
1Scientific Reports | 6:29434 | DOI: 10.1038/srep29434

www.nature.com/scientificreports

Tumour sampling method can 
significantly influence gene 
expression profiles derived from 
neoadjuvant window studies
Dominic A. Pearce1, Laura M. Arthur1, Arran K. Turnbull1, Lorna Renshaw1, Vicky S. Sabine1,2, 
Jeremy S. Thomas1, John M. S. Bartlett1,2, J. Michael Dixon1 & Andrew H. Sims1

Patient-matched transcriptomic studies using tumour samples before and after treatment allow inter-
patient heterogeneity to be controlled, but tend not to include an untreated comparison. Here, Illumina 
BeadArray technology was used to measure dynamic changes in gene expression from thirty-seven 
paired diagnostic core and surgically excised breast cancer biopsies obtained from women receiving no 
treatment prior to surgery, to determine the impact of sampling method and tumour heterogeneity. 
Despite a lack of treatment and perhaps surprisingly, consistent changes in gene expression were 
identified during the diagnosis-surgery interval (48 up, 2 down; Siggenes FDR 0.05) in a manner 
independent of both subtype and sampling-interval length. Instead, tumour sampling method was 
seen to directly impact gene expression, with similar effects additionally identified in six published 
breast cancer datasets. In contrast with previous findings, our data does not support the concept of a 
significant wounding or immune response following biopsy in the absence of treatment and instead 
implicates a hypoxic response following the surgical biopsy. Whilst sampling-related gene expression 
changes are evident in treated samples, they are secondary to those associated with response to 
treatment. Nonetheless, sampling method remains a potential confounding factor for neoadjuvant 
study design.

Gene expression profiling of carcinomas has been widely used for molecular subtyping and prognostic predic-
tion1–9 producing a diverse library of gene classifiers. However, these signatures may be limited by the particular 
dataset used to produce the signature10 and by the inherent cellular heterogeneity of tumours and the practical 
considerations of how samples are collected – in short the heterogeneity of the cohort and the heterogeneity of 
sampling.

A more informative and considered approach when performing molecular studies is to use matched biopsies 
from the same patient, allowing for both inter-patient variation to be controlled and changes occurring within a 
given tumour or organism to be more accurately modelled11–13. Matched sample pairs coupled with careful cohort 
selection should ensure that changes related to a given drug represent the largest source of variation, avoiding any 
unwanted contribution from confounding factors known or unknown and allow for greater statistical power with 
a smaller sample size14,15.

Acquisition of multiple biopsies from an individual patient has been simplified by the more common use of 
neoadjuvant therapy for breast cancer, an increasingly popular treatment option for initially large, inoperable or 
locally advanced breast tumours, as well as operable cancers susceptible to specific treatments16. Pre-operative 
treatment with chemotherapy, or endocrine therapy in ER+​ disease, not only increases rates of breast conserving 
surgery17, but also allows a unique in vivo observation of tumour response to treatment12,18. This so-called ‘win-
dow of opportunity’ permits sequential biopsies of the same cancer to be taken at different time points during the 
course of the pre-operative treatment, allowing assessment of molecular changes in the tumour long before clini-
cal evidence of response can be determined11,13. This has allowed the molecular effects of an administered drug to 
be studied and enabled biomarkers predictive of response or resistance to therapy to be identified at an increased 
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rate. Recently our own group has demonstrated the added value of additional on-treatment measurements of 
gene expression to characterise and accurately predict the response to treatment13,19.

Whilst the benefits of this ‘window of opportunity’ approach are certainly attractive for translational research, 
matched samples have commonly been collected under the assumption that variation observed between pairs 
will have occurred as a result of treatment – i.e. the results apparent are due to the drug alone. A control group 
is often not included in these studies and those that do are commonly limited to a handful of samples (n =​ 820, 
n =​ 1521) or are confounded by concurrent treatments. Conversely, studies that have compared multiple biopsies 
from the same patient in lieu of treatment are limited to only a fraction of the total molecular repertoire, most 
often focussing on hormone receptor status by IHC and not full transcriptomic profiling22–25. Whilst oestrogen 
receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2) exhibit high 
concordance between sample pairs in these studies, the growing understanding of breast cancer as an increasingly 
heterogeneous and polygenic disease necessitates a high-throughput approach.

Previous work26 that has utilised larger-scale assays (a panel of 147 cancer related genes) investigated molec-
ular variation under conditions of no-intervening treatment (NIT) in 21 paired core needle biopsy (CB) and 
excision biopsy (EB) samples. Here the diagnostic core biopsy was implicated in initiating an immune response, 
hypothesised to then be detected in a later surgically extracted excision biopsy. Potential stimulation of 
tumour-associated macrophages (TAMs) in response to CB was also reported, itself associated with poor prog-
nosis in human breast cancer, raising concerns of taking multiple repeated biopsies from the same patient, under-
lining the importance of considering the full repertoire of genetic expression under conditions of no treatment.

Here we present the largest dataset to-date of untreated patient-matched breast cancer samples to determine 
whether, and to what extent, sample pairs exhibit molecular heterogeneity independent of treatment, and what 
the implications of any variation are in terms of the interpretation of patient-matched gene expression profiling 
studies. We explore possible causes of consistent differential expression and whether these reflect a wounding or 
immune response to the first biopsy, a hypoxia- or stress-induced response following blood supply interruption27 
or the normal growth and evolution of tumours over time28.

Methods
Patient selection.  Paired diagnostic core biopsies and surgical excision biopsies were identified from 37 
patients with a primary histologically confirmed invasive breast cancer that did not receive any preoperative or 
neoadjuvant treatment at the Western General Hospital, Edinburgh, between 2003 and 2011. All patients gave 
informed consent to be included in the study, which was approved by the Lothian Regional Ethics Committee 
(2001/8/80 and 2001/8/81) and we confirm can that all experiments were performed in accordance with relevant 
guidelines and regulations. A summary and complete clinicopathological characteristics of the patients diagnostic 
core biopsies are given in Supplementary Tables S1 and S2.

Sample collection, RNA processing and microarray hybridisation.  Core biopsies were taken at 
diagnosis in all patients using a 14-gauge automated needle device. Multiple cores were taken per tumour and 
combined as individual samples. Surgical excision biopsies of breast tumour were collected between 13 and 53 
days later (mean interval =​ 27.5 days). Samples were snap frozen in liquid nitrogen and stored at −​80 °C before 
homogenisation and RNA extraction using the RNeasy Mini Kit with RNAse Free DNAse treatment (Qiagen). 
RNA quantity and quality was assured using a Nanodrop 2000 c spectrophotometer (Thermo Scientific). RNA 
was reverse transcribed and amplified using the WT-Ovation FFPE System Version 2 (NuGEN), purified using 
the Qiaquick PCR purification Kit (NuGEN), biotinylated using the IL Encore Biotin Module (NuGEN), and 
purified using the minElute Reaction Cleanup Kit (Qiagen). At each step RNA/cDNA quantity and quality was 
assured by repeat assessment with the Nanodrop 2000 c prior to advancing to the next stage. Labelled cDNA was 
hybridized to Illumina Human HT-12 version 3 and version 4 whole-genome expression bead arrays according to 
the standard protocol for NuGEN labelled samples. Data was extracted using GenomeStudio software (Illumina).

Data analysis.  All analysis was conducted in R (http://www.r-project.org) using software packages avail-
able via CRAN (http://cran.r-project.org/) and Bioconductor (http://www.bioconductor.org/). Data was 
pre-processed using the lumi package29. Log2 transformation, quantile normalisation and summarisation was 
performed for all Illumina probe profiles. Probe expression information was extracted and detected probes were 
standardised, firstly by passing a detection p-value threshold (≤​0.05) and then by being called present in ≥​3 
samples. This was carried out three times, once each for three processing batches that comprised the dataset. A 
common feature list was determined by those probes common to all three dataset batches before re-mapping to 
Ensembl gene sequences using the biomaRt package30,31. Multiple probes-per-Ensembl ID were resolved by mean 
averaging. Batch correction was performed using ComBat32 to integrate processing batches for further analysis 
(Supplementary Fig. S2). Sample groupings were compared using Pearson product-moment correlations. All sig-
nificances were calculated by a two-tailed Wilcoxon rank sum test and corrected for multiple testing (FDR), unless 
otherwise stated. Intrinsic subtype assignment was performed using the genefu package33. Pairwise differential 
gene expression was calculated using significance analysis of microarrays (SAM), part of the siggenes package34.  
Hierarchical clustering was performed on pairwise fold change expression values using a complete linkage 
method. SAM analysis of treated data was performed using a hundred 18-sample permutations, to fairly match 
sample size between subsets, with the intersecting significant genes being taken as a mean average. The raw and 
processed data from this study can be accessed from NCBI GEO under the accession GSE76728.

Results
Consistent treatment-independent gene expression changes between diagnostic and surgical  
paired samples.  Unsupervised clustering using the 500 most variable genes across the patient-matched 
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samples demonstrated high concordance, with 25/37 pairs observed to cluster at the first level of the dendro-
gram (Fig. 1a upper). In order to assess whether core biopsy and surgical excision sample pairs varied from 
one another, Pearson correlations were calculated between intra-tumour (paired) and inter-tumour (non-paired) 
samples (Fig. 1B). Intra-tumour differences were more significantly (p =​ 7e-11) correlated (median r =​ 0.92 range 
r =​ 0.60–0.97) than the mean inter-tumour variations (median =​ 0.87, range r =​ 0.77–0.90). Technical interfer-
ence due to sample processing is expected to decrease correlation between samples, though only nominally35. 
Correlations below r ≃​ 0.97 are likely due to underlying tumour heterogeneity, implicating a biological cause to 
the variation.

To determine the impact of differences in gene expression apparent between diagnostic core and excision 
biopsy pairs, pairwise SAM analysis identified 50 significantly differentially expressed genes (48 upregulated,  
2 downregulated; FDR =​ 5%), between the surgical excision and diagnostic core biopsies (Supplementary Table 
S3). Clustering using these genes was able to separate samples by their sampling method in 31/37 cases (Fig. 1a 
lower). Five subtyping signatures (PAM50, Sorlie 2003, Hu 2006, Desmedt 2008, Wirapati 2008) were applied 
to each sample individually and concordant (subtype agreement between pairs with >​3 subtype classifiers) vs. 
discordant (≤​3 pair subtype agreements) results recorded (Fig. 1c (PAM50 only) and S5 (all methods)). Pairwise 
correlation between concordant and discordant assignments, revealed a trend (p =​ 0.08, Wilcoxon) between 
decreased pairwise correlation and greater discordance (Fig. 1d).

Pathway analysis of the 50 gene NIT signature revealed enrichment for MAPK signalling (DUSP1, JUN, 
NR4A1 and FOS), cancer specific (COX-2, PGE2, JUN and FOS), apoptosis induction (FOS and JUN) and 
genomic reformatting following (brain) ischaemia (EGR1 and JUN) pathways. A number of these genes are 
examples of ‘early’ or ‘primary’ growth response genes induced by both cell-extrinsic and cell intrinsic signals that 
do not require de novo protein synthesis for their expression36.

Figure 1.  Evidence of treatment independent variation between breast cancer diagnostic core biopsies 
and surgical excision samples. (a) Hierarchical clustering of the 37 patient-matched diagnostic core and 
excision biopsy samples using the 500 most variable genes (upper) and a SAM derived signature of 50 genes 
consistently differentially expressed between core and excision biopsies (lower). Bars represent IHC status 
(ER+​/Her2−​ =​ Blue; ER+​/Her2+​ =​ Pink; ER-/Her2−​ =​ Red) or biopsy method. Lower-most bar indicates 
where sample pairs have co-aggregated. Two-thirds (25/37) of the pairs cluster at the first level of the upper 
dendrogram, whereas pairwise association is lost in 31/37 cases for the lower. (b) There is a significantly 
stronger correlation between biopsy pairs (intra-tumour) than between different tumours (mean inter-tumour). 
*​*​*​p <​ 0.001. (c) Discordance in molecular subtype assignment between core and excision biopsies. Patients are 
ranked left to right by pairwise correlation. Colours represent SSP subtypes (Luminal A =​ Dark blue; Luminal 
B =​ Light Blue; Her2 =​ Pink; Basal =​ Red; Normal =​ Green). (d) Sample pairs were called discordant when 
Biopsy A ≠​Biopsy B for at least 4/5 classifiers. Comparison of concordant vs. discordant pairwise correlations 
then revealed an inverse relationship between correlation and discordancy.
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Patient-matched gene expression changes may be associated with either time or biopsy 
methodology.  Having determined significant and consistent changes in gene expression exist  
between diagnostic core and surgical excision pairs we sought to identify the underlying cause. Several hypothe-
ses were immediately apparent – greater changes may occur following a shorter time interval between sampling 
if consistent gene expression changes reflect a wounding/immune response to the diagnostic core biopsy26; or it 
may be anticipated that expression patterns diverge over time to reflect tumour evolution; this may in turn be 
driven by tumour subtype28. However, comparisons of pairwise correlations defined by either IHC status subtype  
(ER+​/Her2−​, ER+​/HER2+​ or ER-/HER2−​), PAM50 subtype (cross-table comparing IHC and PAM50 subtype 
assignment in Supplementary Table S4) or as a function of time interval between biopsies revealed no trend asso-
ciated with either factor (p =​ 0.43 and p =​ 0.32 respectively) (Fig. 2a). This suggested that a progression in breast 
cancer-related biological changes were unlikely to be the root cause of the observed pairwise variation. To further 
investigate whether breast cancer biology could be responsible for the observed pairwise variation, we compared 
7 breast cancer-related expression modules37 between core and excision biopsies (Supplementary Fig. S3), which 
revealed no contrasting trend in gene expression. In conjunction to assigning cause, it remained equally impor-
tant to determine whether our NIT signature genes were evident to alter in an equivalent treated data set. Using a 
patient-matched cohort treated with letrozole, collected and processed within our group in a manner analogous 
to the NIT data13, there appeared to be a strong relationship between the time interval between biopsies and a 

Figure 2.  Factors associated with consistent gene expression changes between diagnostic core biopsy and 
surgical excision of breast tumours in the absence of treatment. (a) Pairwise correlations between biopsy 
pairs are not explained as either a function of time between biopsy (p =​ 0.32) or IHC status (p =​ 0.43). ER+​
/Her2−​ =​ Blue; ER+​/Her2+​ =​ Pink; ER-/Her2−​ =​ Red. (b) Heatmap showing differential expression of 
NIT signature genes in NIT and letrozole treated cohorts. Colours represent gene expression fold changes 
(up =​ yellow; down =​ blue) between samples and their subsequent patient-matched biopsies. Samples are 
ordered by increasing time between biopsies and reveal a pattern associated with either extraction method - CB 
(grey) or EB (dark grey) - or time. (c) Frequency distribution of biopsy time intervals. For further analysis, the 
letrozole treated data was split into three subsets – 2-week CB (2wCB), 3-month CB (3 mCB) and 3-month 
EB (3 mEB) – to investigate the effects of biopsy method and/or time on gene expression. (d) Mean expression 
fold changes since previous biopsy for 2 week, 3 month and NIT samples. 3 month subsets closely resemble 
NIT expression changes, though SAM analysis revealed a greater intersection of differentially expressed genes 
between NIT and 3 mEB samples than between NIT and 3 mCB samples.
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subset of our NIT gene signature (Figs 2b and S4), with treated samples biopsied after 3 months exhibiting signifi-
cant differential expression of these NIT genes. In these instances however, time interval almost wholly coincided 
with the final biopsy method and we therefore sought to determine which factor, if either, was dominant. Dividing 
the treated data into 3 subsets determined by the time since previous biopsy (Fig. 2c) as 2-week CB (2wCB, 
n =​ 95), 3-month CB (3 mCB, n =​ 18) and 3-month EB (3 mEB, n =​ 70), allowed comparison of changes assumed 
to result from treatment by both time interval and sampling method. Biopsy time interval was apparent as the fac-
tor most associated with the genes altered in our NIT data, with 3-month samples alone exhibiting expression fold 
changes similar to those observed in the NIT data, implying time on treatment as the defining factor (Fig. 2d). 
However, in tandem, global GSEA analysis was able to demonstrate that our NIT signature could significantly 
define the differences between untreated and treated data only when sampling method differed (NIT vs. 2wCB, 
p =​ 0; NIT vs. 3 mCB, p =​ 0.02; NIT vs. 3 mEB, p =​ 0.25). Similarly, only in the instance of excision biopsy was 
SAM analysis able to recapitulate >​30% of the genes differentially expressed in the NIT data (mean =​ 47%). More 
so, out of 3955 differentially expressed treated-EB genes, seven of those common to NIT differential expression 
were amongst the top 15 in terms of fold change magnitude. Taken together, this implies both time on treatment 
as well as biopsy method are able to impact upon NIT signature gene expression.

Multiple patient-matched datasets also demonstrate changes in NIT early growth response 
genes.  To further investigate the evident relationship between sampling method, time on treatment and NIT 
signature expression, we selected a panel of four genes (DUSP1, EGR1, FOS, FOSB) that were observed to be most 
representative of these factors, as well as being well characterised in the literature, for comparison in six external 
validation datasets (Table 1, Fig. 3). Significant differential gene expression was consistently observed to a greater 
degree only when an excision biopsy followed a previous core biopsy for these four genes.

Neoadjuvant treatment n

Biopsy Time Interval/days Extraction Method

Dataset/Referencemedian range 1st On- Final

None 37 27 13–53 CB – EB This study

Letrozole 122 107 13–884 CB CB CB EB Turnbull et al.13

Celecoxib/none 22 15 unspecified 14–21 CB – EB (Brandão et al.21

Anastrozole 81 On-18 Final 14 14–112 CB CB CB (Smith et al.57

RAD001 21 14 14 CB – EB (Sabine et al.58

Anthracycline-based Chemotherapy 69 unspecified unspecified CB CB EB (Magbanua et al.59

None 56 14 14 CB EB Lopez-Knowles et al.47

Table 1.   Composition of patient-matched neoadjuvant breast tumour datasets used within our study.

Figure 3.  Multiple patient-matched datasets demonstrate shared changes in NIT early growth response 
genes. Pairwise analysis of four early growth response genes among the NIT signature in six validation datasets. 
These genes potentially represent an association between gene expression and sampling method, with surgically 
excised samples (EB) showing greater expression fold-change than their core biopsied (CB) counterparts.  
*​p ≤​ 0.05; *​*​p ≤​ 0.01; *​*​*​p ≤​ 0.001; −​ =​ not significant.



www.nature.com/scientificreports/

6Scientific Reports | 6:29434 | DOI: 10.1038/srep29434

Tumour sampling appears independent of an immune or wound-healing response.  It remained 
important to determine whether gene expression changes in lieu of treatment were able to elicit either an immune 
or wound-healing response that may be detrimental to a patient’s health or directly confound gene expression 
profiling results. Evaluation of both a published immune-related 9 gene panel, suggested to be upregulated in 
response to a diagnostic CB26 and a 589 gene signature representative of a wound-healing response38 failed to 
show any association with sampling method or time between biopsy, with sample expression unlikely to have 
been affected in terms of these biological categories (Supplementary Fig. S2).

Discussion
Our study reports gene expression changes in the largest cohort of sequential samples from patients receiving 
no-intervening treatment yet assembled to demonstrate the molecular variation that occurs independent of treat-
ment in the neoadjuvant and preoperative setting. Significant pairwise changes in gene expression were observed 
and a 50 gene signature identified comprised of genes associated with a number of cell growth, cell stress and 
cancer related signalling pathways, including ATF3, EGR1, FOS, FOSB and JUN, each of which have been pre-
viously implicated in prognostic discrimination and pathogenesis of breast cancer39–43 as well as other cancers44.

We report that sampling method, specifically core versus excision biopsy, has a direct impact on gene expres-
sion and has the potential to introduce a confounding factor to downstream analysis. The most probable expla-
nation of this expression variation between sample pairs is the technical issue of warm ischemia before newly 
biopsied samples are processed, when the cellular metabolic machinery attempts to mount a survival or apoptotic 
response before all metabolic activity ceases. Tissue ischemia may result from exclusion of the vascular supply or 
simply from handling by the surgeon, scrub nurse, pathologist and tumour bank personnel before the sample is 
frozen in liquid nitrogen. This time delay is likely (on average) to be significantly longer for surgical excision spec-
imens than core biopsy samples. The effects of ischemia on gene expression has been described previously45 and 
warm ischemia associated with the surgical extirpation of human tissues has significant effects on gene expres-
sion. These data support the careful monitoring of ischemic time for tissues harvested for the purpose of gene 
profiling. Similarly, Dash et al.46 demonstrated significant changes in the expression of FOS, JUN, ATF3 in a study 
to examine the effect of processing time on prostate cancer samples.

Similar conclusions are proposed in a recent study published during the review process47, where CB and 
EB pairs were also analysed in terms of correlation and differential gene expression. Variation between sample 
pairs was found to be evident though modest and those genes found to be differentially expressed intersected 
with those highlighted in this study (34% of our NIT signature genes). Of particular interest, the overlapping 
genes included the four genes highlighted in Fig. 3 as well as several others indicative of a stress or early growth 
response (RGS1, RGS2, ATF3, JUN), similarly proposed as a reaction to surgery-associated ischaemia. Indeed, 
the rationale of the study stemmed from a desire to investigate post-operative processing time and its effect on 
gene expression, citing two smaller studies which both highlighted ischaemia as a potential source of molecu-
lar variation48,49. Again, key molecules including FOSB were highlighted as being demonstrative of this effect. 
Importantly, the investigators additionally compared excision biopsies placed into RNAlater either immediately 
post-surgery or following an interval, and again observed early growth and stress response associated genetic 
expression to increase.

In a second analogous study, of 147 breast cancer-related genes measured by Nanostring in 21 patients, 
Jeselsohn et al.26 proposed that sequential breast cancer biopsies reveal activation of an immune response, char-
acterised by a panel of 9 immune-related genes, of which CD68 is known to activate tumour-associated mac-
rophages and implicated in increasingly severe prognosis50, as well as being present in the clinically available 
Oncotype DX® breast cancer assay8. However, none of these genes were found to be significantly differentially 
expressed in our larger, whole genome cohort (Supplementary Fig. S1). Conversely, a number of studies have 
demonstrated a high degree of concordance between classical IHC markers for breast cancer, namely oestrogen, 
progesterone and HER2 receptors24,25 between diagnostic core and excision biopsies, suggesting discordance may 
be limited to the level of transcription. Our study demonstrates that pairwise variation at the transcriptome level 
is not limited to the classical markers of breast cancer, though in some cases paired samples may be classified dif-
ferently using molecular signatures (Figs 1c and S5). The causative factor behind this variation is most likely due 
to sampling method in our NIT cohort, with surgical resection resulting in gene expression in response to stress. 
It remains unclear whether this effect translates to samples following treatment, with time on treatment being 
observed to mediate molecular changes against the background of the sampling method.

It is important that results from preoperative window or neoadjuvant studies are carefully scrutinised, as a 
study by Morrogh et al.51 - using a 502 cancer-related gene panel to examine 16 paired patient samples, 8 of which 
were untreated controls - claimed that window trials are influenced by the wound-healing process. They proposed 
that upregulation of MLL and FOSB was evidence of this, irrespective of treatment. This mirrored our own find-
ings, though it is necessary to note that Morrogh et al. were limited by sample size and inconsistencies in the effect 
direction of proliferation markers (increased Ki67, but decreased PCNA). Nonetheless it remains likely that the 
overall pathway level message within our study - upregulation of proliferation - was a consequence of an early 
growth response to the biopsy itself. It is crucial to determine whether there is a genuine immune response asso-
ciated with biopsy type as inflammatory signatures have been associated with poor anti-proliferative responses to 
aromatase inhibitors13,52. Clear evidence of both an immune or wound response signature53 was completely absent 
in our untreated samples, implying that any contribution of biopsy methodology to an inflammatory response is 
likely to be minor.

With the potential for pairwise variation irrespective of treatment, our study raises potential concerns of 
the suitability of the neoadjuvant window in gene expression profiling studies. Recent results of the ALTTO 
(Adjuvant Lapatinib And/Or Trastuzumab Treatment Optimisation) clinical trial were, however, found to be con-
sistent with the predicted benefits from the neoALTTO trial. This supported the utility of the neoadjuvant setting 
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as a suitable and important window for evaluating promising new targeted agents54, as well as the continued use of 
patient-matched samples to assess intervention studies for translational research. Nonetheless it remains critical 
to understand that whilst patient-matched samples reduce variation due to individuals, all possible sources of 
variation must be considered for an optimal experimental design. For example, in an intervention study to assess 
dietary changes on normal breast tissue from pre-menopausal women it was considered optimal to schedule 
the sequential biopsies one menstrual cycle apart, rather than using a fixed window of time55, as there is clear 
evidence that menstrual changes in oestrogen levels caused significant changes in gene expression56. Underlying 
tumour heterogeneity is an inevitable variable when performing neoadjuvant or window studies, however our 
study suggests that the method of sample collection should be considered along with treatment, time interval and 
clinicopathological features as an important potential confounding factor. These considerations are of particular 
importance if a study’s purpose is the development of a prognostic/predictive classifier or identification of a bio-
marker, with genes present in our NIT signature excluded from the analysis.

Our study demonstrates that consistent molecular changes arise in tumours in the absence of treatment and 
these can impact upon classification. These changes appear to be an artefactual ischemic response resulting from 
the sampling methodology itself, rather than reflecting the effects of a previous biopsy. Careful consideration 
should be given in future studies that seek to illustrate molecular changes between paired biopsies in the neoadju-
vant setting for breast cancer and likely other cancers that make use of the same experimental design.
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