
Somatic ERCC2 Mutations Are Associated with a Distinct 
Genomic Signature in Urothelial Tumors

Jaegil Kim#1, Kent W Mouw#2,3, Paz Polak#1,3,4,5, Lior Z Braunstein1,3, Atanas 
Kamburov1,3,4,5, David J Kwiatkowski3,6, Jonathan E Rosenberg7, Eliezer M Van Allen1,3,8, 
Alan D'Andrea2,3,9, and Gad Getz1,3,4,5,11

1Broad Institute of MIT and Harvard, Cambridge, MA, USA

2Department of Radiation Oncology, Brigham & Women's Hospital, Dana-Farber Cancer Institute, 
Boston, MA, USA

3Harvard Medical School, Boston, MA, USA

4Department of Pathology, Massachusetts General Hospital, Boston, MA, USA

5Cancer Center, Massachusetts General Hospital, Boston, MA, USA

6Division of Pulmonary Medicine, Brigham & Women's Hospital, Boston, MA, USA

7Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer 
Center, New York, NY, USA

8Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

9Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA

# These authors contributed equally to this work.

Abstract

Alterations in DNA repair pathways are common in tumors and can result in characteristic 

mutational signatures; however, a specific mutational signature associated with somatic alterations 

in the nucleotide excision repair (NER) pathway has not yet been identified. Here, we examine the 

mutational processes operating in urothelial cancer, a tumor type in which the core NER gene 

ERCC2 is significantly mutated. Analysis of three independent urothelial tumor cohorts reveals a 
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strong association between somatic ERCC2 mutations and activity of a mutational signature 

characterized by a broad spectrum of base changes. In addition, we note an association between 

activity of this signature and smoking that is independent of ERCC2 mutation status, providing 

genomic evidence of tobacco-related mutagenesis in urothelial cancer. Together, these analyses 

identify the first NER-related mutational signature and highlight the related roles of DNA damage 

and subsequent DNA repair in shaping the tumor mutational landscape.

 Introduction

Cells are continually exposed to both exogenous and endogenous sources of DNA damage, 

and multiple DNA repair pathways have evolved to repair a variety of DNA lesions. 

However, many tumors are functionally deficient in one or more DNA repair pathways.[1–3] 

The somatic mutational landscape of tumor cells reflects the cumulative activity of discrete 

mutational processes operating across the lifetime of the cell, and loss of DNA repair fidelity 

can augment the effect of these processes and lead to increased somatic mutation rates.

Mutational signatures are patterns of base changes associated with specific mutational 

processes operating in tumor cells. Recently, non-negative matrix factorization (NMF) 

methods have been applied to discover and characterize mutational signatures across 

multiple tumor types.[4, 5] Dozens of mutational signatures have been identified, including 

several that have been linked to specific DNA damaging agents or DNA repair defects.[6] 

Mutational signatures associated with deficiencies in the homologous recombination and 

mismatch repair pathways have recently been characterized, but mutational signatures 

associated with deficiencies in other DNA repair pathways have not yet been identified.

The nucleotide excision repair (NER) pathway is a highly conserved DNA repair pathway 

that removes bulky intrastrand adducts created by agents such as UV radiation and certain 

chemicals, including several common chemotherapy agents.[7] Somatic mutations in NER 

pathway genes occur sporadically across cancer types, but recurrent mutations in specific 

NER pathway genes are uncommon.[8] One notable exception is ERCC2, a DNA helicase 

that plays a central role in the NER pathway by unwinding the DNA duplex adjacent to the 

site of damage.[9, 10] Recurrent somatic ERCC2 mutations have been identified in 6–18% 

of urothelial tumors in studies published by The Cancer Genome Atlas (TCGA) and others.

[11–14]

Tumors of the urothelial tract and bladder account for nearly 75,000 new cancer cases each 

year in the US and are associated with exposure to tobacco, chemicals, and certain infectious 

agents[15, 16]. Many of these carcinogens are known to damage DNA through formation of 

bulky intrastrand adducts[17–19], and several studies have demonstrated an increased risk of 

bladder cancer in individuals with polymorphisms in ERCC2 or other NER pathway genes.

[20, 21] Similar to other carcinogen-associated tumors, most urothelial tumors have a high 

somatic mutation burden. ERCC2 mutated urothelial tumors have a higher overall mutation 

burden than tumors with wildtype (WT) ERCC2 but a lower fraction of C>G mutations.[11] 

Despite the known association between smoking and urothelial cancer, a tobacco-associated 

mutational signature has not been identified in urothelial tumors.
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To more fully characterize the mutational processes operating in urothelial cancer, we 

performed mutational signature analysis in three independent urothelial tumor cohorts. Our 

analysis identified four operating mutational signatures, including one signature for which 

an etiology had not been previously described. Unbiased enrichment analysis identified 

ERCC2 as the gene which, when mutated, was most strongly associated with the activity of 

this signature in all three cohorts. Furthermore, we find that activity of the signature is 

associated with smoking history, the first description of a tobacco-related mutational 

signature in urothelial cancer. Together, these findings identify the first NER-related 

mutational signature and underscore the importance of both exposure to DNA damaging 

agents and operation of DNA repair pathways on the activities of mutational signatures.

 Results

 Mutational Signature Analysis of the TCGA-130 Cohort

To understand the DNA damage and repair processes operating in urothelial tumors, we 

performed mutational signature analysis of 130 muscle-invasive urothelial tumors from The 

Cancer Genome Atlas (TCGA-130)(Figure 1a, Supplementary Table 1). We applied a 

Bayesian variant of the NMF algorithm to mutation counts, stratified by 96 tri-nucleotide 

mutational contexts, in order to infer: (i) the number of operating mutational processes, (ii) 

their signatures (96 normalized weights per process), and (iii) the activity of each signature 

in every tumor (i.e., the estimated number of mutations associated with each signature)

(Methods).[5, 22]

Our analysis identified four independent mutational signatures in the TCGA-130 cohort 

(Figure 1b; Supplementary Tables 2, 3) and although our analysis methods are not identical, 

the signatures match four signatures previously identified by the Sanger Institute (cosine 

similarities between 0.86 and 0.95) and described in the Catalogue of Somatic Mutations in 

Cancer (COSMIC) database (Supplementary Figure 1; Supplementary Table 4).[4] Two of 

the signatures, characterized by C>T transitions and C>G transversions at TC[A/T] motifs 

(where the mutated C is preceded by T and followed by A or T), occur in multiple tumor 

types and are attributed to APOBEC-mediated mutagenesis (denoted as APOBEC1 and 

APOBEC2 in Figure 1b and corresponding to COSMIC signatures 13 and 2, respectively).

[4, 23, 24] A third signature, characterized by C>T transitions at CpG dinucleotides, is 

found in all tumor types and is thought to result from age-related accumulation of 5-methyl-

cytosine deamination events (C>T CpG in Figure 1b; COSMIC signature 1). Finally, a 

fourth signature was identified which closely resembles COSMIC signature 5 (cosine 

similarity 0.90; denoted as signature 5* in Figure 1b and Supplementary Figure 1). COSMIC 

signature 5 is characterized by a broad spectrum of base changes and is present in all tumor 

types, but an etiology has not yet been described.

 Signature 5* Activity Is Associated with ERCC2 Mutations

In order to further characterize signature 5*, we performed signature enrichment analysis to 

identify genes which, when mutated, were associated with increased activity of signature 5* 

(Methods). For each of the 283 genes that had a non-silent mutation in >5% of samples 

across the TCGA-130 cohort, we compared the activity of signature 5* in tumors which 
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carried a non-silent mutation in the gene versus those that did not. To ensure that the 

increased signature 5* activity did not reflect an increase in overall mutation burden, we 

assessed the significance level using a permutation-based method that maintains the overall 

number of non-silent mutations per sample and gene (Methods). ERCC2 was the only 

significant gene (Benjamini-Hochberg False Discovery Rate Q=8.6×10−3, P=3×10−5; Figure 

2; Supplementary Figure 2). Overall, 16 of 130 tumors had a non-silent ERCC2 mutation, 

and these tumors had an increase of 95 mutations (135 vs 40) in the median activity of 

signature 5* (Figure 3a).

 Validation in Two Independent Cohorts of Urothelial Tumors

In order to validate these findings, we performed similar analyses on two independent 

cohorts. The first cohort included 50 muscle-invasive urothelial tumors recently analyzed by 

Van Allen et al (DFCI/MSK-50 cohort)(Supplementary Table 1).[12] This cohort is 

comprised of patients treated with neoadjuvant cisplatin-based chemotherapy and contains 

an equal number of cisplatin responders and non-responders. Bayesian NMF analysis 

yielded four mutational signatures that closely resembled the signatures identified in the 

TCGA-130 cohort (cosine similarities 0.93–0.99; Supplementary Figures 1, 3; 

Supplementary Table 5). Repeating the gene mutation enrichment analysis with signature 5* 

activity identified three significant genes (Q≤0.1), with ERCC2 being the most significant 

(Q=0.042, P=1.9×10−4; Figure 2; Supplementary Figures 2, 4). Nine of 50 tumors had a 

non-silent mutation in ERCC2 and an increase of 188 mutations (220 vs 32) in median 

signature 5* activity.

The second validation cohort was comprised of 99 urothelial tumors (62 muscle invasive and 

37 non-muscle invasive) recently reported by Guo et al (BGI-99) (Supplementary Table 1).

[13] As in the previous two cohorts, our analysis identified four mutational signatures 

(Supplementary Figure 5). The first two resembled the two APOBEC-associated signatures 

(cosine similarities 0.96 and 0.80 with COSMIC signatures 2 and 13, respectively), but the 

third signature was not observed in the previous cohorts and was dominated by T>A 

mutations. This signature is most similar to COSMIC signature 22 (cosine similarity 0.96) 

and has been linked to exposure to aristolochic acid (AA), an ingredient in some food 

supplements that are most commonly used in Asian countries.[25] Indeed, consumption of 

AA has been associated with increased risk of urothelial cancers.[26–28] The fourth 

signature in this cohort appears to be a superposition of the two other signatures identified in 

the previous cohorts, C>T CpG and signature 5*, with lack of separation possibly due to 

insufficient resolution given the lower overall mutation burden in this cohort. As in the other 

cohorts, tumors with a non-silent mutation in ERCC2 had increased activity of the fourth 

signature, which includes signature 5* (10 tumors with a non-silent ERCC2 mutation and a 

median increase of 55 mutations per sample; Q=0.012, P=2.5×10−4; Figure 2; 

Supplementary Figures 2, 4).

Finally, we repeated the analysis for all 279 tumors across the three cohorts (COMB-279 

cohort). Among the 35 tumors with a non-silent ERCC2 mutation, the median signature 5* 

activity was increased by 91 mutations compared to WT ERCC2 tumors (124 vs 33), 

providing the strongest statistical evidence for the association between ERCC2 and signature 
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5* activity (Q=1.6×10−3, P=1.0×10−5; Fig 2; Supplementary Figure 2, 4). Together, these 

data strongly suggest that although signature 5* activity is present in both WT and mutant 

ERCC2 tumors, somatic ERCC2 mutations are associated with a significant increase in 

signature 5* activity.

To further characterize the association between ERCC2 mutational status and signature 5* 

activity, we performed unsupervised clustering of signature 5* activity (in 96 trinucleotide 

mutational contexts). The combined cohort (COMB-279) segregated into two clusters of 222 

and 57 tumors, with 25 of the 35 ERCC2 mutated tumors in the second cluster 

(P=1.7×10−12, Fisher's exact test; Supplementary Figure 6a). Repeating the analysis using 

the 242 muscle-invasive tumors across cohorts (COMB-MI-242) yielded a more significant 

association between clusters and ERCC2 mutations (P=4.4×10−14, Supplementary Fig 6b). 

Although ERCC2 mutations are associated with higher overall mutation burden[11–13], 

segregation was not driven by it, as ERCC2 mutated tumors segregated less strongly when 

clustering was performed using the total number of SNVs (PCOMB-279=0.1, 

PCOMB-MI-242=0.008; Supplementary Figure 6c, d).

All but one of the 35 non-silent ERCC2 mutations across cohorts were missense mutations, 

and most (25 of 34) were located within or adjacent to (±10 amino acids) the conserved 

helicase motifs, suggesting that the mutations may have an impact on ERCC2 protein 

function (Supplementary Figure 7a). Supporting this hypothesis, helicase motif mutations 

were associated with higher signature 5* activities compared to mutations located elsewhere 

in the protein (median no. signature 5* mutations 134 vs 96, p=0.037). To assess the spatial 

relationship of the mutations, we utilized CLUMPS, a novel algorithm for assessing spatial 

clustering of mutations within 3D protein structures, and found that the ERCC2 mutations 

were significantly clustered (p=0.0026), further suggesting a functional role (Supplementary 

Figure 7b; Methods).[29]

For each of the three cohorts analyzed here, ERCC2 mutated tumors have been shown to 

have an increase in overall mutation burden compared to WT ERCC2 tumors.[11–13] We 

asked if this increase was due solely to increased signature 5* activity or whether activities 

of other signatures were also increased. Indeed, activity of the APOBEC2 signature was also 

increased in ERCC2 mutated tumors compared to WT ERCC2 tumors in the TCGA-130 

cohort (39 vs 12, P=0.004; Figure 3b); however, unlike the association between ERCC2 and 

signature 5*, the association of ERCC2 with the APOBEC2 signature was not significant 

after correcting for multiple testing (Q=0.54). A similar association between ERCC2 and the 

APOBEC2 signature was seen in the other two cohorts, but this association was only 

statistically significant in the combined (COMB-279) cohort (Q=0.0016; Supplementary 

Figures 8, 9). There was no increase in activity of the APOBEC1 (78 vs 103 in TCGA-130, 

P=0.99) or C>T CpG (0 vs 13, P=0.91) signatures in mutant vs WT ERCC2 tumors in any of 

the cohorts (Fig 3b; Supplementary Figure 8). These results demonstrate that the increase in 

overall mutation burden in ERCC2 mutated tumors is due primarily to increased activity of 

signature 5*, with an additional smaller contribution from the APOBEC2 signature.

Kim et al. Page 5

Nat Genet. Author manuscript; available in PMC 2016 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Non-ERCC2 NER Mutations and Signature 5* Activity

Despite the strong association between signature 5* activity and ERCC2 mutational status, 

several tumors with high signature 5* activity lacked a somatic ERCC2 mutation. In these 

cases, we hypothesized that other somatic or germline NER pathway alterations may 

contribute to signature 5* activity. Somatic mutations in other NER pathway genes are less 

common in urothelial tumors, and there was no statistically significant association between 

signature 5* and mutations in any individual NER gene or the pathway as a whole (when 

ERCC2 is excluded)(Figure 4; Supplementary Figure 10). However, anecdotally, among the 

20 WT ERCC2 tumors with the highest signature 5* activity, six had a mutation in a 

different gene in the NER pathway. In addition, germline data was available for the 

TCGA-130 and DFCI/MSK-50 cohorts, and there was a trend towards an association 

between rare (<2% frequency in the cohorts) NER germline variants and signature 5* 

activity in WT ERCC2 cases (19 of the 32 WT ERCC2 tumors with highest signature 5* 

activity had a NER germline variant versus only 54 of the remaining 123 WT ERCC2 
tumors, p=0.086; Methods; Supplementary Figure 11a). Moreover, four specific NER 

germline alleles were enriched (Q<0.1) in WT ERCC2 tumors with high signature 5* 

activity, and three of the four are predicted to be functionally deleterious (Supplementary 

Figure 11b).[30] However, additional studies in larger cohorts will be needed to further 

characterize the contribution of non-ERCC2 somatic and germline NER alterations to 

signature 5* activity.

 Smoking is Associated with Signature 5* Activity

Given the known association between smoking and urothelial cancer, we attempted to 

identify evidence of tobacco exposure in the mutational signatures of urothelial tumors. 

Smoking status was available for the TCGA-130 and DFCI/MSK-50 cohorts, and they were 

therefore analyzed together. There was no difference in overall mutation burden in tumors 

from patients with any smoking history (`smokers') versus no smoking history (`non-

smokers')(P=0.27, Wilcoxon rank-sum test; Figure 5a). However, activity of signature 5* 

was significantly higher in smokers than non-smokers (median number of signature 5* 

mutations: 49 vs 33, p= 0.009; Figure 5b), although the effect size is modest compared to 

that of an ERCC2 mutation (Figure 5c). There were no differences in signature 5* activity 

between current and former smokers; however, there was a correlation between smoking 

intensity (pack-years) and signature 5* activity in ERCC2 mutated cases (P=0.01; 

Supplementary Fig 12). There were no differences in other mutational signatures in smokers 

versus non-smokers (Supplementary Figure 13).

Although an association between smoking and COSMIC signature 5 has previously been 

noted in lung adenocarcinoma, a different and more common smoking-related signature 

characterized by frequent C>A transversions (COSMIC signature 4) was not identified in 

any of the urothelial cohorts analyzed here.[4, 31] Given the association of signature 5* 

activity with smoking, we explored whether signature 5* includes a contribution from 

COSMIC signature 4 and that these processes were not separated by NMF due to 

insufficient power. To test this hypothesis, we attempted to separate signature 5* mutations 

into contributions from COSMIC signatures 4 and 5 (Methods). This analysis confirmed the 

close similarity of signature 5* to COSMIC signature 5 and revealed that the smoking-
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related difference in signature 5* activity is indeed driven by a difference in activity of 

COSMIC signature 5 and not COSMIC signature 4 (Supplementary Figure 14).

Several mutational signatures exhibit an asymmetric pattern of mutations on the transcribed 

versus non-transcribed DNA strand, a phenomenon that is attributed to increased high-

fidelity repair of the transcribed strand by the transcription-coupled repair (TCR) 

subpathway of NER.[7, 32–35] To determine if signature 5* exhibits transcriptional strand 

bias, we repeated the Bayesian NMF analysis using 192 mutational contexts (instead of 96) 

by considering mutations on the transcribed and non-transcribed strands independently 

(Methods; Supplementary Figure 15). Signature 5* exhibits strand asymmetry in several 

contexts, including a bias for T>C transitions on the transcribed strand, as described for 

COSMIC signature 5.[4] In addition, a bias for C>A transversions on the transcribed strand 

(similar to COSMIC signature 4) was also observed and may arise from decreased repair of 

tobacco-induced guanine damage on the non-transcribed strand.[6]

The activity of a mutational signature depends both on the potency of the mutagenic process 

as well as the length of time over which it operates. Recently, activity of COSMIC 

signatures 1 and 5 were found to be correlated with patient age, suggesting that the 

underlying mutational processes are active across the lifetime of somatic cells.[36] However, 

an association between age and COSMIC signature 5 activity was not found in urothelial 

cancer, indicating that other factors drive signature 5 activity. Independent analysis of the 

TCGA-130 and DFCI/MSK-50 cohorts (the two cohorts with available age data in our 

study) also failed to reveal an association between age and signature 5* activity (P=0.65, 

Supplementary Figure 16). Similarly, on multivariate regression analysis, ERCC2 mutational 

status (P=3.5×10−14) and smoking (P=0.038) were significantly associated with signature 5* 

activity, while age (P=0.60) and gender (P=0.48) were not.

 Somatic ERCC2 mutations drive signature 5* activity

To further investigate the factors influencing signature 5* activity, we used ABSOLUTE to 

estimate the cancer cell fraction (CCF) of each mutation in the 126 tumors from the 

TCGA-130 cohort for which allelic copy-number data were available (Methods). Sixteen of 

the 126 tumors (13%) had a somatic ERCC2 mutation and all 16 mutations were 

heterozygous. Eleven of the 16 mutations were clonal (defined as 

probability[CCF≥0.95]>0.5) and five were subclonal. We reasoned that if ERCC2 mutations 

are responsible for increasing the number of signature 5* mutations (rather than just being 

associated with higher signature 5* activity), then tumors with clonal ERCC2 mutations 

would have a higher ratio of clonal to subclonal signature 5* mutations than tumors with 

subclonal ERCC2 mutations. Supporting this hypothesis, we found that clonal signature 5* 

mutations were enriched in tumors with clonal mutations of ERCC2 (clonal:subclonal 

ratio~5, P=0.0098; pairwise Mann-Whitney test) but not in tumors with subclonal ERCC2 
mutations (clonal:subclonal ratio~1.1, P=0.81) or with WT ERCC2 (clonal:subclonal 

ratio~1.9, P=0.49; Figure 6, Supplementary Figure 17). Overall, these data suggest that 

somatic ERCC2 mutations are often early events in tumorigenesis and drive signature 5* 

activity.
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 Signature 5* Activity and Cisplatin Response

Platinum-based therapies are widely used in the treatment of urothelial cancers, but 

individual patients vary in their response to treatment. Therefore, predictive biomarkers are 

needed to guide therapy. We recently showed that ERCC2 mutations are enriched in 

urothelial tumors responsive to cisplatin-based chemotherapy, and other studies have 

identified additional genetic alterations that characterize cisplatin-responsive tumors.[37–40] 

Of the cohorts analyzed here, only the DFCI/MSK-50 cohort had cisplatin response data 

available, and there was significantly increased signature 5* activity in the 25 cisplatin 

responders compared to the 25 non-responders (P=0.027; Supplementary Figure 18); 

however, signature 5* activity was not associated with cisplatin response in WT ERCC2 
cases (P=0.51). Additional studies in larger cohorts will be needed to determine whether 

signature 5* activity can be used to predict platinum response in urothelial cancer.

 Discussion

Here, we identify and validate an association between somatic non-silent mutations in 

ERCC2 and activity of a specific mutational signature in three independent urothelial tumor 

cohorts. The signature is very similar to COSMIC signature 5 (although detected using a 

slightly different methodology applied to different datasets, hence called `signature 5*' here) 

and is characterized by a broad pattern of base substitutions.[4] Other signatures identified in 

our analysis also resemble described signatures, and all have previously been linked to 

specific underlying mutational processes.[11, 24, 36]

Urothelial cancer is unique in that it is the only known tumor type in which the core NER 

gene ERCC2 is significantly mutated.[8] However, signature 5 activity has been identified in 

all tumor types characterized to date. Therefore, it is unlikely that ERCC2 mutations are 

solely responsible for signature 5* activity across tumor types. Instead, signature 5* (and 

COSMIC signature 5) may reflect the footprint of lower-fidelity DNA repair pathways such 

as translesion synthesis (TLS) that normally operate in parallel with high-fidelity repair 

pathways like NER, and are upregulated when high-fidelity repair is compromised.[41, 42] 

In urothelial cancer, somatic ERCC2 mutations appear to be the most common genetic event 

driving upregulation of lower-fidelity repair pathways and signature 5* activity, whereas in 

other tumor types, signature 5* activity may result from other genetic or environmental 

factors that result in increased activity of lower-fidelity repair pathways. Given that recurrent 

ERCC2 mutations appear to be unique to urothelial cancer and are often early events in 

tumorigenesis, additional efforts to understand the role of ERCC2 in bladder tumor biology 

may provide important insights.

In addition to the association with ERCC2 mutational status, we also found that signature 5* 

activity was increased in smokers, although the effect was modest relative to the effect of an 

ERCC2 mutation. Tobacco exposure is a known risk factor for urothelial cancer; however, 

unlike other tobacco-related tumors (such as lung squamous cell, lung adenocarcinoma, and 

head and neck squamous cell cancers), an association between smoking and activity of a 

specific mutational signature in urothelial tumors had not been previously described. Here, 

we noted an increase in signature 5* activity among smokers, which may reflect increased 
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activity of lower-fidelity repair pathways in the setting of increased levels of tobacco-

mediated DNA damage.

Together, our data suggest that the genomic imprint of signature 5* depends on both the 

extent of DNA damage (from tobacco or others mutagens) as well as the relative activity of 

high- and low-fidelity DNA repair pathways, which is altered in the setting of an ERCC2 
mutation. Further studies will be needed to characterize the mechanisms underlying 

signature 5* activity in tumors that lack an ERCC2 mutation and to explore potential 

relationships between signature 5* activity and clinically relevant endpoints such as 

treatment response.

 Online methods

 Data Sets

Mutation data and relevant clinical data were downloaded from the Broad Institute TCGA 

Genome Data Analysis Center for the TCGA-130 cohort and from the journal websites for 

the DFCI/MSK-50 and BGI-99 cohorts, and are summarized for all cases in Supplementary 

Table 3.[11–13] We considered only coding mutations in the mutation signature discovery 

and non-silent mutations in signature enrichment analysis.

 Mutation Signature Analysis

 (1) Methods and Algorithms—The mutational signatures discovery is a process of 

deconvoluting cancer somatic mutations counts, stratified by mutation contexts or 

biologically meaningful subgroups, into a set of characteristic patterns (signatures) and 

inferring the activity of each of the discovered signatures across samples. Several groups, 

including ours, have used non-negative matrix factorization (NMF) to discover mutational 

processes.[4, 5, 8, 43] We have recently described the use of a Bayesian version of NMF to 

discover mutational processes applied to chronic lymphocytic leukemia (CLL) data in Kasar 

et al.[5, 22] Below we provide additional background and technical details regarding the 

Bayesian NMF methodology.

The common classification of SNVs is based on six base substitutions within the tri-

nucleotide sequence context including the base immediately 5' and 3' to the mutated base. 

Six base substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) with 16 possible 

combinations of neighboring bases result in 96 possible mutation types (or contexts). Thus 

the input data for the mutation signature discovery is a 96-by-M mutation matrix X, where 

M is the number of samples, and each element xij represents the number of observed 

mutations of context i in sample j.

Since a collection of somatic mutations in a cancer genome is an outcome of multiple 

mutagenic processes operating over the lifetime of a patient, the mutation load xij is a 

superposition of signature-driven mutation burdens  derived from the 

latent (unobserved) K mutagenic processes. We further assume that signature-driven 

mutations  are generated by a Poisson process parameterized by a product of context- and 

sample-specific rates , where wik and hkj denote the contribution of k-th 
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mutagenic process on context i and its level of activity in sample j. Taken together, this 

model describes the observed mutations xij by the sum of the expected mutations  as a 

consequence of independent K mutagenic operations plus a background noise due to false 

positive mutation calls and other technical limitations. Accordingly, in order to detect the 

underlying mutational signatures one needs to determine wik and hkj for each signature as 

well as the unknown number of signatures K. From the composite properties of the Poisson 

process, the distribution of total mutation load xij is also Poisson-distributed with the total 

rate

as xij ~ Poisson(xij|yij). Then, assuming that xij are independently conditioned on wik and 

hkj, the log likelihood of the observed data X, given the expectation Y = WH, factorizes and 

results in

where d(x|y) is the Kullback-Leibler (KL) divergence.[22] A maximum likelihood approach 

for estimating W and H leads to a non-negative matrix factorization (NMF) problem to find 

two non-negative matrices W and H that minimize the KL divergence between X and WH - 

i.e., minW,H>=0 DKL(X|WH) where W and H correspond to the signature-loading and 

activity-loading matrices, respectively.

In the above formulation, the number of mutational processes or dimensionality K (also 

called the model complexity or order), remains still unknown, and indeed the conventional 

NMF method requires K as an input.[22] A proper selection of K is important since using K 
> Ktrue, where Ktrue is the true (unknown) underlying number of processes, will lead to 

overfitting, while accuracy will be impaired when using K < Ktrue. In order to effectively 

address the issue of inferring the appropriate number of mutational signatures, we applied a 

Bayesian framework of NMF (Bayesian NMF) described by Tan and Fevotte to select an 

optimal K* that ensures the best explanation for the observed data X.[22] Bayesian NMF 

exploits a shrinkage or automatic relevance determination (ARD) technique to prune away 

irrelevant components in W and H that do not contribute to explaining X. This pruning 

process is achieved by introducing relevance weights (or parameters), λk, each associated 

with the corresponding k-th column in W and k-th row in H, and then imposing proper 

priors on W, H, and λ. During the inference, columns and rows corresponding to irrelevant 

components rapidly shrink to zero as λ approaches its lower bound (which is close to zero 

and determined by the hyper-parameters in the priors on λ) and the effective dimensionality 

K* is automatically determined by the number of non-zero columns and rows in W and H, 

respectively.[22]

The expected number of mutations associated with each mutational signature was 

determined after a scaling transformation,  where  and . 

The scaling matrix U is a K × K diagonal matrix with the element corresponding to the L1-

norm of column vectors of W (ie. the sum of the elements of the vector). As a result, the k-th 
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column vector of the final signature matrix  represents a normalized profile of 96 tri-

nucleotide mutation contexts associated with the k-th signature (the profile vector sums to 

1), and the k-th row vector of the final activity matrix  represents the activity of the k-th 

process across samples (i.e., the estimated (or expected) number of mutations generated by 

the k-th process).

 (2) Moderating the effects of hyper-mutant samples on signatures—One of 

the challenges in discovering mutational signatures in a cohort of tumors with heterogeneous 

mutation burdens is the increased weight of hyper- or ultra-mutated samples on the 

discovered signatures. This increased weight can mask signals coming from samples with 

lower mutation burdens. To minimize this effect in our analysis, we applied a process of 

moderating contributions from hyper-mutant samples on the signature discovery, while 

preserving overall mutation counts in the cohort. More specifically, we first identified hyper- 

or ultra-mutated samples (i.e., outliers) as ones with

where NSNV is the number of SNVs in a given sample,  is the median NSNV across 

samples, and IQR represents the interquartile range (IQR). We then split mutation counts in 

each of the detected hyper-mutated samples into two separate columns of equal number of 

mutations. This process is iterated, recalculating the median and IQR, until no hyper-

mutated samples are detected, which results in the new mutation count matrix X*. It should 

be noted that this process preserves overall mutation counts across the cohort, while 

mutational loads in hyper- or ultra-mutated samples are equally partitioned into artificially 

created samples with the same spectra as their corresponding hyper-mutated samples. Since 

the NMF is a linear dimensionality reduction process, the original signature activity for the 

hyper-mutated samples can be estimated by simply summing the activity of the artificially 

created samples derived from the original hyper-mutated sample.

 (3) Signature selection—We ran Bayesian NMF 50 times for the mutation count 

matrix X* processed by the protocol in (2) with exponential priors for W and H, and inverse 

gamma prior for the λ starting from random initial conditions. The hyper-parameter for the 

inverse gamma prior was set to a=10 and the iterations were terminated when the tolerance 

for λ became less than 10−7. All 50 runs in both TCGA-130 and DFCI/MSK-50 cohorts 

converged to the solution with K*= 4 and among the 50 solutions we selected, for 

downstream analyses, the W and H that had the maximum posterior probability (Figure 1b 

and Supplementary Figure 3b).[22] For BGI-99 cohort, 44/50 runs converged to the solution 

with K*= 4, while 6 runs converged to K*= 3. After manually reviewing signatures, we 

selected the maximum posterior solution with K*= 4 (Supplementary Figure 5b). We also 

separately performed the mutational signature discovery for the combined cohort 

(COMB-279) and the combined cohort of muscle-invasive samples (COMB-MI-242) for 

signature comparison. In both cohorts, all 50 Bayesian NMF runs converged to the solution 

with K*= 4. We also analyzed the combined cohort of TCGA-130 and DFCI/MSKCC-50 
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samples to investigate the association between smoking status and the activity of signature 

5*, and here, as well, all 50 runs converged to the solution K*= 4.

 Signature Enrichment Analysis

The underlying correlation between the activity of a particular signature and the overall 

mutation burden can significantly confound the search for genes whose mutation status is 

associated with the activity of the signature (Figure 2 and Supplementary Figures 2, 9). A 

straightforward statistical test that compares, for each gene, the distribution of signature 

activities between samples in which the gene is wildtype versus mutant yields an inflation of 

significant p-values for signatures that are correlated with overall mutation burden. This 

inflation is due to the fact that, in general, genes are more likely to be mutated in samples 

that have a higher mutation burden. To eliminate this inflation, we designed a permutation 

test in which we control both the gene-specific and sample-specific mutation counts when 

generating the random permutations of the observed gene-by-sample binary mutation 

matrix, following an approach described in Strona et al.[44] We use as a test statistic, T, the 

one-tailed Wilcoxon rank-sum p-value between the signature activities of mutant and 

wildtype samples of a given gene. We calculate this test statistic for the observed data 

Tobserved, as well as for every realization of the permuted mutation matrix,  where 

r=1, …,105 (the total number of permutations). The final p-value assigned to the gene is the 

fraction of permuted realizations with an equal or more extreme value of the test statistic 

(i.e., ones for which ). Since we maintain row and column margins of the 

observed mutation matrix in every random realization, we correct for the higher tendency of 

genes to be mutated in samples with higher mutation burden, as evidenced by the fact that 

nearly all genes except ERCC2 are on the diagonal of the Q-Q plots in Supplementary 

Figures 2 and 9. Due to statistical power and computational efficiency considerations, we 

analyzed only genes with >5% non-silent mutation frequencies across the analyzed cohort. 

We corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure and 

used a False Discovery Rate (FDR) Q < 0.1 as the significance threshold.

Our signature enrichment analysis identified ERCC2 as the top significant gene associated 

with the activity of signature 5* across three independent cohorts (TCGA-130, DFCI/

MSK-50, and BGI-99) and two combined cohorts (COMB-MI-242 and COMB-279) (Figure 

3, Supp. Figures 4 and 8). In fact, ERCC2 was the only gene with FDR Q < 0.1 across all 

five cohorts.

Once ERCC2 was identified as the gene with mutation status most significantly associated 

with signature 5* activity, we utilized the Wilcoxon rank-sum test in assessing downstream 

associations between smoking status (in ERCC2 mutant or wildtype samples) and overall 

mutation burden (Figure 5a) or signature 5* activity (Figures 5b, 5c; Supplementary Figures 

12, 13).

 Clustering Analysis

Comparison of signatures discovered (Supplementary Figure 1) in five cohorts (TCGA-130, 

DFCI/MSKCC-50, BGI-99, COMB-MI-242, COMB-279) and 30 COSMIC signatures was 

performed using the standard hierarchical clustering R-package with a distance of “cosine” 
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similarity and the “average” linkage options. The clustering analyses based on mutations 

attributed to signature 5* (Supplementary Figure 6a, b) or the total number of single 

nucleotide variants (SNVs, Supplementary Figure 6c, d) across 96 mutation contexts was 

performed using a “Euclidian” distance and “ward.D” linkage method.

 Structure Modeling and CLUMPS Analysis

As a basis for structural modeling of the ERCC2 protein, we used the crystal structure of the 

homologous protein XPD/Rad3 related DNA helicase (UniProt: Q4JC68) from Sulfolobus 

acidocaldarius (PDB: 3CRV). ERCC2 mutations were mapped to the bacterial protein based 

on a global sequence alignment of the two proteins using the Uniprot alignment tool with 

default parameters. To assess the significance of spatial clustering of missense mutations, we 

used the CLUMPS method.[29] Briefly, CLUMPS summarizes all pairwise Euclidean 

distances (transformed by a Gaussian function) between the centroids of mutated residues 

into a weighted average proximity (WAP) score and compares the score to a null model of 

random mutation scattering across all residues in the structure to calculate an empirical p-

value. In this study, we modified CLUMPS by using signature 5* activity instead of 

mutation recurrence levels to calculate the WAP score. The weight of each mutated residue r 

was calculated as nr = Sig5r / max(Sig5), where Sig5r is the signature 5* activity of the 

sample with the mutation r, and max(Sig5) is the maximal value across all mutated residues. 

In cases where multiple samples had missense mutations in the same residue, the average 

Sig5r value over these samples was used.

 Forced Deconvolution of Signature 5* Activity into COSMIC 4 and 5 
Contributions—The projection of the activity of signature 5* onto COSMIC signatures 4 

and 5 was performed in the combined cohort of TCGA-130 and DFCI/MSK-50 (the 180 

cases with known smoking status). We used the NMF method[45], using the squared error 

divergence with a fixed signature loading matrix W* (96 by 2), where the column vectors 

correspond to normalized COSMIC signatures 4 and 5. We used the estimated mutation 

counts of signature 5* -- X5* (96 by 180) -- as an input matrix to the NMF. Then the activity 

loading matrix H* (2 by 180) was determined by the standard NMF iteration of the 

multiplicative update algorithm, resulting in X5* ~ W*H*. The row vectors in H* represent 

the deconvoluted activity of signature 5* onto COSMIC signatures 4 and 5.

 Germline Enrichment Analysis

We identified all germline variants in 28 manually curated nucleotide excision repair (NER) 

genes: ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC8, DDB1, DDB2, 

GTF2H1, GTF2H2, GTF2H3, GTF2H4, GTF2H5, LIG1, RAD23A, RAD23B, XPA, XPC, 

CETN2, CUL4B, CUL4A, CDK7, MNAT1, UVSSA, MMS19, ERCC6-PGBD3, and 

BIVM-ERCC5. For this analysis, we considered only rare variants, defined as those present 

at <2% frequency in the combined cohort of TCGA-130 and DFCI/MSKCC-50 (total 180 

samples). To identify an overall enrichment of NER germline variants in samples with a high 

signature 5* activity, we first computed the running enrichment score (ES) for somatic 

ERCC2 mutations[46], which quantifies the degree to which somatic ERCC2 mutations are 

over-represented in samples with high signature 5* activity (Supplementary Figure 11a). The 

rank at the maximum running ES score, R*=53, was chosen to divide samples into the 
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signature-high (rank ≤ R*) and the signature-low (rank > R*) groups. The overall 

enrichment of NER pathway germline variants was assessed using a one-tailed Fisher's exact 

test with 2 × 2 contingency table for ERCC2 mutation status and the sample grouping. We 

also repeated the same statistical test after removing samples with somatic ERCC2 
mutations in order to examine enrichment of NER germline variants in WT ERCC2 samples.

Since the functional effects of specific germline variants vary depending on the resulting 

amino acid change, we performed a separate enrichment analysis by further stratifying the 

germline variants by the resulting amino acid change. The variant-level signature 5* 

enrichment analysis was then performed for recurrent variants (i.e., frequency ≥ 2) by 

comparing the activity of signature 5* between samples with a specific germline variant 

versus the remaining samples using a one-tailed Wilcoxon rank-sum test. To eliminate the 

contribution of ERCC2 somatic mutations on the signature enrichment, the analysis was 

restricted to WT ERCC2 samples, which identified several germline variants that were 

associated with signature 5* activity (Supplementary Figure 11b).

 Estimation of Clonality using ABSOLUTE

Tumor samples are frequently contaminated with normal cells. ABSOLUTE infers the purity 

and ploidy of this heterogeneous population using copy number and mutation data.[47] 

ABSOLUTE also estimates local copy-number in the cancer cells and the cancer cell 

fraction (CCF) of each mutation (i.e., the fraction of cancer cells harboring the mutation). To 

determine clonal versus subclonal mutation status for the 126 TCGA samples with available 

data, we followed the procedure described by Landau et al.[48] Specifically, mutations with 

probability(CCF>0.95) > 0.5 were annotated as clonal, while others were considered 

subclonal. The enrichment analysis of clonal signature 5* mutations in samples with clonal 

ERCC2 mutations (Figure 6 and Supplementary Figure 17) was performed by pair-wise 

comparisons of the number of clonal versus subclonal mutations attributed to signature 5* in 

samples with clonal ERCC2 mutations using the two-tailed pairwise Mann-Whitney test.

 Multivariate Regression Analysis

The age, gender, smoking status, and ERCC2 mutation status were considered as regression 

variables to explain the activity of signature 5* as a response variable in a multivariate linear 

regression model. The regression was performed using the standard R-package.

 Transcription Strand Bias Analysis

We re-ran the Bayesian NMF in the muscle-invasive combined cohort COMB-MI-242, but 

further stratified the mutations by their transcriptional strands (positive strand [+] or negative 

strand [−]), resulting in a total of 192 mutation contexts -- 96(+) and 96(−) contexts. Here, 

the negative strand (−) refers to transcribed (template) strand while the positive strand (+) 

refers to the non-transcribed strand. For example, C>A(−) mutations at GCT motif are added 

with G>T(+) mutations at AGC motif, while C>A(+) mutations at GCT motif are added with 

G>T(−) mutations at AGC motif. The transcription strand bias of C>A at GCT motif was 

defined as the ratio of the estimated number of mutations of C>A(−) at GCT to the estimated 

number of mutations of C>A(+) at GCT. As in the 96 context analysis, all 50 Bayesian NMF 

runs with 192 contexts converged to a K*=4 solution (Supplementary Figure 15a). The 
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resulting signatures showed the strongest transcriptional strand bias in C>A and T>C 

mutations (Supplementary Figure15b).

 Code Availability

The basic source code for the signature discovery will be available at the Broad Institute's 

Cancer Genome Analysis website, https://www.broadinstitute.org/cancer/cga

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mutational signature analysis of 130 TCGA muscle-invasive urothelial tumors (TCGA-130 

cohort). (a) The spectrum of base changes identified in the TCGA-130 cohort displayed as 

the mutated pyrimidine and the adjacent 3' and 5' bases. (b) A Bayesian non-negative matrix 

factorization algorithm was applied to identify signatures from the matrix of mutation counts 

across tumors. Four distinct mutational signatures were identified.
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Figure 2. 
Mutation enrichment analysis identifies an association between somatic ERCC2 mutations 

and activity of signature 5* in a discovery cohort, two validation cohorts, and the combined 

cohort. For genes mutated in >5% of samples in each cohort, the number of mutations 

attributed to signature 5* was compared in tumors with a wild-type versus mutated copy of 

the gene while controlling for overall mutation burden per gene and sample. Genes with 

FDR Q<0.1 are highlighted in red. ERCC2 was the only gene that was significant in each of 

the cohorts. COMB-279 refers to the combined cohort (TCGA-130 + DFCI/MSK-50 + 

BGI-99).
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Figure 3. 
Comparison of signature activities in wild-type (WT) versus mutant ERCC2 tumors in the 

TCGA-130 cohort. (a) The estimated number of signature 5* mutations was significantly 

higher in ERCC2 mutated tumors compared to WT ERCC2 tumors. (b) Estimated number 

of mutations attributed to the other three mutational signatures identified in the TCGA-130 

cohort. The median estimated number of mutations is shown in parentheses, and p-values 

were computed using a one-tailed permutation test.
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Figure 4. 
Overall mutation rate, mutational signature contributions, and mutational status of ERCC2 
and other genes of interest in the combined cohort (TCGA-130 + DFCI/MSK-50 + BGI-99). 

Each column represents a tumor. Overall mutation burden is shown at the top, followed by 

the estimated contribution of each of the four mutational signatures to the overall mutation 

burden (samples arranged in descending order of signature 5* activity), cohort, smoking 

status, and stage (muscle invasive versus non-muscle invasive). In the bottom half of the 

figure, the mutational status of ERCC2 and other genes of interest are color-coded by type of 

mutation. Somatic events in non-ERCC2 NER pathway genes are collapsed in a single track 

(see Supplementary Figure 10 for expanded NER pathway gene list) and are followed by 

other significantly mutated genes in urothelial cancer (TP53, RB1, etc).
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Figure 5. 
Effect of smoking and ERCC2 mutational status on signature 5* activity. (a) There was no 

significant difference in the total number of mutations (SNVs) in smokers compared to non-

smokers in the combined TCGA-130 + DFCI/MSK-50 cohort. The median number of 

mutations is shown in parentheses and p-values were calculated using the Wilcoxon rank-

sum test. (b) The estimated number of signature 5* mutations was significantly higher in 

smokers than in non-smokers. (c) Among patients with wild-type (WT) ERCC2 tumors, the 

number of signature 5* mutations was significantly higher in smokers than non-smokers, 

whereas smoking was not associated with a further increase in signature 5* activity among 

patients with ERCC2 mutated tumors. The association between smoking and signature 5* 

activity is not as strong as the association between ERCC2 and signature 5*.

Kim et al. Page 22

Nat Genet. Author manuscript; available in PMC 2016 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Association between clonality of ERCC2 mutations and clonality of signature 5* mutations. 

For tumors with a clonal ERCC2 mutation (defined as probability[cancer cell 

fraction≥0.95]>0.5); red circles, left panel), the majority of signature 5* mutations were 

clonal (clonal:subclonal ratio~5). For tumors with a subclonal ERCC2 mutation (blue 

circles, center panel) or WT ERCC2 (green circles, right panel), the ratio of clonal to 

subclonal signature 5* mutations was much lower (clonal:subclonal ratio~1.1 and ~1.9, 

respectively).
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