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Inverse scattering transform 
analysis of rogue waves using local 
periodization procedure
Stéphane Randoux1, Pierre Suret1 & Gennady El2

The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential 
equation that plays a prominent role in the modeling and understanding of the wave phenomena 
relevant to many fields of nonlinear physics. The question of random input problems in the one-
dimensional and integrable NLSE enters within the framework of integrable turbulence, and the 
specific question of the formation of rogue waves (RWs) has been recently extensively studied in 
this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping 
RW events of statistical relevance is now considered as the problem of central importance. Here we 
address this question from the perspective of the inverse scattering transform (IST) method that relies 
on the integrable nature of the wave equation. We develop a conceptually new approach to the RW 
classification in which appropriate, locally coherent structures are specifically isolated from a globally 
incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying 
on a spatial periodization of the object under consideration. Using this approach we extend the existing 
classifications of the prototypes of RWs from standard breathers and their collisions to more general 
nonlinear modes characterized by their nonlinear spectra.

There is currently much research interest in the subject of the formation of rogue waves (RWs). The traditional 
notion of RWs is related to rare events of large amplitude that appear unpredictably on the ocean surface1,2. From 
the optical fiber experiment performed by Solli et al. in ref. 3, it has been understood that RWs are ubiquitous 
phenomena observable not only in oceanography but also in many other physical contexts4. Although the unique 
mechanism of the RW formation cannot be drawn4–7, it is now understood that the one-dimensional focusing 
nonlinear Schrödinger equation (1D-NLSE) provides a universal description of a variety of nonlinear localization 
effects that are compatible with RW events6–8. The best known analytical models for RWs are solitons on finite 
background (SFBs) which represent exact homoclinic solutions of the 1D-NLSE having the far-field behavior of a 
finite-amplitude plane wave and at the same time exhibiting local peak amplitudes compatible with the threshold 
definition of rogue events6,8–11. Taking specific and carefully designed initial conditions, many SFBs have now 
been observed in well-controlled experiments performed in several physical systems12–19.

Taking random initial conditions in wave problems ruled by the 1D-NLSE is very pertinent to the study of 
RWs because the randomness of the initial condition opens the way for the statistical treatment inherent in any 
physically realistic RW description6,20,21. The theoretical analysis of random input problems in integrable equa-
tions such as the 1D-NLSE enters within the framework of integrable turbulence21–25. Regarding the focusing 
1D-NLSE, it has been recently shown that the statistics of the field that is measured at long evolution time strongly 
depends on the statistics of the random initial condition. A plane wave perturbed with a random small noise 
has been found to produce a field eventually assuming the gaussian statistics23. On the other hand, heavy-tailed 
deviations from gaussianity have been observed for random fields having gaussian statistics at the initial stage21,26. 
The important questions related to the relationship between the initial condition and the formation of RWs have 
been recently investigated in the framework of the inverse scattering transform (IST) method27. It has been also 
shown that random initial conditions can excite a range of SFBs well described by exact analytic solutions of the 
1D-NLSE6,8,9,20,21,26 and that 1D-NLSE RWs can arise from collisions between some solitons8,18,20.

The question of the identification and classification of NLSE RWs is a current issue of importance. So far, this 
question has been mainly investigated by using numerical simulations6,8,9,20,21. However the first real-time and 
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direct observation of RWs generated from the propagation of partially coherent waves in optical fibers has been 
recently reported in ref. 26. In these experiments based on the time lens technique, breather-like structures such 
as Peregrine solitons (PSs) have been shown to emerge locally from the random background. In the majority 
of the approaches reported so far, RW objects are first specifically isolated from random wave trains, and their 
classification relies on fitting procedures in which the profiles of interest are locally compared with well-known 
analytic SFB solutions of the focusing 1D-NLSE6,8,9,20,21,26. In this paper, we propose a conceptually new approach 
to the characterization of RWs that are observed in wave systems ruled by the focusing 1D-NLSE. We introduce 
a method relying on the integrable nature of the 1D-NLSE to compute spectral portraits of localized structures 
by using the direct scattering transform, which forms an integral part of the IST method. Our approach extends 
the existing rigid identification of RWs with one of the prototypical exact breather solutions such as Akhmediev 
breathers (ABs), Kuznetsov-Ma (KM) solitons, PSs or the higher-order SFB solutions describing their collisions. 
Instead, we show that RWs observed in random NLSE solutions represent more general wave forms which may 
or may not be very close to one of the prototypical SFBs.

The IST is a well-established method for solving nonlinear integrable partial differential equations. It has 
been shown recently that the IST method can provide a new approach to overcome transmission limitations in 
fiber communication channels by encoding information in the nonlinear IST spectrum28,29. Here, we exploit the 
fact that the IST can be used to determine spectral portraits of localized structures found in some wave trains of 
interest. These spectral portraits (for convenience we shall also call them the IST spectra) provide very accurate 
signatures of the localized structures and they can be compared to the spectral signatures of fundamental solitons 
and SFBs, which are well-known from the IST theory. Note that the IST has already been introduced as a tool 
for nonlinear Fourier analysis of random wave trains30–33. This tool has been successfully implemented in several 
circumstances to determine the content of random wave trains in terms of nonlinear oscillating modes. In par-
ticular, the IST analysis has been used to analyze the soliton content in freak (rogue) wave time series34 and more 
recently, to evidence the presence of soliton turbulence in shallow water ocean surface waves35. Regarding the 
specific question of the prediction of RWs, previous numerical computations of IST spectra have shown that the 
development of RWs can be statistically correlated with the proximity to homoclinic solutions of the 1D-NLSE36. 
Recently the process of RW formation has been studied by computing global IST spectra characterizing multiple 
random fluctuations found inside a box having a large size27. Here, we develop a new local approach in which the 
objects compatible with prototypes of RWs are specifically isolated from a wave train to be subsequently analyzed 
using a numerical IST procedure that relies on a spatial periodization of the object under consideration. With 
this conceptually new approach, we determine the most essential nonlinear modes composing the RW under 
consideration and expand the existing paradigm that observable RWs are necessarily described by the standard 
SFB analytic solutions of the focusing 1D-NLSE.

Inverse Scattering Transform method to compute spectral portraits
Spectral portraits of some soliton solutions of the 1D-NLSE. We consider the focusing 1D-NLSE 
in the form

ψ ψ ψ ψ+ + | =i 2 0, (1)t xx
2

where ψ(x, t) is a complex wave envelope changing in space x and time t. In the IST method, the NLSE is repre-
sented as the compatibility condition of two linear equations37,
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where ξ is a complex spectral parameter and Y(t, x, ξ) is a vector. The spatial linear operator (2) and the temporal 
linear operator (3) form the Lax pair of Eq. (1).

For a given potential ψ(x, t) the problem of finding the spectrum {ξ} and the corresponding scattering solution 
Y specified by the spatial equation (2) is called the Zakharov-Shabat (ZS) scattering problem38. The discrete eigen-
values of the ZS operator in (2) give spectral portraits that provide precise IST signatures of various solitonic 
solutions of Eq. (1), which rapidly decay as → ∞x . At the same time, the plane wave solution ψ = qe iq t2 2

 has 
the spectrum represented by a “branchcut” between two points iq and − iq of the simple spectrum of the periodic 
ZS problem39,40. This problem can be solved in the framework of finite-gap theory (FGT) which offers a classifica-
tion of periodic and quasi-periodic solutions of Eq. (1) according to their genus, see Methods. The outlined spec-
tral portraits of NLSE solitonic solutions determined from the resolution of ZS problem are shown in Fig. 1. Note 
that the spectrum of the periodic problem also includes the real line, which is not shown in the schematic Fig. 1 
but will appear in the numerical IST spectrum plots.

As shown in Fig. 1(a), the spectrum of a stable fundamental soliton ψ(x, t) =  sech(x)eit living on a zero-background  
is simply made of two doubly-degenerate complex conjugate eigenvalues ξ± =  ± i/2. On the other hand, the spec-
tral portraits of solitons on finite background such as ABs, PSs or KM solitons essentially represent the spec-
tral portraits of the fundamental soliton superimposed on the spectrum of the plane wave and differing only in 
the relative positions of the soliton and plane wave spectra, see Fig. 1(b–d) and Methods for the mathematical 
description of the spectral portraits of the SFBs.
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Numerical computation of spectral portraits of soliton solutions of the 1D-NLSE. Although 
the spectral portraits of soliton solutions shown in Fig. 1 are given by the IST theory41–43, the more general wave 
structures are often difficult to analyze, and some numerical procedures have also been developed to compute IST 
spectra30,38. In our numerical simulations, we have used a procedure in which Eq. (2) is rewritten as a standard 
linear eigenvalue problem that is subsequently solved by using the Fourier collocation method (see the Methods). 
Figure 2 shows the spectral portraits that are numerically computed in this way for the fundamental soliton, the 
AB, the KM soliton and the PS.

Some important remarks must be made regarding the use of the numerical procedure implemented to com-
pute the IST spectra. So far, this procedure has been proven to be efficient and reliable for the computation of IST 
spectra of decaying potentials, such as solitons on zero background38. The correct numerical computation of IST 
spectra of decaying potentials is achieved when the size L of the numerical box is significantly greater than the 
typical size Δ x characterizing the decaying potential. The numerical IST procedure thus provides the complex 
conjugate eigenvalues ξ± =  ± i/2 of fundamental soliton ψ(x, t) =  sech(x, t)eit with a very good accuracy as far as 
the size L of the box used for numerical simulations is at least ten times greater than the typical size Δ x ~ 1 of the 
fundamental soliton, see Fig. 2(a).

To the best of our knowledge, the numerical determination of the spectral portraits of non-decaying solutions 
belonging to the family of ABs, KM and PS has not been made before our work. As for the fundamental soliton, 
the IST spectrum of SFB must be computed by taking a numerical box having a size L greater than the typical 
width Δ x of the SFB. However L must now be much greater than Δ x, to capture the important part of the spectral 
portrait related to the non-zero background – the branchcut, or the “spine”44,45, corresponding to the spectral 
band. The spectra plotted in Fig. 2(b–d) have been computed by taking boxes having a size L =  500 that is much 
greater than the typical width Δ x ~ 1 of the SFB under consideration. Reducing the size L of the numerical box 
while keeping the same number of points used for discretizing the SFB, the density of spectral points found inside 
the branch cut region of the spectrum (i.e. ξ ∈  [− i, i]) decreases. If the size L of the numerical box becomes com-
parable to the typical width Δ x of the SFB (i.e. L <  10Δ x), the branchcut can even be lost and the spectral signa-
tures numerically determined for the SFB just become two complex conjugate eigenvalues, as for the fundamental 
soliton (see also Supplementary Section).

Note that the IST spectra of SFBs given by Eqs (6 and 7) do not depend on time t in agreement with the IST 
theory. This is illustrated in Fig. 2(b–d) which shows that despite the fact that ψ x t( , ) 2 significantly changes 
between t =  0 (red line) and t =  0.5 (blue line), the IST spectra of the AB, KM and PS do not change in time.

Spectral portraits of periodized structures. In this paper, we show that numerical IST analysis can 
be implemented to get a highly accurate spectral signature of noise-generated structures that are found in the 
1D-NLSE problem with random initial conditions. However, the implementation of this numerical procedure is 
not quite straightforward, and we show in this Section that the correct determination of IST spectra of localized 
structures within more general solutions of the 1D-NLSE requires the IST analysis of periodic wavetrains.

As discussed above, the IST spectrum of SFBs is not qualitatively properly determined if the size L of the 
numerical box is comparable to the spatial width Δ x of the analyzed SFB (i.e. L <  10Δ x). In other words, the 
truncation procedure that consists in performing a local IST analysis of an isolated SFB amounts to ignoring the 
nonlinear interaction between the isolated part of the SFB and surrounding structures. e.g. by considering one 
isolated period of an AB for the numerical IST analysis in a box of the size L =  2π/p, we perform the analysis of an 
isolated object that does not interact with the neighboring oscillations within the periodic AB structure. Although 
this isolated object locally appears to be practically identical to an AB, the effect of the nonlinear interaction of 

Figure 1. Analytical results from the IST theory. Spatio-temporal evolution (left) and spectral portraits 
(right) of (a) the fundamental soliton, (b) the Akhmediev breather, (c) the Peregrine soliton and (d) the 
Kuznetsov-Ma soliton. The red lines in spectra plotted in (b–d) represent branchcuts. The blue points in  
(a–d) represent complex conjugate double points.
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the isolated object with the neighbors is lost. As a result, in these conditions, the numerical IST analysis does not 
yield the IST spectrum that is known analytically simply because the analyzed object is globally not an AB. Thus, 
the interaction between the modes is essential for the correct identification of an AB, and also should be taken 
into account in the identification of any RW object, as also shown in Supplementary Section.

To overcome the fact that a satisfactory numerical IST analysis of RWs cannot be generally achieved in a 
local way from a single isolated object (see also Supplementary Section), we introduce here the idea that the 
spectral portrait can nevertheless be accurately determined from the IST analysis of an isolated object, that has 
been appropriately made periodic in space. The theoretical motivation and numerical justification of this idea are 
presented in the next section and in the Supplementary Section. This is illustrated in Fig. 3 that shows that the IST 
spectra obtained from the procedure in which localized structures are truncated to their central core part which 
is subsequently repeated to form a periodic function. As shown in Fig. 3(a–c) for the fundamental soliton and 
in Fig. 3(d–f) for the KM soliton (see Supplementary Section for the results related to the PS), the IST analysis 
of periodic trains that are produced in this way provides the IST spectra that are very close to the spectra of the 
pure and non-periodic objects, see Fig. 2(a,c). The major difference between the IST spectra plotted in Fig. 2(a,c) 
and the IST spectra plotted in Fig. 3(c,f) lies in the fact that small bands are now found instead of single points.

By producing a periodic extension of an isolated localized object, we realize a local finite-band approximation 
of the wave field and thus, no longer ignore the nonlinear interactions between the object and the surrounding 
structure. The spatial period Λ  that is used to produce the periodic waveform defines the effective intensity of the 
interactions, which is translated into the width of the bands in the IST spectrum whereas the detailed shape of 
the extracted object determines the number and location of the bands. The larger the period Λ  is, the smaller the 
bands found in the IST spectrum are. Therefore the choice of the spatial period Λ  is crucial for the quantitatively 
correct determination of the local IST spectrum in our numerical procedure. That being said, for spatially isolated 
structures such as the genuine fundamental soliton, PS or KM soliton, the choice of the period of the numerical 
IST is not essential as long as the period is much greater than the typical soliton width. Indeed, our numerically 
computed spectra for the fundamental soliton and KM soliton are very similar to the exact IST spectra of the 
respective exact solutions shown in Fig. 2 as long as Λ  is chosen in such a way that the pattern isolated before 
periodization includes the soliton part of the SFB together with some part of the background (see e.g. Fig. 3(f)). 
The criteria for the choice of Λ  providing a robust spectral portrait will be discussed in the next Section.

The described procedure has some instructive parallels with the analysis of dispersive shock waves (DSWs)46: 
in some cases DSWs can be viewed as purely solitonic wave trains47, although generally, they are more accurately 
represented by the modulated periodic (genus one) solutions of the relevant equation and exhibit near-solitonic 

Figure 2. Numerical IST analysis of some soliton solutions of the 1D-NLSE. Spatial profiles (left) and spectral 
portraits (right) computed from numerical simulations for (a) the fundamental soliton ψ =x t sech x e( , ) ( ) it, (b) 
the Akhmediev breather (Eq. (6), φ =  π/4), (c) the Peregrine soliton (Eq. (6), φ =  0) and (d) the Kuznetsov-Ma 
soliton (Eq. (7), ϕ =  π/4). The red lines represent power profiles ψ x t( , ) 2 at t =  0 and the blue lines represent 
power profiles ψ x t( , ) 2 at t =  0.5. Red open squares represent IST spectra that are numerically computed both at 
t =  0 and at t =  0.5, thus showing that spectral portraits are time-independent. A numerical box of size L =  500 
discretized by using 10000 points has been used to compute spectra plotted in (b–d).
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properties only in the vicinity of one of the edges. Thus the local IST spectrum a DSW can be captured only by 
considering a periodic wavetrain, not a localized pulse, the period being defined by the distance between the 
neighboring oscillations.

Dam break problem and the generation of rogue waves. In this Section, we use the tool of numer-
ical IST analysis of periodized waveforms to investigate the generation of RWs in the context of the dam break 
problem recently considered in ref. 48. The dam break problem represents an analytically tractable scenario of 
the RW formation in the framework of the focusing NLSE (1). The evolution of an initial condition having the 
shape of a rectangular barrier considered in the small dispersion limit of Eq. (1) enables the generation of the 
periodic or quasi-periodic nonlinear wave structures containing many oscillations which can be described within 
the semi-classical approximation. During the initial stage of the evolution these structures are described by the 
modulated single-phase (genus one) NLSE solutions and can be associated with DSWs. With the barrier initial 
condition, the interaction between two counter-propagating DSWs has been shown in48 to lead to the emergence 
of a modulated two-phase large-amplitude breather lattice whose amplitude profile can be approximated by ABs 
or PS within certain space-time regions. More generally, it was shown that the structures closely resembling ABs 
and PSs actually represent modulated two-phase (genus 2) NLS solutions.

The spatio-temporal diagram plotted in Fig. 4(a) shows the time evolution of the power ψ x t( , ) 2 while start-
ing from an initial condition given by:

ψ = =





− < <
> .

x t
l x l

x l( , 0)
1 if ,
0 if (4)

Note that we solve numerically a problem with zero boundary conditions (i.e. the size L =  512 of the box 
used for numerical simulations of Eq. (1) is bigger than the size 2l =  50 of the rectangular barrier). As shown in 
Fig. 4(a) and extensively discussed in ref. 48, the DSW collision leads to the formation of high-power narrow 
structures localized around x =  0. These localized structures observed at t =  6.06, t =  8.16, t =  10.92, t =  14.46 
are highlighted in blue in the left column of Fig. 4(b). The spatial size Λ  of localized structures that are analyzed 
by our numerical IST procedure is defined by the distance separating the maxima reached by the two side lobes 
surrounding the localized peak of interest, see blue lines in the left column of Fig. 4(b). The isolated patterns 
highlighted in blue are periodized (see central column in Fig. 4(b)) and the numerical IST analysis is then made 
from periodic waveforms including 500 periods. Any sufficiently small change in the spatial size Λ  will produce 
IST spectra that are quantitatively slightly different from those plotted in the right column of Fig. 4(b). However, 
as our simulations have shown, the general result of numerical IST analysis is robust and will not be qualitatively 

Figure 3. Numerical IST analysis of periodized waveforms. (a) Spatial profile of a fundamental soliton 
ψ =x t sech x e( , ) ( ) it. (b) Spatial profile of the fundamental soliton periodized in space with a period Λ  =  10.  
(c) Spectral portrait of the periodized soliton showing that the periodization procedure produces a band having 
a small size. (d) Spatial profile of the KM soliton (Eq. (7), ϕ =  π/4). (e) Spatial profile of the KM soliton 
periodized in space with a period Λ  =  10. (f) Spectral portrait of the periodized KM soliton showing that the 
periodization procedure produces a band having a small size.
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changed as far as the elementary pattern includes the peak centered around x =  0 together with some parts of the 
side lobes. The size Λ  of the elementary pattern characterizes the effective interaction domain of the central peak 
with the surrounding structure. Generally one can propose the following criterion for the correct choice of Λ : the 
period Λ  is chosen correctly if any sufficiently small change in Λ  produces only small quantitative change in the 
spectrum. Some structures (like exact ABs) could be more sensitive to the variations of Λ  than others.

The right column of Fig. 4(b) shows the spectral portraits of “rogue-like” peaks emerging from the dam break 
scenario. All the IST spectra reveal the presence of 3 main spectral bands, thus confirming that the observed 
structures represents genus 2 solutions of the 1D-NLSE48. The localized structures observed around x =  0 at 
t =  8.16 and at t =  14.46 are very close to the PS in the sense that they can be locally very well fitted by a profile 
given by Eq. (6). However the numerical IST analysis made at t =  8.16 and t =  14.46 reveals that those localized 
structures represent non-degenerate genus 2 solutions of Eq. (1) that are not identical to the PS (compare IST 
spectrum of Fig. 2(c) with IST spectrum of Fig. 4(b)). All the above features fully agree with the analytical results 
of ref. 48 supporting the effectiveness of our numerical approach.

It should be stressed that the rectangular barrier problem can be, in principle, solved using the classical IST 
method with zero boundary conditions. In the problem with a wide initial barrier (or, equivalently, with small 
dispersion parameter — see ref. 48) the exact, global, IST spectrum has both discrete and continuous component 
with a large number of discrete eigenvalues concentrated along the imaginary axis and remaining constant in 
time. However, while this spectrum implies a long-time asymptotic outcome dominated by a large number of 
fundamental solitons, it says little about the nonlinear wave field at intermediate times. The appearance of the 
finite-band dynamics, locally approximating the exact solution’s behavior at intermediate times, is the result of 
a complex nonlinear interaction between the “elementary IST modes”. The genus of the “effective” finite-band 
potential, appearing as a result of this interaction, as well as the location and size of the spectral bands, are the 
definitive parameters, which, in particular, characterize proximity of the observed RW structures to the classical 
SFBs.

Figure 4. Dam break problem. (a) Space-time diagram showing the evolution of the power ψ x t( , ) 2 of the 
wave while starting from the “box” initial condition given by Eq. (4) (l =  25). Eq. (1) is integrated by using a 
numerical box having a size L =  512. (b) Numerical IST analysis of periodized waveforms. Profiles of the power 
ψ x t( , ) 2 at times t =  6.06, t =  8.16, t =  10.92, t =  14.46 are plotted in red in the left column. The parts of the 
profiles that are highlighted in blue around x =  0 represent the elementary patterns that are periodized to 
produce waveforms shown in the central column. The spectral portraits plotted in the right column are 
computed from the numerical IST analysis of the periodic waveforms shown in the central column. The 
numerical IST analysis is made from periodic waveforms including 500 periods.
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Noise-driven modulational instability and the generation of rogue waves. In this Section, we use 
the tool of the numerical IST analysis of periodized waveforms to determine the nature of localized structures 
that are found in the context of the so-called noise-driven modulational instability (MI)6,20,23. The theoretical 
description of the nonlinear stage of MI is now a challenging question of fundamental importance23,49. Extensive 
numerical simulations have shown that coherent structures localized in space and time may emerge from noise 
through the process of MI that is initiated by a random perturbation of an initial plane wave6,8,9,20,23. The question 
of the identification and of the characterization of these localized structures has recently received special attention 
in the context of RW generation. Using fitting procedures, it has been shown that some of these localized struc-
tures can be locally well approximated by analytic SFB solutions given by Eq. (6) or by Eq. (7) 6,8,9,20,21.

We implement here the numerical IST analysis to get accurate spectral signatures of some typical 
noise-generated structures that are found in the 1D-NLSE problem with random initial conditions. Our study 
shows that those localized structures correspond to a variety of non-degenerate genus 2 and genus 4 solutions of 
Eq. (1) that differ from the degenerate genus 2 solutions given by Eq. (6) or by Eq. (7). The proposed numerical 
IST procedure thus provides a new insight into the characterization of the RWs found in random wave trains.

The spatio-temporal diagram plotted in Fig. 5(a) shows the time evolution of the power ψ x t( , ) 2 while start-
ing from an initial condition given by:

ψ η= = + .x t x( , 0) 1 ( ) (5)

η(x) is a small complex noise field computed from the inverse Fourier transform of a broadband spectrum under 
the assumption of a random phase process, see Methods. As shown in Fig. 5(a), the spatio-temporal evolution 
found from our numerical simulations of Eq. (1) is qualitatively very similar to the one evidenced in refs 6 and 20.

Figure 5(b) shows the results obtained from the IST analysis of coherent structures which are found in the 
regions labeled CS1, CS2, CS3, CS4 in Fig. 5(a). The first row of Fig. 5(b) shows that the coherent structure CS1 
having a peak power close to 9 is a genus 4 solution of the 1D-NLSE. The analysis of the periodized signal (central 

Figure 5. Noise driven modulational instability. (a) Space-time diagram showing the evolution of the power 
ψ x t( , ) 2 of the wave while starting from the initial condition given by Eq. (5). (b) Coherent structures are 
extracted from random profiles fluctuating in space x in specific regions labeled CS1, CS2, CS3 in (a). The profiles 
highlighted in blue in the left column represent the basic patterns that are periodized to produce waveforms 
shown in the central column. The spectral portraits plotted in the right column are computed from numerical 
IST analysis of periodic signals shown in the central column and including 200 periods. The region labeled CS4 
in (a) is a region in which a strongly localized and intense peak is observed. The bottom row of (b) shows the 
IST spectrum (right column) computed from the periodization of this big peak.
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column in Fig. 5(b)) indeed reveals a IST spectrum including 5 main bands (right column in Fig. 5(b)). On the 
other hand, coherent structures CS2 and CS3 shown in the second and third rows of Fig. 5(b) have a IST spectrum 
made with 3 bands. The coherent structures CS2 and CS3 extracted from wavetrains nearly periodic in time and in 
space (see Fig. 5(a)) are therefore genus 2 solutions of Eq. (1). Although the IST spectrum of CS3 is concentrated 
around the vertical imaginary axis, it is however relatively far from the IST spectra of SFBs given by Eq. (6) or 
Eq. (7), see Fig. 2(b–d) and also Supplementary Section for a discussion about results of best fit approximations 
of CS1 −  CS4.

The region labeled CS4 in Fig. 5(a) is a region where a collision occurs between two SFBs in the (x, t) plane. 
A large peak with a maximum intensity of ~22 is formed as a result of this collision. Such a localized and intense 
event has already been observed in numerical simulations reported in refs 8 and 20 where it has been fitted with 
a rational breather of order 2, a degenerate genus 4 solution of Eq. (1). The IST spectrum of the second-order 
rational breather is made of 5 spectral bands that have collapsed to form the IST spectrum consisting of a branch 
cut and two complex conjugate points each having quadruple degeneracy. The fourth row Fig. 5(b) shows that 
the coherent structure CS4 resulting from the collision between two SFB is a genus 4 solution of Eq. (1) because 
its IST spectrum is composed of 5 main bands. However, CS4 is not a degenerate genus 4 solution of Eq. (1) and 
the analysis of its IST spectrum allows one to clearly distinguish this high-amplitude coherent structure from the 
exact second-order breather solution considered in refs 8 and 20 (see also Supplementary Section for results about 
the best fit of CS4).

Discussion and Conclusion
From the theoretical point of view, the 1D-NLSE with periodic boundary conditions and random initial condi-
tions can be solved analytically in the framework of the FGT because any periodic solution of Eq. 1 can be approx-
imated by a finite-band potential expressed in terms of Riemann theta functions over certain algebraic curve23,45. 
However, this general mathematical result is very difficult to implement in practice because the genus of the 
solution is too large for initial conditions involving a large number of Fourier modes with random phases. The 
numerical realization of the global FGT analysis thus requires very significant computing resources45. In contrast, 
we perform a local finite-band approximation of the wave field which includes only the most essential nonlinear 
interactions. Our approach thus provides the effective IST spectra giving an accurate signature of the nature of 
the isolated pulse and brings a new insight into the problem of the characterization of RWs and the mechanisms 
leading to their formation in integrable turbulence21,23.

There has been an extensive work on the emergence of the specific SFBs described by Eqs (6) and (7), and their 
higher-order collisons8,20. However, the randomness and the interactions among the structures are the factors that 
prevent the emergence of exact SFBs in integrable turbulence. The IST spectra enable one to quantify the differ-
ences between specific exact solutions of 1D-NLSE and the observed localized structures. Indeed, the localized 
structures found in the spatio-temporal evolution plotted in Fig. 5(a) correspond to a variety of non-degenerate 
genus 2 and genus 4 solutions of Eq. (1) that differ from the particular degenerate genus 2 solutions given by 
Eq. (6) or by Eq. (7) or the degenerate genus 4 solutions corresponding to higher-order rational breathers8. 
Although we have not performed an extensive statistical analysis of the content of random wave trains, it is very 
unlikely that exact degenerate genus 2 solutions given by Eq. (6) or by Eq. (7) can be found in the noise-driven 
evolution of the focusing 1D-NLSE.

The understanding of the statistics of RWs in integrable turbulence is an open and complex question21,23. In 
particular, it has been shown that the stationary probability density function (PDF) of the field is gaussian if the 
initial stage consist of a condensate with additional noise23 whereas the stationary PDF is strongly non gaussian 
if the initial stage is a partially coherent wave21. Islas and Schober36 have proposed to correlate the occurrence of 
RWs with the proximity to homoclinic solutions of the 1D-NLSE. The degree of proximity to homoclinic solu-
tions is determined in ref. 36 by some quantitative measurements over the IST spectrum. In a very recent paper27, 
another approach has been used and the “global” IST spectra of random initial conditions have been computed to 
study the appearance of RWs during the NLS evolution. We stress that, in contrast to the above two works, the aim 
of the analysis of our paper is not to predict the RW occurrence but rather to perform an accurate local character-
ization of coherent structures already existing in a globally incoherent nonlinear wave field. As shown in ref. 50,  
the maximum amplitude of a finite-gap solution to the focusing 1D-NLSE with given spectral bands does not 
exceed half of the sum of the length of all the bands. Using this criterion, the IST spectrum of a local periodized 
coherent structure can be used to measure the maximum amplitude possibly reached by this coherent structure. 
Moreover, our approach could be combined in the future with IST based predictive methods to obtain a statistical 
treatment of NLSE rogue waves.

Methods
Mathematical expressions describing the AB, PS and KM soliton and their spectral portraits.  
ABs correspond to solutions of Eq. (1) that are periodic in space but localized in time. The AB solution of Eq. (1) 
can be expressed in terms of a single real parameter φ:

ψ φ φ
φ

=
Ω − −
Ω −

x t t i p x
t px

it( , ) cosh( 2 ) cos( )cos( )
cosh( ) cos( )cos( )

exp(2 )
(6)AB

where φΩ = 2sin(2 ) and φ=p 2sin( ). Figure 1(b) shows the IST portrait of an AB. The complex conjugate dou-
ble points are given by ξ φ= ±± i cos ( ) and the endpoints of the branchcut are ξ = ±iBC . The family of KM 
solutions corresponds to SFB that are periodic in time t and localized in space x. It can be also expressed in terms 
of a single real parameter ϕ:
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ψ ϕ ϕ
ϕ

=
Ω − −
Ω −

x t t i qx
t qx

it( , ) cos( 2 ) cosh( )cosh( )
cos( ) cosh( )cosh( )

exp(2 ),
(7)KM

where ϕΩ = 2sinh(2 ) and ϕ=q 2sinh ( ). Figure 1(d) shows the IST portrait of a KM soliton. The complex con-
jugate double points are given by ξ ϕ= ±± i cosh ( ) and the endpoints of the branchcut are ξ = ±iBC , as for the 
AB. In the limit where φ →  0 or ϕ →  0, the period of AB and KM solutions tends to infinity and the solution of 
Eq. (1) that is localized both in space and time is named Peregrine soliton. In the spectral portrait of the PS, the 
complex conjugate double points coincide with the endpoints of the branchcut ξ ξ= = ±± i( )BC , as shown in 
Fig. 1(c).

Numerical Simulations. The determination of discrete eigenvalues ξ of the Zakharov-Shabat system is 
made by rewriting Eq. (2) as a standard linear eigenvalue problem

ψ
ψ

ξ




−∂

∂





= .⁎

x t
x t

Y i Y
( , )

( , ) (8)
x

x

The x–axis is truncated into a finite box of size L. The eigenvector =Y y x y x( ( ), ( ))T1 2  as well as the potential 
ψ x t( , ) are expanded into Fourier series with 2n +  1 modes. These Fourier expansions are substituted in Eq. (8) 
and the obtained system for the eigenvalues is then solved by using standard linear algebra routines38. IST spectra 
plotted in Fig. 2 have been obtained by taking boxes of size L =  500 that have been discretized by using 104 points. 
IST spectra plotted in Fig. 3 and in Fig. 4(b) have been obtained from series including 500 periods that have been 
discretized by using more than 2.104 points. IST spectra plotted in Fig. 5(b) have been obtained from series 
including 200 periods that have been discretized by using more than 2.104 points.

Numerical simulations of Eq. (1) have been performed by using a pseudo-spectral method working with a 
step-adaptative algorithm permitting one to reach a specified level of numerical accuracy. In Fig. 4, a numerical 
box of size L =  512 has been discretized by using 214 points. In Fig. 5, a box of size L =  2000 has been discretized 
by using 216 points.

The random complex field η(x) used as initial condition in Eq. (5) is made from a discrete sum of Fourier 
components:

∑η = .ˆx X e( )
(9)m

m
imk x0

with ∫ η= −X̂ L x e dx1/ ( )m
L imk x

0
0  and k0 =  2π/L. The Fourier modes = φˆ ˆX X em m

i m are complex variables. We 
have used the so-called random phase (RP) model in which only the phases φm of the Fourier modes are consid-
ered as being random51. In this model, the phase of each Fourier mode is randomly and uniformly distributed 
between − π and π. Moreover, the phases of separate Fourier modes are not correlated so that δ=φ φe ei i

nmn m  
where δnm is the Kronecker symbol (δnm =  0 if n ≠  m and δnm =  1 if n =  m). With the assumptions of the RP model 
above described, the statistics of the initial field is homogeneous, which means that all statistical moments of the 
complex field η(x) do not depend on x52. In the RP model, the power spectrum n0(k) of the random field η(x) 
reads as:

δ= = .ˆ ˆX X n n k( ) (10)n m n nm n0 0

with kn =  nk0. In our simulations, we have taken a random complex field η(x) having a gaussian optical power 
spectrum that reads

=







−



Δ














n k n k
k

( ) exp
(11)

0 0

2

2

where Δ k is the half width at 1/e of the power spectrum. The values of n0 and Δ k taken in our numerical simula-
tions are n0 =  5.645.10−3 and Δ k =  0.5.

Finite-Gap Theory. The periodic ZS problem is generally solved in the class of the so-called finite-band 
potentials which are non-decaying periodic or quasi-periodic NLSE solutions having the ZS spectrum filling 
several bands of finite width40,44,45. The finite-band (or as it is often called, finite-gap) theory (FGT) is widely rec-
ognized as a natural framework for the analysis of nonlinear modulational instability and the formation of RWs 
although its practical implementation for the analytic description of integrable turbulence encounters some fun-
damental difficulties23. Within the FGT the multi-phase NLSE solutions are characterized by a genus, calculated 
as N −  1, where N is the number of spectral bands. Physically, the genus characterizes the number of degrees of 
freedom (i.e. the number of fundamental oscillatory modes, or phases) within the nonlinear periodic or quasipe-
riodic solution for the envelope of the plane wave45. Mathematically, the solution genus represents the genus of the 
hyperelliptic Riemann surface, on which the finite-band NLSE solution is defined in terms of theta-functions45. 
From the viewpoint of the FGT, the plane wave itself is classified as a regular genus 0 solution while the funda-
mental soliton represents a degenerate genus 1 solution with two complex conjugate, doubly-degenerate spec-
tral points of the periodic problem, the counterparts of the discrete spectrum in the ZS problem with decaying 
potentials. The standard SFBs (ABs, KM solitons and PSs) all are the degenerate genus 2 solutions. Their spectral 
portraits determined from the resolution of ZS problem are shown in Fig. 1.
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