabetic mice.63 Furthermore, expression
levels of Orai1-2 and STIM1-2 mRNAs were also signifi-
cantly higher in the aortae in type 2 diabetic patients.63

However, an intriguing question which was not addressed
in that study is whether the increases in SOCE and Orais/
STIMs are the consequence of diabetes or the cause of dia-
betic vascular disease. Contrary to the Daskoulidou study,
Estrada et al. recently reported that STIM1 protein expres-
sion was significantly reduced in coronary endothelial cells
from STZ-diabetic mice.114 The decrease in STIM1 protein
abundance impaired ER Ca2þ refilling by disrupting the
interaction between STIM1 and the ER/SR Ca2þ-ATPase,
and consequently attenuated endothelium-dependent
relaxation in diabetic coronary arteries.114 Importantly, the
endothelial dysfunction could be rescued by restoring the
expression level of STIM1 in diabetic coronary endothelial
cells.114 Surprisingly, SOCE was not significantly different
between control and diabetic endothelial cells in that
study.114 The discrepancies between the Daskoulidou and
Estrada studies in the same diabetic model (STZ mouse) at
similar stages of diabetes (6-8 weeks after STZ injection)
may be derived from differences in the segments of vessels
prepared (aortae vs. coronary artery), the samples studied
(entire vesicular tissues vs. endothelial cells), and the
molecular levels analyzed (mRNA vs. protein).
Furthermore, the Estrada study did not examine the expres-
sion level of STIM2 which is also present in the coronary

endothelial cells and may play a major role in regulating
resting Ca2þ level in the ER (refilling).17

It is known that vascular complications of diabetes are
produced, at least in part, by increased contraction of vas-
cular smooth muscle cells due to elevated intracellular Ca2þ

concentration.115–117 Store-operated Ca2þ influx was sub-
stantially reduced in retinal microvascular smooth muscle
from STZ diabetic rats. The attenuated SOCE was reversed
by insulin treatment (to normalize blood glucose level).118

Using the same diabetic model, Ma et al. also found an
attenuated SOCE in aortic smooth muscle cells of STZ
rats.119 Importantly, the contractile response of the vessel
was significantly reduced in the diabetic rats compared to
that in control rats.119 Similar results were also reported in
type 2 diabetic animals. Mita and colleagues demonstrated
that SOCE (activated by cyclopiazonic acid)-induced con-
traction of caudal artery smooth muscle strips isolated from
Goto-Kakizaki rats (a type 2 diabetes model) was compro-
mised. Interestingly, the expression levels of TRPC1 and
TRPC6 were about two-fold greater in the vascular myo-
cytes from Goto-Kakizaki rats than in those from non-
diabetic rats.120 In addition, the vascular smooth muscle
from the diabetic rats expressed the TRPC4 protein, which
was not present in the muscle cells from control rats.120 The
authors proposed that these contradictory findings of
increased TRPCs with decreased SOC activity were due to
changes in TRPC protein expression in Goto-Kakizaki rats.
Increase in some TRPC proteins may specifically affect the
assembly of the homo- and heterotetramers building the
TRPC channels, resulting in channels with different electro-
physiological activity.120 On the contrary, the saphenous
veins from patients with type 2 diabetes showed exagger-
ated cyclopiazonic acid-induced SOCE and contraction
compared to the vessels from subjects without diabetes.60

Apparently, the diabetes/high glucose effect on SOCE in
vascular smooth muscle cells is complex and may be
dependent on the species (human vs. rat/mouse), the
stage of diabetes/duration of high glucose treatment, and
the segments of the vessels. If SOCE in vascular smooth
muscle cells is attenuated in diabetes as demonstrated by
most studies discussed above, it is difficult to interpret the
enhanced contractile response of vascular myocytes, a char-
acteristic of diabetic vasculopathy.115–117 One possible
explanation is that a decrease in SOCE is a compensatory
response, which protects vascular smooth muscle from
over-reactive contraction in diabetes.

SOCE and platelet disorder in diabetes

Diabetes mellitus is a well-known risk factor for athero-
sclerotic disorders. In diabetes, exaggerated aggregation
of platelets is one of the key factors for the initiation and
progression of atherosclerosis.121,122 Abnormality of Ca2þ

mobilization was observed in platelets from diabetic
patients.123,124 Platelets have two separate agonist-sensitive
Ca2þ stores and SOCE is the major mechanism of Ca2þ entry
in platelets. Earlier studies revealed that SOCE stimulated
by thrombin, thapsigargin or ionomycin was significantly
greater in platelets from type 2 diabetic patients than in
those from healthy controls.125,126 Treatment with catalase
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and trolox almost completely abolished the increased SOCE
response, suggesting a reactive oxygen species (ROS)/
reactive nitrogen species-mediated mechanism.125 A later
study from the same group provided molecular evidence
for the diabetes-induced enhancement of SOCE in platelets.
They found that the STIM1 and Orai1 proteins were signifi-
cantly increased in platelets from patients with type 2 dia-
betes mellitus.127 Interestingly, in a recent study this group
used Mn2þ entry as an indication of SOC activity and found
that SOCE in platelets from type II diabetic patients was
actually reduced even though the overall Ca2þ entry was
increased.128 The authors reasoned that the enhanced SOCE
observed previously might be derived from other Ca2þ

entry mechanisms secondary to store depletion, such as
reverse Naþ/Ca2þ exchange, secretion of autocrine signal-
ing molecules, and TRPC channels. Nevertheless, their stu-
dies provided evidence that SOCE in platelets is altered in
diabetes and the abnormality of SOCE could contribute to
increased adhesiveness and aggregation of platelets, a pro-
thrombotic state leading to micro and macroangiopathy in
diabetes. Apparently, further study is needed to establish a
cause–effect relationship between an abnormal SOCE in
platelets and diabetic cardiovascular complications.

SOCE and diabetic cardiomyopathy

Diabetic cardiomyopathy is characterized by hypertrophy
and it often deteriorates into a loss of cardiac mass.129 In
cardiomyocytes, SOCE has been shown to play an import-
ant role in regulating hypertrophic signaling pathways.51,90

An increased amount of STIM1 protein as well as its variant
STIM1L, in cardiomyocytes contributed to pathological car-
diac hypertrophy by enhancing SOCE.22 However, studies
on the role of SOCE in diabetes-derived cardiac hypertro-
phy are scarce. In a study of cultured neonatal rat ventricu-
lar myocytes, Pang et al. demonstrated that short-term
hyperglycemia (30 mM for 20 h) significantly decreased
SOCE stimulated by angiotensin II or thapsigargin.130

Hyperglycemia also significantly blunted the Ca2þ-depend-
ent hypertrophic response as well as the Ca2þ-sensitive
nuclear translocation of nuclear factor of activated T-cells
(NFAT),130 a well-known signaling pathway for cardiac
hypertrophy.131 However, it is uncertain whether this
short-term hyperglycemia effect is beneficial or detrimental
for the heart in diabetes. Although a prolonged hypertro-
phy may eventually lead to chronic cardiac failure, an initial
cardiac hypertrophy may be an adaptive mechanism to
hemodynamic stress at the early stage of diabetes. Further
study is needed to clarify the significance and pathological
relevance of altered SOCE in the development of diabetic
cardiomyopathy.

Mechanisms for altered SOCE in diabetes

Because of the ubiquitous distribution and diverse func-
tions of SOC and the sophisticated molecular and biological
processes of diabetes, it is impossible to delineate a
common mechanism for abnormal SOCE in different
organs/tissues in diabetes. However, several factors, as

described below, have been proposed to mediate the dia-
betes-associated alterations of SOCE.

Impairment of interactions among the molecular
components of SOCE pathway

Shortly after the discovery of SOCE, the ‘‘conformational
coupling model’’ was proposed to delineate how SOC
was activated. In this model, depletion of the internal
Ca2þ stores induces a conformational change of a particular
protein on the ER membrane (an IP3 receptor in the original
hypothesis), and consequently elicits the opening of SOC
through a direct physical coupling between the ER protein
and the channel proteins in the plasma membrane.132–136

With the recent breakthrough findings about the STIM1
and Orai1 proteins,6–10 this protein–protein interaction
model has been modified to a currently widely accepted
model in which STIM1 protein on the ER membrane aggre-
gates and translocates to ER-plasma membrane junctions
upon depletion of ER Ca2þ, where it physically associates
and subsequently activates Orai1/TRPCs, resulting in
SOCE.11,12,25–33 Therefore, interactions between STIM1 and
Orai1/TRPCs are required for the initiation of SOCE, and
impairment of those interactions is expected to attenuate
SOCE. Diabetes may influence SOCE by disrupting the
physical interactions among these essential protein compo-
nents of the SOCE pathway. In a recent study by Jardin
et al., SOCE was reduced in platelets from type II diabetic
subjects.128 However, the expression levels of several pro-
teins in the SOCE pathway were increased (STIM1 and
Orai1) or not altered (TRPC1).127 A further study demon-
strated that associations between STIM1 and Orai1/TRPC1
were attenuated in platelets from diabetic donors.128

Therefore, the attenuation of SOCE in diabetic platelets is
due to impairment of functional coupling between the
gating protein (STIM1) and the channel proteins (Orai1/
TRPCs). An interesting question is whether the diabetes-
induced alteration of protein coupling is specific to platelets
or is a common mechanism for other cell types. If it is plate-
let specific, what is the underlying mechanism for this cell
context-dependent pathway?

ROS

ROS is a critical pathogenic factor in the development of
diabetic complications.77,137–139 Accumulating evidence
has indicated that ROS contributes to the abnormality of
SOCE in diabetes. In cultured human umbilical vein endo-
thelial cells, high glucose treatment (30 mM for 4 days)
enhanced SOCE, and consequently resulted in apop-
tosis.112 Both responses were significantly inhibited by
catalase, an enzyme that activates the decomposition of
H2O2 into water and oxygen.140 Thus, H2O2 is a mediator
of high glucose-enhanced SOCE. Redondo et al. also
reported an association of H2O2 with increased SOCE
and aggregation in platelets from type 2 diabetic
patients.125 As discussed above,130 short-term hypergly-
cemia (30 mM for 20 hours) reduced SOCE and hyper-
trophy in cardiomyocytes.130 This heart-protective effect
of hyperglycemia was partially restored by inhibition of

346 Experimental Biology and Medicine Volume 241 February 2016
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .



superoxide production with thenoyltrifluoroacetone (an
inhibitor of electron transport complex II) and aminoox-
yacetic acid (an inhibitor of the malate-aspartate shuttle),
suggesting a ROS-mediated response.130 Therefore, ROS
can increase SOCE (in endothelial cells and platelets),
which is detrimental, and decrease SOCE (cardiomyo-
cytes), which is beneficial, in diabetes depending on
the tissues/organs. The dual effects of ROS on SOCE
may reflect the complicated roles of ROS in cell signal-
ing, i.e. being both an intracellular secondary messenger
in many cellular signal transduction pathways and a
major contributor to a variety of diseases.77,137–139,141–145

pp60src

In an earlier study, King et al. found that the activity of
tyrosine kinase pp60src was elevated in STZ-induced dia-
betic rats.146 Recent studies have shown that activation of
this enzyme might contribute to diabetes/high glucose-
induced augmentation of SOCE.112,126 In cultured human
umbilical vein endothelial cells, inhibition of pp60src with
PP1 significantly attenuated high glucose (30 mM for 4
days)-induced increase in SOCE.112 In platelets from
patients with type 2 diabetes, SOCE was exaggerated,
which was accompanied by a greater activity of pp60src

upon depletion of the internal Ca2þ stores.126 However, nei-
ther study determined how diabetes/high glucose activates
pp60src. It is known that pp60src is a redox sensitive tyrosine
kinase and mediates H2O2-induced responses in a variety of
cells.147–149 Therefore, it is possible that this enzyme is a
downstream component of ROS in the regulation of SOCE
in states of diabetes mellitus.

Protein kinase C

Hyperactivation of isoforms of protein kinase C (PKC) has
been implicated in multiple complications associated with
diabetes.150 In glomerular mesangial cells cultured in
medium containing normal glucose, PKC mediated store
depletion-induced SOC activation.151 However, when
mesangial cells were cultured in high glucose medium
(30 mM for five days), PKC suppressed SOCE.84 This glu-
cose concentration-dependent effect may be due to distinct
isoforms of PKC which are activated under different condi-
tions. For instance, under normal glucose conditions, it is
the a isoform of PKC (PKCa) that is predominantly acti-
vated and is responsible for SOC activation.152 However,
under high glucose conditions, another isoform of PKC,
such as PKCb, which could be inhibitory to SOC, may
play a predominant role. It has been firmly established
that PKCb is associated with the development of diabetic
nephropathy.153–156 Curtis et al. also proposed a PKC-
mediated pathway for the reduction of SOCE in the
smooth muscle cells of retinal microvessels from STZ
diabetic rats.118 In their study, the PKC antagonist stauros-
porine completely restored the reduced SOCE in the dia-
betic vascular myocytes.118 Further study suggested that the
b isoform of PKC was responsible for the inhibition because
PKCbII was specifically upregulated in diabetic retina, and
an inhibitor of PKCb partially reversed the attenuated

SOCE in the vascular smooth muscle cells from these dia-
betic rats.118

O-GlcNAcylation

Dynamic cycling of N-acetylglucosamine (termed O-
GlcNAcylation) on nuclear and cytoplasmic proteins serves
as a nutrient sensor to regulate cellular metabolism and
physiology in response to nutrients, such as glucose.157

O-GlcNAcylation regulates cellular process both independ-
ently and also via cross-talking with protein phosphorylation
and other post-translational modifications.158 Recently,
emerging evidence has shown that O-GlcNAcylation of
proteins is a major molecular player in the development of
complications associated with diabetes, such as vasculopa-
thy,159,160 retinopathy,161,162 cardiopathy,163,164 and nephro-
pathy.165 Although multiple mechanisms which may be
tissue-specific are responsible for contributions of abnormal
O-GlcNAcylation to diabetic complications,158–165 modula-
tion of SOCE may play a role. As in a study discussed earlier,
SOCE was attenuated by hyperglycemia (30 mM for 20 h) in
cardiomyocytes.130 This inhibitory effect was prevented by
azaserine, an inhibitor of hexosamine biosynthetic path-
way.130 The hexosamine biosynthetic pathway is crucial in
providing the substrate in formation of O-linked b-N-acetyl-
glucosamine, which is needed for O-GlcNAcylation of pro-
teins. Thus, modification of key components of SOCE
pathway by O-GlcNAcylation may contribute to the impair-
ment of SOCE in diabetes. Indeed, it has been reported that
modification of STIM1 by O-GlcNAcylation attenuates SOCE
in neonatal cardiomyocytes.64

Calcineurin/NFAT

It is known that the calcineurin/NFAT pathway is activated
and contributes to the development of diabetic complica-
tions.76,166 In cardiomyocytes and vascular endothelial cells,
this pathway has been shown to reside downstream of
SOCE and to mediate SOCE-induced hypertrophy 51,130

and apoptosis.112 However, Daskoulidou et al. found that
high glucose (25 mM for three days)-promoted SOCE in
vascular endothelial cells and smooth muscle cells was
mediated by the activation of calcineurin/NFAT signaling
which upregulated the expression of Orai/STIM proteins.63

Therefore, it is possible that diabetes triggers a positive
feedback loop between SOCE and the calcineurin/NFAT
pathway. In this loop, an initial increase in SOCE activates
calcineurin/NFAT signaling which subsequently stimulates
Orai1/STIM1 protein expression and consequently
enhances SOCE, amplifying the cascade.

Closing remarks

It is clear that diabetes is associated with global changes in
the SOCE pathway. However, the alterations of SOCE vary
among different cell types and tissues with increased activ-
ity in some cells/tissues and decreased in others. Even in
the same cell type and tissue, results from different groups
appear to contradict each other. Although the reason for the
discrepancies is not known with certainty, it is worth noting
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that in many instances the animal species, cell/tissue types,
stages and severity of diabetes, approaches for testing SOC
activity, and glucose concentrations differ between sets of
experiments. In addition, there are likely several different
pathways mediating the diabetes-associated SOC dysfunc-
tion. These intracellular pathways may be cell type specific
and therefore contribute to the varying SOCE responses to
high glucose or diabetes in different type of cells.
Furthermore, the mechanism of diabetes-associated SOCE
dysregulation is currently unclear. Although several mol-
ecules, such as ROS and PKC, have been proposed to be
mediators in this pathological process, how they upregulate
or downregulate SOCE in diabetes is unknown. Moreover,
whether the alteration of SOCE is the cause or the effect of
diabetic diseases has yet to be determined. Figure 1 sum-
marizes what is presently known regarding diabetes-
associated changes in SOCE in different tissues and the
possible underlying mechanisms for those changes. As a
result of more information becoming known regarding
abnormal SOCE and the development of diabetic complica-
tions, the development of specific regulators of SOCE could
be a strategic option for various diabetic complications.
Given the global pandemic of diabetes, searching for add-
itional therapeutic agents is essential to reduce the immense
burden of the disease. SOCE and its molecular components

(STIM1/Orai1) may be a novel therapeutic target for
patients with diabetic complications.
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86. Menè P, Pascale C, Teti A, Bernardini SV, Cinotti GA, Pugliese F. Effects

of advanced glycation end products on cytosolic Ca2þ signaling of

cultured human mesangial cells. J Am Soc Nephrol 1999;10:1478–86

87. Ding Y, Winters A, Ding M, Graham S, Akopova I, Muallem S, Wnag Y,

Hong JH, Gryczynski Z, Yang SH, Birnbaumer L, Ma R. Reactive oxygen

species-mediated TRPC6 activation in vascular myocytes, a mechanism

for vasoconstrictor-regulated vascular tone. J Biol Chem

2011;286:31799–809

88. Saleh SN, Albert AP, Peppiatt CM, Large WA. Angiotensin II activates

two cation conductances with distinct TRPC1 and TRPC6 channel

properties in rabbit mesenteric artery myocytes. J Physiol

2006;577:479–95

89. Brownlee M. Biochemistry and molecular cell biology of diabetic com-

plications. Nature 2001;414:813–20

90. Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y,
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