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Abstract

Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to 

below the limit of detection of clinical assays. However, even with prolonged suppression of viral 

replication with ART, viremia rebounds rapidly after treatment interruption. Thus ART is not 

curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting 

memory CD4+ T cells. Here we consider explanations for the remarkable stability of the latent 

reservoir. Stability does not appear to reflect replenishment from new infection events but rather 

normal physiologic processes that provide for immunologic memory. Of particular importance are 

proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that 

in some infected cells, proliferation is a consequence of proviral integration into host genes 

associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may 

need to consider the potential of latently infected cells to proliferate.

 Introduction

In 2014, ~37 million people were living with HIV-1 infection (www.unaids.org). Optimal 

patient outcomes are achieved by initiating combination antiretroviral therapy (ART) as soon 

infection is diagnosed, regardless of the CD4+ T cell count (1–3). ART reduces plasma virus 

levels to below the clinical detection limit (20–50 copies of HIV-1 RNA/ml) and halts 

disease progression (4–6). Recommended initial regimens consist of two nucleoside analog 

reverse transcriptase inhibitors and a third drug, either an integrase inhibitor or the protease 

inhibitor darunavir (3). Although ART effectively suppresses viremia, it is not curative, and 

viremia rebounds upon ART cessation (7, 8). Therefore, lifelong treatment is required. 

Providing lifelong treatment for all infected individuals poses a major economic and 

logistical challenge. Only 15 million people currently receive ART. The tolerability of ART 

regimens has improved dramatically, but long term drug toxicity is also a concern. Other 

problems include the emergence of resistance with suboptimal treatment and the stigma 

associated with the infection. For these reasons, there is great current interest in a cure (9, 

10).

The principal barrier to cure is a stable reservoir of latent HIV-1 in resting CD4+ T cells (11, 

12). The reservoir persists even in patients on long term ART who have no detectable 
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viremia (13–18). The cells comprising this reservoir have a memory phenotype (12, 19–23). 

Direct measurements of the latent reservoir in patients on ART show a very slow decay rate 

(t1/2=3.7 years) (16, 17). At this rate, eradication of a reservoir of 106 cells would require 73 

years, making cure unlikely even with lifelong ART. Thus, research towards a cure focuses 

on eliminating this reservoir. Recent reviews have discussed molecular mechanisms of 

HIV-1 latency (24–27) and approaches for eliminating the reservoir (10, 28–30). Here we 

consider explanations for its remarkable stability.

 Why does HIV-1 establish latent infection?

Viral latency is a reversibly nonproductive state of infection of individual cells (31). Latently 

infected cells contain a stable form of the viral genome, either as a circular plasmid in the 

case of herpesviruses or as a linear provirus stably integrated into host cell DNA in the case 

of HIV-1. During latency, there is highly restricted expression of viral genes (31). For some 

herpesviruses, latency evolved as an essential mechanism of immune evasion and viral 

persistence (31, 32). For HIV-1, latency is not necessary for persistence as active viral 

replication occurs throughout the course of infection in untreated patients (33). Escape from 

immune responses is through rapid evolution of variants not recognized by cytolytic T 

lymphocytes (CTL) or neutralizing antibodies (34–41). Nevertheless, a latent reservoir is 

established rapidly in all HIV-1-infected individuals (42). Latently infected cells can be 

detected in the rare individuals who spontaneously control HIV-1 infection without ART 

(43). Early ART restricts the size of the reservoir (22, 44) but does not block its 

establishment (42). In rhesus macaques infected with simian immunodeficiency virus (SIV), 

which also establishes a latent reservoir in resting CD4+ T cells (45, 46), initiation of ART 

on day 3 post infection prevents detectable viremia but not the establishment of a latent 

reservoir (47). Thus it is difficult to prevent the establishment of the latent reservoir.

A recent theory suggests that HIV-1 evolved a mechanism for rapid establishment of latent 

infection to facilitate transmission across mucosal barriers (48, 49). Latency is proposed to 

serve as a “bet-hedging strategy” that allows some infected cells to survive long enough to 

transit the mucosa. However, as is discussed below, infected cells can remain in a latent state 

for years, and a long time interval between mucosal exposure and viremia has never been 

documented.

Latency is most simply explained as a consequence of viral tropism for activated CD4+ T 

cells which can transition to a resting memory state that is non-permissive for replication 

(Fig. 1). HIV-1 has a strong propensity to infect activated CD4+ T cells (50, 51). CCR5, a 

critical co-receptor for entry of the commonly transmitted forms of HIV-1 (52–57), is 

upregulated on CD4+ T cell activation (58). Following entry, reverse transcription of the 

viral RNA genome into DNA and integration of the resulting provirus into host cell DNA 

occur within hours (59). Transcription of the integrated provirus then begins because active 

nuclear forms of key host factors needed for the initiation and elongation of viral 

transcription, including NFκB, NFAT, and pTEFb, are present in activated cells (60–67). In 

contrast, resting CD4+ T cells mostly lack CCR5 expression (58), and other factors interfere 

with HIV-1 replication even when the virus has successfully entered. The cellular protein 

SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase, depletes dNTP levels, thus 

Murray et al. Page 2

J Immunol. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impeding reverse transcription (68–70). It is expressed at high levels in myeloid cells and 

resting CD4+ T cells (52–55). Interestingly, SIV and HIV-2 encodes a protein, Vpx, that 

promotes SAMHD1 degradation (68, 71). However, HIV-1 lacks Vpx, and thus reverse 

transcription in resting CD4+ T cells is inefficient, taking as long as 3 days (72–74). The 

static nature of the actin cytoskeleton in resting cells inhibits delivery of the reverse 

transcribed viral genome to the nucleus (75). These delays facilitate recognition of DNA 

intermediates generated during reverse transcription by a host innate DNA sensor, IFI16, 

leading to caspase-1 activation and a proinflammatory form of cell death known as 

pyroptosis (76–78). Additional barriers to replication in resting CD4+ T cells include the 

lack of active forms of NFκB, NFAT, and pTEFb needed for transcription of the provirus 

(60–63, 65, 66).

Although activated CD4+ T cells are the principle target for HIV-1, they die quickly after 

infection. Classic studies of viral dynamics revealed a rapid decay in viremia when new 

infection events are blocked with ART (6, 79–81). This decay reflects the short half-life of 

plasma virions (t1/2 ~ minutes) and of the infected cells that produce most of the plasma 

virus (t1/2 ~ 1 day). Activated T cells are prone to die in the contraction phase of immune 

responses due to activation-induced cell death (82). In addition, productively infected cells 

may die from other cell death pathways triggered by viral proteins or by integration of the 

provirus into the host cell genome (83, 84). Infected CD4+ T lymphoblasts may also be 

lysed by CD8+ CTL (34, 85–87). Surprisingly CTL do not appear to shorten the t1/2 of 

productively infected cells (88, 89). Nevertheless, it appears that most productively infected 

CD4+ T lymphoblasts are short-lived.

Given that resting CD4+ T cells are resistant to infection and that activated CD4+ T cells die 

quickly after infection, how is the latent reservoir established? Some infected CD4+ T 

lymphoblasts may survive long enough to revert to a resting memory state that is non-

permissive for viral gene expression (11), particularly if they are infected within a narrow 

time window when still permissive for steps in the life cycle up through integration, but not 

for high level gene expression (Fig. 1). Thus establishment of latent infection is a rare event, 

consistent with the low frequency of latently infected cells in vivo (1/106) (13, 16–18). 

Latency may be further enforced by silencing epigenetic modifications of the integrated 

provirus (90–92). In this latent state, the virus persists essentially as genetic information. 

When antigen or cytokines subsequently activate the cell, the provirus is transcribed, viral 

proteins are produced, and virus particles are released. Given the long t1/2 of memory T cell 

responses and the fact that the latent proviruses in these cells are not detected by the immune 

system or targeted by ART, stable persistence of HIV-1 is not surprising. This simple model 

views latency in the context of the normal physiology of immunologic memory, thereby 

explaining all clinical observations regarding HIV-1 persistence without requiring the 

evolution of special viral mechanisms for latency.

 Residual viremia, the latent reservoir, and viral rebound

Trace levels of free virus (~1 copy/ml) are present in the plasma of most patients on ART 

(93–95). Sequence analysis of the residual viremia (RV) reveals that these viruses resemble 

viremia present earlier in infection, are sensitive to the patient’s current ART regimen, and 
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generally do not show evidence of ongoing evolution (96–100). These features all suggest 

RV originates from a stable reservoir (101). In situations where evolution has been detected, 

suboptimal ART may be the cause (102). Importantly, intensification of standard three drug 

ART with additional antiretroviral drugs from a different class does not reduce RV (103–

105), indicating that it originates from long-lived cells infected prior to ART. Latently 

infected resting CD4+ T cells are at least one source of RV. The presence of RV suggests that 

multiple latently infected cells are become activated every day. While patients remain on 

ART, the viruses released do not infect additional cells. However, if ART is interrupted, viral 

rebound occurs. Rebound is typically seen within 2 weeks (7, 8), the time required for 

washout of antiretroviral drugs and growth of the recently released viruses to detectable 

levels. The rebound virus is archival in character, consistent with the conclusion that it 

originates from a stable latent reservoir (106). The limited variation in time to rebound, 

despite a two log variation in reservoir size, also suggests that multiple cells are activated per 

day (107). This conclusion is consistent with a recent analysis of viral rebound which 

detected multiple viral lineages emerging in multiple sites (lymph node, ileum, and rectum) 

(8).

 Evidence for latent infection of resting memory CD4+ T cells

This model for latent HIV-1 infection as a barrier to cure is supported by several lines of 

evidence:

1. Replication-competent HIV-1 can be readily recovered from highly purified 

resting CD4+ T cells from essentially all infected individuals, regardless of the 

duration of ART (12, 13, 15, 16, 18, 108). Recovery requires activating the 

cells to reverse latency, as predicted by the model. As is discussed below, 

recovery only fails when the size of the latent reservoir is substantially reduced 

(44, 109–111). Controversy remains over the question of whether other cell 

types including macrophages serve as stable HIV-1 reservoirs (112–123). To 

date, long term persistence of replication-competent HIV-1 in the setting of 

optimal ART has only been demonstrated for resting CD4+ T cells (124). This 

may in part reflect the difficulty of sampling tissue macrophages, particularly 

in sites such as the central nervous system. Persistence in tissue macrophages 

can in principle be studied in novel humanized mouse models (123) and in the 

SIV model, but only through the use of animals on fully suppressive, long term 

ART and with the caveat that restriction by SAMHD1 is counteracted by SIV 

Vpx (68, 69).

2. Latent HIV-1 is found in resting memory CD4+ T cells but only to a limited 

extent in naïve CD4+ T cells (12, 19–23).

3. The generation of latently infected cells can be reproduced in vitro in primary 

CD4+ T cells that have been activated in some manner, infected, and then 

cultured to allow reversion to a resting state (125–129). Restimulation of these 

cells through the T cell receptor (TCR) leads to HIV-1 gene expression. 

Together, these results support persistence of latent HIV-1 in resting CD4+ T 

cells that have been previously infected while in an activated state.
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The general concept of HIV-1 latency is also strongly supported by the cure and “near cure” 

cases of the “Berlin patient” (109), the two “Boston patients” (110, 111), and the 

“Mississippi baby” (44). The Boston and Berlin patients were HIV-1-infected individuals 

who developed malignancies requiring hematopoietic stem cell transplantation (HSCT) 

resulting in immune reconstitution with donor cells. The Berlin patient received HSCT from 

a donor whose cells were homozygous for a deletion in CCR5, and was cured as the 

reconstituting T cells were not permissive for entry of R5-tropic HIV-1 (109). Attempts to 

reproduce this cure have thus far been unsuccessful due in large part to progression of the 

malignancy. In one case, the appearance of viral variants that utilize the alternative HIV-1 

coreceptor, CXCR4, has been noted (130). The Boston patients received HSCT from donors 

with wild-type CCR5, and ART was continued throughout the transplant period to protect 

donor cells from infection. When apparently complete reconstitution with donor T cells had 

occurred, and HIV-1 was no longer detectable by standard assays, ART was interrupted. The 

patients maintained suppression of viremia for 3 and 8 months before sudden and dramatic 

rebounds.

The Mississippi baby, born to an infected mother who had no prenatal care, had a plasma 

HIV-1 RNA level of ~20,000 copies/ml shortly after birth and was immediately started on 

ART. Plasma HIV-1 RNA declined to below the limit of detection and remained there even 

after treatment was interrupted against medical advice between 15 and 18 months of age. 

Treatment was not restarted, and viremia remained undetectable for over 2 years before 

suddenly rebounding. Importantly, HIV-1-specific T cell responses were absent in all three 

subjects because of the transplant process or early treatment. Antibodies to HIV-1 were not 

detected in the Mississippi baby and were markedly decreased in the Boston patients. 

Because HIV-1 replication is exponential in the absence of immune responses and ART, 

HIV-1 persistence for months or years in these patients can be best explained by the non-

replicating or latent form of the virus. In these cases, HSCT or early ART delayed rebound 

by reducing the number of latently infected cells to the point where stochastic reactivation 

was a rare event (107).

 Explanations for the long t1/2 of the latent reservoir

The decay rate of the latent reservoir was originally measured using a viral outgrowth assay 

(VOA), which quantifies viral outgrowth from limiting dilutions of mitogen-stimulated 

resting CD4+ T cells from patients on ART (13, 131–133). The original VOA-based 

measurements of the reservoir decay, published in 1999 and 2003, indicated a t1/2 of 3.7 

years (16, 17). This value was confirmed in a more recent study (t1/2 =3.6 years), indicating 

that despite the development of newer, less toxic, and more convenient ART regimens, the 

fundamental problem of the reservoir as a barrier to cure has not been overcome (18). A 

critical issue is whether the remarkable stability of the reservoir is the result of normal 

homeostatic mechanisms that maintain immunologic memory or other factors.

One controversial explanation for stability is that the reservoir is constantly replenished by a 

low level of de novo infection that continues despite ART (134). This replication may reflect 

inadequate drug levels in certain anatomical sites including the lymph nodes (135, 136) or 

cell-to-cell spread which is more difficult to block with ART (137). However, multiple lines 
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of evidence indicate that ART effectively curtails new infection of susceptible cells. Because 

HIV-1 replication is invariably accompanied by the progressive accumulation of mutations 

(138) reflecting the error prone nature of reverse transcriptase (139) and possibly 

hypermutation by the host restriction factor APOBEC3G (40, 140–143), the lack of 

sequence evolution in the viral reservoir (22, 97, 100, 144, 145) indicates that ART blocks 

ongoing cycles of viral replication. A recent report claiming viral evolution is confounded 

by sampling only in the first 6 months of ART, a period during which short-lived populations 

of infected cells not representative of the stable reservoir are dominant (146). Prior to the 

development of effective ART, a dominant clinical issue was the evolution of drug resistance 

(147–151), but the incidence of resistance is now decreasing (152–154). Indeed there are 

overwhelming clinical data that ART is effective, and treated patients can expect a near 

normal life expectancy (3, 155–158). As mentioned above, the failure of ART intensification 

to reduce RV indicates that current ART regimens stop new infection events (103–105). 

Finally, in the delayed rebound cases mentioned above, HIV-1 persistence during ART 

cannot be explained by ongoing replication as this would have led to immediate rebound. 

Therefore, the stability of the latent reservoir is most likely due to the long t1/2 of memory T 

cells and their renewal through proliferation.

Functional studies have shown that memory CD4+ T cell responses in humans can provide 

lifelong immunity. In individuals who received the smallpox vaccine or cleared Hepatitis C 

infection, virus-specific CD4+ T cell responses persist for decades despite the absence of 

further antigen exposure (159, 160). Early studies of the memory cell lifespan in humans 

examined radiation-induced chromosomal abnormalities that preclude cell proliferation. 

This allowed estimates of the intermitotic t1/2 of lymphocytes (161, 162). The measured t1/2 

of 22 weeks for memory T cells is roughly consistent with subsequent in vivo measurements 

using glucose or deuterium labeling which indicate a t1/2 on the order of months for human 

memory CD4+ T cells (163, 164; also reviewed in 165). This is substantially shorter than the 

t1/2 of individual naïve T cells (1–8 years). Importantly, it is shorter than the t1/2 of the 

HIV-1 reservoir (3.7 years) and of functional memory T cell responses (8–12 years). The 

discrepancy between the half-life of individual memory T cells and the overall memory 

immune response suggests that proliferation of memory cells must contribute to the stability 

of the latent reservoir. However, as discussed above, productively infected cells have a very 

short t1/2, and therefore the concept that infected cells can proliferate is not well appreciated. 

The HIV-1 Vpr protein induces cell cycle arrest at G2 by interacting with a host E3 ubiquitin 

ligase (166, 167) and stimulating the degradation of host proteins including the DNA 

replication factor MCM10 (168). For cells in a latent state of infection, this block to 

proliferation is not operative, and latently infected cells can, in principle, proliferate if the 

driving stimulus does not strongly upregulate HIV-1 gene expression (169–172).

Memory CD4+ T cell proliferation can be driven by antigen, cross-reactive recognition of 

other self or foreign peptides presented with MHC class II, or cytokines. In the murine 

system, neither antigen nor class II MHC is required for memory T cell persistence (173), 

although memory CD4+ T cells that persist in the absence of MHC class II are functionally 

impaired (174). The requirements for maintenance of human memory CD4+ T cell responses 

is less clear, and could include interactions with cognate signals or cytokines. Little is 

currently known about the antigen specificity of cells harboring latent HIV-1, although a 
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small subset of them may be HIV-1-specific (175). However, human memory CD4+ T cells 

exhibit cross-reactivity, and specificities for antigens never encountered can be detected 

among memory CD4+ T cells in peripheral blood (176). As discussed above, it is expected 

that stimuli acting through the TCR will upregulate expression of latent HIV-1, but this may 

not be the case for cytokine-driven proliferation. The cytokines implicated in memory T cell 

homeostasis and survival are IL-7 and IL-15 (reviewed in 177). IL-7 is required for 

stimulating homeostatic proliferation of memory CD4+ T cells. Mice deficient in IL-7 (or 

IL-7R) have severely reduced total T lymphocyte levels, and reduced splenic size and 

cellularity (178). IL-15 also plays a role in homeostatic proliferation of memory CD4+ T 

cells (179). Early in vitro studies indicated that IL-7 can actually induce expression of latent 

HIV-1 (180, 181). However, in patients on ART, infusion of IL-7 leads to the proliferation of 

memory CD4+ T cells, including latently infected cells, with little or no induction of HIV-1 

gene expression (182, 183). In vitro studies in a primary cell model of HIV-1 latency 

confirm that latently infected cells can proliferate in response to IL-7 (plus IL-2) without 

upregulation of HIV-1 gene expression (169). These studies suggest that the latent reservoir 

can be maintained within memory T cells undergoing homeostatic turnover. Analysis of 

memory T cell subsets has provided additional insight into this issue.

 Memory CD4+ T cell subsets

Memory T cells can be divided into two main subsets, central memory (TCM) and effector 

memory cells (TEM), based on expression of homing and chemokine receptors involved in 

preferential trafficking to secondary lymphoid organs or peripheral sites, respectively (184). 

HIV-1 DNA is preferentially harbored in TCM and another subset of memory T cells, 

transitional memory T cells (TTM) (21). TTM have a phenotype (CD45RA−, CD27+, CCR7−) 

intermediate between TCM and TEM. The two main subsets of CD4+ memory T cells that 

harbor latent HIV-1, TCM and TTM, may provide a more stable reservoir for HIV-1 than TEM 

cells, which have a higher proliferative index and are more susceptible to programmed cell 

death (21, 185). A recent study using the viral outgrowth assay rather than PCR 

demonstrated replication-competent HIV-1 persisting in TCM but to a much lesser extent in 

TTM, indicating that TCM may represent the major source of persistent HIV-1 in most 

patients (186).

Another recently defined subset of memory CD4+ T cells that may contribute to HIV-1 

persistence is the stem cell-like memory T cell subset (TSCM) (187). TSCM are 

phenotypically similar to naïve T cells (TN) in that they are CD45RO−, CD45RA+, and 

CCR7+. However, they also express surface markers characteristic of memory cells, such as 

CD95 and IL-2Rβ (187). TSCM rapidly respond to antigen and secrete IFN-γ, IL-2, and TNF. 

They are also stimulated to proliferate by IL-7. A stepwise progression from TN to TSCM to 

TCM to TEM has been proposed, with TSCM potentially able to give rise to other types of 

memory T cells and self-renew upon stimulation. TSCM can be infected with HIV-1 in vitro, 

and in patients on ART, HIV-1 DNA is present in TSCM at higher levels than in other 

memory subsets (188). Although latently infected TSCM represent only a small fraction of 

the total reservoir, they may be of particular importance because of their stability and 

capacity for self-renewal (23, 188).
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In summary, analysis of memory subsets reveals HIV-1 genomes distributed in multiple 

memory cell subsets, with higher frequencies in subsets with greater potential to survive. 

Several issues remain. One concern is that many studies of the distribution of HIV-1 

genomes in T cell subsets rely primarily on PCR-based measures of the proviral DNA. This 

is problematic in that the vast majority of proviruses in resting CD4+ T cells from treated 

patients are highly defective (189). There is also substantial patient-to-patient variability in 

the distribution of viral genomes within these subsets. Finally, these subsets are not static 

and can interconvert in ways that are not yet fully understood, and it is therefore unclear 

whether latent HIV-1 stably persists in a given subset.

 Anatomical distribution of the latent reservoir

Most studies of the latent reservoir sample CD4+ T cells from peripheral blood. Given the 

continuous recirculation and wide tissue distribution of memory T cells, it is generally 

presumed that latently infected resting CD4+ T cells will be present in most secondary 

lymphoid organs and in non–lymphoid tissues (190–192). Early studies demonstrated 

latently infected cells at roughly equal frequency in blood and lymph nodes (12). In the SIV 

model, latently infected resting CD4+ T cells were demonstrated in blood, lymph node, and 

spleen (45, 46). Interestingly, as is discussed below, some recently described memory cell 

populations that are not present in the blood may also contribute to HIV-1 persistence.

HIV-1 can infect follicular helper T cells (TFH) (193–196), and this population has received 

considerable attention because CD8+ CTL lack chemokine receptors needed for migrating 

into B cell follicles (196), thus making the follicles a site of “immune privilege”. In the 

subset of rhesus macaques that spontaneously control SIV, viral replication is restricted to 

TFH, presumably because CD8+ CTL lyse infected cells elsewhere in the node (196). The 

extent to which TFH serve as a long term reservoir for HIV-1 in the setting of optimal ART 

remains to be determined. If latently infected TFH persist, HIV-1 eradication strategies may 

need to include not only latency reversing agents and stimuli to enhance the CD8+ CTL 

response (197), but also interventions to disrupt B cell follicles to permit access by CTL 

(196).

Another population of memory T cells that could potentially harbor latent HIV-1 is the tissue 

resident memory T cell (TRM) populations (198, 199). Pioneering studies in the murine 

system demonstrated wide distribution of memory CD4+ T cells, including in non-lymphoid 

tissues such as liver and lung (190). Subpopulations of memory cells may be generated in or 

recruited to particular non- lymphoid tissues where they reside for long periods of time (192, 

199). These TRM lack expression of CCR7 and share phenotypic and functional properties 

with TEM. However, unlike other memory subsets, they express CD69, a cell surface lectin 

that is upregulated at early times following T cell activation. In humans, the majority of TEM 

cells in lymphoid and mucosal tissues, including lungs and intestines, express CD69 and 

therefore may be retained in these sites as TRM (191, 200). Human skin also contains 

significant TRM populations (198). Thus far, TRM have not been directly examined for the 

presence of latent HIV-1. However, persistent HIV-1 has been detected in gut associated 

lymphoid tissue of individuals on ART (201, 202). TRM are prominent in the lamina propria 

and among intraepithelial lymphocytes, and it is possible that TRM harbor HIV-1. Many 
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CD4+ TRM exhibit activated phenotypes, with reduced surface expression of CD28 (191), 

and therefore it is unclear whether latent infection can be established in these cells. Further 

characterization of tissue-specific reservoirs for HIV-1 is an important research priority.

 Evidence for clonal expansion of infected cells

Consideration of the mechanism of memory cell homeostasis suggests that the stability of 

the latent reservoir is at least partially dependent upon the ability of infected cells to 

proliferate. Several studies have provided direct evidence for clonal expansion of infected 

cells, beginning with studies of RV (100, 102). Although patients starting ART during 

chronic infection harbor diverse viral quasispecies (138), the RV is often dominated by 

identical sequences detected on independent sampling over months to years. The origin of 

these sequences is unknown, but may reflect infection of cells that then proliferate giving 

rise to multiple progeny cells carrying identical proviruses (100, 102, 203). The fraction of 

identical HIV-1 sequences within samples from patients on ART increases with time, 

consistent with proliferation of infected cells (145). More recent studies have used 

integration site analysis to provide definitive evidence for the proliferation of infected cells. 

The sites of integration in different cells are generally different and are distributed widely 

throughout the human genome. Early studies in cell lines infected in vitro with HIV-1 (204) 

and in resting CD4+ T cells from patients on ART (205) revealed a strong preference for 

integration within active transcriptional units. However, integration occurs in either 

orientation with respect to the host gene, and there is no consensus sequence at the 

integration site. Therefore, the precise human sequence at the junction between host and 

HIV-1 DNA uniquely identifies individual infection events and thus all the clonal progeny of 

a single infected cell. In addition, novel deep sequencing analysis allows enumeration of the 

clonal progeny of a single infected cell within a sample by detection of differences in the 

random break points in fragments of sheared DNA containing the same integration site (170, 

206). Application of this and related approaches to CD4+ T cells from patients on ART has 

provided dramatic evidence for clonal expansion (170, 171, 207). Maldarelli et al. showed 

that 43% of 2410 integration sites in CD4+ T cells from 5 patients were in clonally expanded 

cells (170). The finding that multiple cells with the same integration site can be captured in a 

single blood sample reflects dramatic clonal expansion in vivo.

Interestingly, some expanded clones had proviruses integrated in human genes associated 

with cell growth, and some of these genes have been observed to contain integrated 

proviruses in multiple independent studies (170, 171, 205, 207, 208). These include 

myocardin-like protein 2 (MKL2), a transcription factor, and basic leucine zipper 

transcription factor 2 (BACH2), a transcription regulator affecting lymphocyte growth, 

activation, senescence, and cytokine homeostasis. For these genes, integration events were 

found in a specific regions of the gene and in the same transcriptional orientation as the host 

gene. This skewed pattern reflects a post-integration selection process that favors the in vivo 
growth and survival of cells with those integration events since these patterns were not seen 

in in vitro infections (170, 171, 204). These results raise the interesting possibility that 

integration into certain host genes contributes to HIV-1 persistence by stimulating infected 

cells to proliferate in a manner distinct from homeostatic proliferation. The molecular 

mechanisms are currently unclear.
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A caveat to these studies is that the methods used do not capture the full sequence of the 

integrated provirus. Some methods capture only the junction between host and HIV-1 DNA. 

Given that the vast majority of proviruses are defective, as a result of large internal deletions 

or APOBEC3G-mediated hypermutation (189, 207), it must be assumed that most expanded 

clones carry defective proviruses. There is no selective pressure against cells carrying 

defective proviruses that do not produce viral proteins. Previous studies have described 

expanded clones carrying defective proviruses, some of which persist for many years (22, 

209). However, a recent report has described dramatic in vivo expansion of an infected 

CD4+ T cell clone in a treated patient who also had squamous cell carcinoma (210). 

Importantly, this clone was capable of producing replication-competent virus. The 

integration site could not be precisely localized because it was in a region of repetitive 

sequence. The clone was found widely distributed in sites of metastatic tumor throughout the 

body, raising the possibility that the clonal expansion occurred in response to tumor antigen. 

A current issue of great importance is the extent to which expanded cellular clones harbor 

replication-competent HIV-1.

 Implications

The stability of the latent reservoir is the principal reason that HIV-1 infection cannot be 

cured. The normal mechanisms that maintain immunologic memory provide a simple 

explanation for this stability. However, the pool of latently infected cells is not static. While 

the total pool size decreases only very slowly, cells in the reservoir are continually being 

activated to produce virus that is evident as residual viremia. These cells may die, but 

homeostatic proliferation of memory cells helps to balance the loss. In addition, a more cell 

autonomous process of proliferation driven by integration-site dependent alterations in host 

gene expression may allow some infected cells to undergo dramatic clonal expansion. 

Efforts to target the latent reservoir have generally assumed that intervention-dependent 

reductions in the frequency of latently infected cells will be stable so that repeated 

interventions will ultimately allow cure. The possibility that subpopulations of infected cells 

can continue to proliferate may further complicate eradication efforts.
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Figure 1. 
Model for the establishment of latent HIV-1 infection in resting memory CD4+ T cells. The 

normal process of memory cell generation (boxed) involves the exposure of a resting CD4+ 

T cells to antigen which leads to blast transformation, proliferation, and differentiation into 

effector cells. Many effector cells die during the contraction phase of the immune response, 

but a fraction survive and gradually return to a quiescent state as long-lived resting memory 

cells. Most resting CD4+ T cells lack expression of CCR5, a critical coreceptor for HIV-1 

entry. Activation of resting cells by antigen (Ag) upregulates CCR5 expression and reverses 

other blocks to HIV-1 replication in resting CD4+ T cells, allowing productive infection of 

these cells. Most productively infected CD4+ T lymphoblasts die rapidly from activation-

induced cells death (AICD), viral cytopathic effects (CPE), or lysis by CTL. As activated 

cells transition back to a resting state, active forms of key host transcription factors needed 

for HIV-1 gene expression are sequestered. Infection at this stage may lead to latent 

infection rather than cell death. Other models posit direct infection of resting cells. Please 

see text for references.
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Figure 2. 
Dynamics of the latent reservoir. ART largely blocks new infection of susceptible cells. In 

patients on long term ART, the pool of latently infected cells is extremely stable (t½ = 3.7 

years) so that memory cell turnover must be largely balanced by proliferation of previously 

infected cells. Latently infected resting memory CD4+ T cells occasionally encounter the 

relevant cognate antigen (or a cross-reacting antigen) and become activated. Activation 

reverses latency, allowing viral gene expression and virus production. In patients on ART, 

the released viruses do not successfully infect new cells, but may be detected at very low 

levels in the plasma where they constitute the residual viremia (RV). Most productively 

infected cells die quickly from AICD, CPE, or lysis by CTL. It is possible that some degree 

of antigen-driven proliferation may occur without activation of viral gene expression. 

Homeostatic proliferation of memory cells may also occur without reactivating viral gene 

expression. For some infected cells, integration of the provirus into genes associated with 

cell growth may also stimulate proliferation. See text for references.
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