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Abstract

Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, 

but they must be properly designed in order to maximize efficacy. Computational modeling is 

often used both to design new nanoparticles and to better understand existing ones. Modeled 

processes include the release of drugs at the tumor site and the physical interaction between the 

nanoparticle and cancer cells. In this article, we provide an overview of three different targeted 

drug delivery methods (passive targeting, active targeting and physical targeting), compare 

methods of action, advantages, limitations, and the current stage of research. For the most 

commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a 

review of computational simulations and models on nanoparticle-based drug delivery.
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 1. Introduction

Nanoparticles (NPs) often exhibit different magnetic, thermal, optical and electrical 

properties due to their high surface area and limited quantum-mechanical effects 1. NPs are 

often developed and used as drug carriers, as they can deliver chemotherapeutics targeted to 

the tumor tissue without damaging normal organs (Fig. 1). The ideal NP carriers should be 

biodegradable, stable, non-immunogenic, easy to fabricate, cost effective, and able to release 

their payloads only at the target site 2.

Medical NPs are often manufactured with a guided bottom-up method, in which engineered 

macromolecular components are guided by external stimuli to interact with each other and 

self-assemble into complex structures that otherwise would not be possible 3. Drugs can 

either be encapsulated within the nanoparticle or attached to surface.
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A typical drug delivery nanoparticle starts with a nanoplatform class, which include 

liposomes, polymeric micelles, drug conjugated polymers, and dendrimers, among 

others 4–7. There are three main methods to transport drug-loaded nanoparticles to diseased 

sites: passive targeting, active targeting, and physical targeting. Passive targeting works 

through the increased permeability and retention (EPR) effect, which makes tumor cells 

preferentially absorb NP-sized bodies 8,9. In active targeting, NPs are functionalized with 

ligands such as antibodies, proteins, and peptides 10, which interact with receptors 

overexpressed at the target site 11. Physical targeting uses external sources or fields to guide 

NPs to the target site and to control the release process, for example in photothermal and 

magnetic hyperthermia therapy. For all targeting types, drug release can be triggered by a 

change in pH, temperature, or a combination of both.

In order to design an effective NP, one needs to understand the combinatorial effects of size, 

shape, surface chemistry, patient-specific information, and other parameters. Optimizing all 

of these parameters through experiments is both time and resource-intensive, and so 

computational modeling is used to shrink this possibility space. Simulations have been used 

to model the continuum of NP transport and the quantum mechanical interactions of ligand 

receptors. Mesoscale modeling and Monte-Carlo simulations are also often used when 

certain values are uncertain 12.

The aim of this paper is to review fabrication methods for the most common nanoparticle 

types (specifically self-assembly), targeted drug delivery processes, and the current state of 

NP computational modeling. Directions for future research are also discussed.

 2. Self-assembled nanoparticles as delivery vehicles

Medical nanoparticles, despite their name, are far from the smallest things that scientists and 

engineers work with. Rather, they occupy a manufacturing blind spot located between large 

and small structures. Objects and materials with features at, and larger than, the microscale 

are now readily fabricated through “top-down” approaches like lithography and precision 

machining. Objects smaller than nanoparticles are generally easily synthesized through 

“bottom-up” methods in which individual chemicals essentially assemble themselves under 

the influence of intermolecular forces. Nanoparticles are too large and complex to be made 

by simply mixing their molecular components in a test tube, but much too small to be 

assembled with even the highest precision lithographic device. The solution is a guided 

bottom-up approach, in which macromolecular components are engineered to interact with 

each other and often external stimuli fields and self-assemble into structures more complex 

than would otherwise be possible 3.

While there are many types of self-assembled nanoparticles, the most studied can broadly be 

sorted by structure. Below is an introduction, with examples, to amphiphilic NPs (the most 

common type of drug carrying NP), followed by a brief explanation of other novel NP 

structures: dendrimers, polyrotaxanes, functionalized carbon nanotubes, graphene, and metal 

solid-core nanoparticles. It is important to note that all of these NPs can be functionalized to 

actively target specific sites in and on tumor cells.
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 2.1 Amphiphilic Nanoparticles

The earliest drug NPs were biomimetic in nature, mimicking the micelles and liposomes 

already present in the body. These NPs contain macromolecules with both hydrophobic and 

hydrophilic regions. In an aqueous environment such as blood or cellular fluid, the 

hydrophobic regions will cluster together in order to be shielded from the surrounding polar 

water, forming a micelle. Synthetic micelles have hydrophobic cores, while more complex 

amphiphiles can form full liposomes with a double-layered macromolecular wall and a 

hydrophilic core with the same or different properties as the surrounding fluid (Fig. 2). 

Drugs can be captured either in the core or on the surface of these particles, depending on 

their hydrophobicity. In either case, the drug is shielded from removal by the immune 

system and from other in vivo hazards.

An early example of micelle-forming particles involved poly(ethylene oxide)-poly(aspartic 

acid) block copolymers (PEO-PAA) 13. These polymers were used to create a self-

assembling micelle containing the chemotherapy drug doxorubicin (DOX). DOX is 

commonly used to test the efficacy of self-assembling carriers, and comes in both 

hydrophobic and hydrophilic HCl formulations – it can be assumed to be hydrophobic 

unless stated otherwise. In this case, DOX was bound to the hydrophobic PAA polymer in 

organic solvent and then pushed through a membrane into an aqueous solution, a technique 

known variously as membrane dialysis or diafiltration. This transition from hydrophobic to 

hydrophilic solution induces the formation of micelles and leaves DOX encapsulated at the 

PAA center. The resulting nanoparticle was extremely soluble and stable in water, increasing 

the half-life of the payload drug.

A similar experiment was carried out with an amphiphilic pullulan acetate polymer 14. 

Cancer cells have been shown to overexpress vitamin H, so the polymer was functionalized 

with it in order to actively target these cancer cells. After DOX was loaded into the micelles 

using membrane dialysis, the authors found that the amount of vitamin H expressed on the 

surface of the nanoparticle correlated with its uptake by cancer cells, indicating successful 

active targeting.

More complex micelles can be engineered to release their payloads in response to external 

stimulation. Bae et al. 15 had designed pH-sensitive nanoparticle carriers which follows 

previous reports on poly(ethylene glycol)-poly(aspartate-hydrazone) copolymers. DOX was 

bound to the hydrazone group and micelles were again formed through membrane dialysis. 

Hydrazone bonds are easily cleaved in acidic conditions, so this micelle was designed to 

expose DOX in response to low pH. Micelles are taken up by cells through endocytosis and 

subsequently engulfed by lysosomes, which have a pH of around 5 and thus trigger drug 

release. The authors found that DOX concentration decreased as a function of pH, with 

around 30% of the drug released at a pH of 5 and the entire payload released at lower pH.

A particularly interesting trigger-based nanoparticle was created by combining the pH 

responsive polymer poly(acrylic acid) (PAA) with the heat sensitive poly(N-

isopropylacrylamide) (PNIPAM) 16. PNIPAM becomes hydrophobic above its lower critical 

solution temperature of around 32°C, while PAA becomes hydrophobic at a pH below 4.8. 

The copolymer will thus form a micelle with a PNIPAM core at high temperature and pH, 
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but flip to a PAA core at low temperature and pH. PAA also binds to DOX in aqueous 

solution, eliminating the need for organic solvents or membrane dialysis. When it binds at 

low temperature and high pH, the PAA-DOX complex becomes hydrophobic and forms 

micelles. This nanoparticle was shown to exhibit drug release both with an increase in 

temperature (which causes the micelle to flip inside-out and expose DOX to the 

environment) and a drop in pH (which causes PAA to protonate and release the less positive 

DOX). PNIPAM has also been used to synthesize nanoparticles that can shrink in volume in 

response to temperature 17.

Polymer nanoparticles have also been made with hybrid polymer-lipid amphiphiles, which 

allow for a broader range of potential polymers. This system was used in a nanoparticle able 

to hold both drugs and DNA using a cationic core-shell system 18. The main polymer chain 

is hydrophilic poly(N-methyldietheneamine sebacate) (PMDS) grafted with the hydrophobic 

N-(2-bromoethyl) carbarmoyl cholesterol lipid to form an amphiphilic copolymer. The 

antitumor drug Paclitaxel (PTX) was encapsulated through membrane dialysis, and 

luciferase-coding DNA was bound to the nanoparticle in order to detect fluorescence. It was 

found that cancer cells successfully expressed luciferase, indicating successful endocytosis. 

Lipids can also be used as a molecular shield to increase drug half-life in blood 19.

It is also possible to change the chemistry of certain polymers to distort the resulting 

nanoparticle 20. Micelles can be created in a variety of non-spherical shapes using 

poly[oligo(ethyleneglycol)methacrylate]-block-[poly(styrene)-copoly(vinyl benzaldehyde)] 

block polymers. The shape of the micelles changed from sphere to rod as the degree of 

polymerization for the P(ST-co-VBA) blocks increased. DOX was able to be loaded into the 

micelles as normal.

Huang et al. 21 designed a poly(lactide-co-glycolic acid) nanoparticle coated with sgc8 

aptamer capable of carrying both a hydrophobic and hydrophilic cancer drug. After self-

assembly, hydrophilic DOX is located in the poly(ethylene-glycol) shell and hydrophobic 

paclitaxel is located in the PLGA core. The sgc8 aptamer causes the nanoparticle to be 

internalized by cancer cells specifically, an example of active targeting. The authors show 

that the multidrug combo was more effective than either drug individually at reducing cell 

viability, and the addition of a second drug had an insignificant effect on the viability of 

normal cells. It is also possible to use transferrin on the nanoparticles to increase uptake by 

cancer cells 22.

Xia et al. 23 designed silk-elastin protein polymer nanoparticles. Silk-elastin-like proteins 

are synthetic genetically engineered proteins designed to mimic the properties of both silk 

and elastin. The proteins are temperature-dependent amphiphiles and will form micelles. In 

this case, it was shown that DOX actually triggered micelle formation in some cases by 

increasing the hydrophobicity of the silk-end chains. The authors reason that this polymer 

and method of self-assembly, since it is formed biologically in non-extreme environments, 

will generate fewer toxins and be a safer alternative to traditional methods.

Yu et al. Page 4

J Nanomater. Author manuscript; available in PMC 2016 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 2.2 Novel Nanoparticle Structures

An example of a novel nanoparticle structure is a dendrimer, which is a repeatedly branching 

nanostructure that mimics the structure of tree branches and blood vessels 7. This shape is 

shown to both generate large surface areas and disperse a surface more evenly throughout 

the structure. Dendrimers are commonly made of poly(amidoamine), but can also be made 

from other polymers. It has been shown that dendrimers can be used to target cancer cells 

with high accuracy 26. Lam et al reported a novel class of micelles made of linear PEG and 

dendritic cholic acids (CA) block copolymers (called telodendrimers) 27. By crosslinking the 

boronate esters at the core-shell interface, the stability of these micelles can be improved 

(Fig. 4) 28. As the crosslinking reactants, boronic acid and catechol were added to the 

polymers through step-wise peptide chemistry.

Rotaxanes are molecular linkages in which a cyclic molecule encircles a dumbbell-shaped 

one – the cyclic molecule can rotate but cannot slide off of the dumbbell. Polyrotaxanes can 

be a useful tool for drug delivery 29. Liu et al. attached cyclic cyclodextrin to poly(ethylene 

glycol) chains in order to form a nanoparticle. Hydrophobic cinnamic acid was attached to 

the ends of the PEG chains in order to increase the space between the cyclodextrin rings, 

providing space for DOX to bind. This system can also be used to transport the drug 

methotrexate 24.

Dendrimers and Rotaxanes are used primarily for drug delivery, but the next three structures 

are also often used in thermal therapy, where a localized temperature increase is used to 

destroy a tumor. Graphene is a single atom-thick hexagonal allotrope of carbon with novel 

electrical, thermal, and mechanical properties. Because of its high surface area, it is useful as 

a drug carrier, and its structure makes it efficient at converting infrared light into heat. It is, 

however, relatively toxic, and must be stabilized and shielded through the addition of 

polymers to its surface 25,30. Carbon nanotubes are rolled tubes of graphene that exhibit 

many of the same properties. Nanotubes have been used as hybrid drug carries, where the 

antitumor drug is released only in a specific site when bombarded with near-infrared 

radiation and the NPs are heated up. This can help to limit drug release to the tumor site and 

protect healthy tissue 31,32.

Metal-core nanoparticles can be used photothermally, like graphene and carbon nanotubes, 

but they can also be used for magnetic hyperthermia, where a magnetic NP oscillates and 

heats up in response to an external magnetic field. Most NPs are made of magnetite or 

maghemite cores, and are relatively biocompatible. Successful clinical trials have also been 

done with a magnetic fluid composed of dispersed NPs in water 33.

Oligopeptides have been extensively studied as nanocarriers due to their intrinsic pH 

sensitivity resulting from amino acids. Zhang et al. developed a liposome system based on 

zwitterionic oligopeptide lipids as nanocarriers 34. The amino acid-based lipids, 1,5-

dioctadecyl-L-glutamyl 2-histidylhexahydrobenzoic acid (HHG2C18) and 1,5-distearyl N-

(N-α-(4-mPEG2000) butanedione)-histidyl-L-glutamate (PEGHG2C18), have a multistage 

pH-response to the tumor microenvironmental pH (pH 6.8) then the endo/lysosomal pH (pH 

4.5) successively.
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Supramolecular polymers have significant potential application in drug delivery due to their 

reversible monomer-to-polymer transitions. Fig. 5 shows the molecular unit designed to 

form a supramolecular architecture 35. The pair is a peptide amphiphile monomer composed 

of three segments: a biological signal-bearing sequence, an amino acid-contained domain, 

and a hydrophobic alkyl tail. These monomers can form a cylindrical aggregate where 

twisted β sheets (red) collapse through hydrophobic interactions among alkyl chains, 

resulting in high signal densities. The blue regions represent water domains present in the 

assembly interior.

 2.3 Challenges in Nanoparticle Development

There are many challenges that arise in the early and late stage development of medical 

nanoparticles that are either nonexistent or minimal in non-nanoparticle based therapies 36. 

The primary driver of these issues is the hierarchical and non-uniform nature of 

nanoparticles, which means that a small change in a single property can have outsized 

effects on the pharmacokinetics or therapeutic efficacy of the particle. As an example, one 

common issue is maintaining a narrow distribution of particle size. For most applications, a 

particle size under 200nm is desirable. With a broad normal distribution of sizes, this means 

that often the average particle must be too small to be useful in order to limit the number of 

particles over 200nm. It is thus desirable to have a manufacturing process that ensures a 

narrow size distribution.

In addition, many unique challenges can arise during the trial and production stages of the 

nanoparticle. Oftentimes, a procedure for nanoparticle formation that works in a lab setting 

will not work in a factory, and the synthesis steps must be completely reworked. In a factory, 

the variation in nanoparticle structure must be smaller, the yield must be higher, and the 

synthesis must be more sterile than what is acceptable in a lab. All of these things can make 

a particle unviable to produce even if it works. If a particle is sold, it must be shelf-stable, 

which means that it both will not degrade in solution and that it will not clump over time, as 

nanoparticles often do. Finally, nanoparticles face extra regulatory challenges as their 

toxicity is much more difficult to determine than that of a small molecule. This greatly 

increases the time and cost of clinical trials. These challenges combined mean that it is 

always prudent to consider questions of scalability and reproducibility even at the earliest 

stages of development to prevent failure at a later stage.

 3. Cancer cell targeted drug delivery

 3.1 Mechanism of cancer cell targeted drug delivery

Cancer cells are otherwise normal cells with unique mutations in genes regulating growth, 

which cause them to divide uncontrollably and give them the ability to metastasize 37. 

Cancer cells successfully compete with normal cells for oxygen, glucose, and amino acids 

for division and growth, but a tumor can only grow to about 2mm3 without forming blood 

vessels (angiogenesis) 38–40. There are more than one hundred types of cancer, more than 

85% of which are solid 40. Current treatment includes surgery, radiotherapy, chemotherapy, 

hormone therapy, and immunotherapy 40. However, the inability of drugs to specifically 

target cancer cells hinders most treatment 2,41,42. It is often quicker and cheaper to design a 
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more effective way to better target an existing drug than to develop an entirely new one. 

Drug delivery targeting is classified as passive, active, or physical, and can target organs, 

cells, or organelles. Organelle targeting is an especially promising field of research, as many 

cancers specifically affect a single one, and certain organelles provide alternative paths for 

drug localization.

 3.2 Passive targeting nanocarrier systems

Drugs delivered intravenously tend to evenly disperse throughout the body. However, tumor 

cells tend to take up particles of a certain size to a greater degree than healthy cells due to a 

combination of leaky tumor blood vessels and faulty particle screening. This is known as the 

enhanced permeation and retention (EPR) effect (Fig. 6) and is the mechanism behind 

passive targeting 43.

The EPR effect is influenced by NP properties including particle size, shape, and surface 

charge, and it in turn influences circulation time, penetration speed, and intracellular 

internalization 44-45. For example, phagocytic cells favor the uptake of larger particles, while 

non-phagocytic cells favor the uptake of smaller particles 46. It has been consistently shown 

that PEGylated nanoparticles smaller than 100nm have reduced plasma protein adsorption 

on their surface and reduced hepatic filtration 47. NPs with a negative surface charge will 

circulate longer in blood, but positively charged NPs are more readily taken up by cancer 

cells (which have negative surface charge) 8–10,48–50. In order to clarify the influence of 

shape on the cellular uptake of PEGylated NPs, Liu et al, performed large scale molecular 

simulations to study differently shaped NPs with identical surface area, ligand-receptor 

interaction strength, and PEG grafting density (Fig. 7) 51. They found that spheres exhibited 

the fastest internalization rate, followed by cubes, while rods and disks were the slowest.

Delivery platforms include liposomes 4, polymeric micelles 5,6, targeted polymer drug 

conjugates 7, and dendrites. They all consist of macromolecule collections in which drugs 

are dissolved, entrapped or conjugated to the surface 54. Several liposomal drug delivery 

systems have received clinical approval, including ones for doxorubicin and daunorubicin. 

An albumin-bound nanoparticle carrying paclitaxel, abraxane, was also approved by FDA 

for breast cancer treatment 55.

Despite the EPR effect, more than 95% of passively targeted NPs fail to reach the tumor 

when administered intravenously 48. Targeting can be greatly improved by locally 

controlling drug release at the site of the tumor. This can be triggered through changes in the 

microenvironment (pH, temperature, or enzymatic) or through external stimuli (light, 

electric fields, magnetic fields, or ultrasound) directed at the tumor site 56–58.

An alternative way to improve the uptake of NPs, both passive and active, has been to 

functionalize their surfaces with cell-penetrating peptides (CPPs). It has been found that 

certain short (~30 amino acids) peptide sequences can pierce cell membranes and transport 

drug cargo into a cell. These CPPs can be attached to micelles, liposomes, and other types of 

NPs 59. Certain CPPs can also act as drug carriers on their own, carrying small molecules 

and short stretches of DNA into cells 59. Most CPPs are amphiphilic, with a net positive 
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charge. Because they are shaped similar to lysing peptides, certain CPPs can exert unwanted 

toxic side effects.

 3.3 Active targeting

Active targeting uses ligands bound to the NP surface to improve their uptake selectivity. 

These ligands can react with target cells and will often protect NPs from enzyme 

destruction. Ligands with a high binding affinity to the target cell will strongly increase 

delivery efficiency. The most basic form of active targeting involves functionalizing a NP 

with a ligand that binds to a molecule overexpressed on cancer cells. The issue with this, of 

course, is that healthy cells still express the same molecule, and as healthy cells greatly 

outnumber tumor cells most of the NPs miss their target. This issue can be mitigated by 

using multiple ligands, or by using ligands of different types.

Approaches to identify potential receptors in and on cancer cells include in vivo phage 

screening and aptamer screening 60. Using in vivo phage screening, F3 was discovered to 

bind well with nucleolin 61, which is present at tumor cell surfaces and in tumor endothelial 

cells. The cytoplasmic proteins annexin1 62, plectin-1 63, and p32 protein 64 were also found 

through in vivo phage screening. By studying the expression of the known cell surface 

receptors in tumor vessels, other molecular markers can be detected. For example, ∂vß3, 

∂vß5 integrins, and ED-B were discovered in angiogenic vessels using this principle 65–68. 

Gene expression analysis has also been used to discover overexpression of collagen in tumor 

endothelial cells 69 A detailed review on various markers and their discovery methods was 

given by Ruoslahti 60.

Many antibodies have been approved for use in clinical treatment by the FDA, such as 

rituximab, Ipilimumab, and trastuzumab 70. Antibodies are among the most studied ligands 

because of their high specificity and availability. An antibody conjugated dendrimer was 

found to bind exclusively to human prostate adenocarcinoma (LNCaP) cells that express 

PSmA(J591) 26. Although antibodies have many merits, they are difficult to conjugate to 

NPs, result in a short circulation time, and are expensive. Peptides are a promising 

alternative, as they are smaller, simpler, more stable, and easier to produce. Among peptides, 

RGD is often used due to its strong binding with αvβ3 integrin receptors. Nucleic acid base 

aptamers combine the advantages of both antibodies and peptides, but they degrade quickly. 

Other small molecules can also be used as ligands, such as folic acid for folate receptors 71. 

Such molecules are small, stable, and easy to produce. Unfortunately, ligand detection for 

relevant substrates is challenging. Even with proper binding ligands and receptors, binding 

incompatibility can limit therapeutic efficiency. Multiple ligands with different charges can 

increase overall the binding affinity, but the limited binding ability and capacity of receptors 

will govern the quantity and quality of the binding. For instance, overly strong binding can 

actually reduce tumor penetration, hinder selectivity, and lead to an overdose of carriers 72.

Active targeting alters the natural distribution patterns of a carrier, directing it to a specific 

organ, cell, or organelle. In contrast, passive targeting relies on the natural distribution of the 

drug and the EPR effect. Both of these processes depend on blood circulation and the 

location of initial drug delivery. However, no actively targeted NPs are commercially 

available currently.
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 3.4 Physical targeting

Physical targeting navigates drugs to cancer cells using external stimulation, such as 

radiation or magnetic fields. Photothermal therapy is often used because of its relatively few 

side effects. Photothermal therapy uses NPs that once delivered, efficiently convert near 

infrared light energy to heat, killing cancer cells. Currently, most research is being carried 

out using gold nanoparticles because they can be well controlled and have low toxicity. 

Their SPR effects can be tuned by shape, size, and thickness to maximize excitation and 

focus on a specific wavelength. According to a previous report, gold nanoparticles are 

already being tested in animals 73.

Photothermal agents other than gold have also been explored. Carbon nanotubes show strong 

absorbance in near infrared region 31, and it has been demonstrated that photothermal 

hyperthermia using them can inhibit G2-M cell cycles 32. Graphene has also been used in 

photothermal drug delivery. Functionalized graphene oxide with polymer conjugates is pH 

sensitive and its photothermal effect can cause cell death 30. Silica-coated graphene nano-

sheets functionalized with hydrophilic polyethylene glycol have also been used to deliver 

doxorubicin 25. In the cases of carbon nanotubes and graphene oxide, pH and heat are used 

to initiate drug release.

One limitation to photothermal therapy is that cancer cells are often tolerant to 

environmental stress, for example with heat shock proteins that prime the cell against further 

damage 74. Nanoparticle-free radiation therapies are quite common, however. High-energy 

x-ray or gamma radiation is cytotoxic and can kill cells in specific regions 75. The details of 

radiation therapy have been reviewed by Stacy 75.

Magnetic hyperthermia uses the heat energy produced by magnetic nanoparticles oscillating 

in a magnetic field. The distance between magnetic nanoparticles and target cells, sensitivity 

to magnetic fields, and magnetic field strength all affect heat energy production and correlate 

to therapeutic effects. Magnetic NPs typically consist of four parts: NPs, protective agents, 

biomolecules, and surface agents. They are usually synthesized based on magnetite (Fe3O4), 

maghemite, cobalt, or nickel. Among them, iron oxides are most used due to its 

biocompatibility and shape controllability.

Magnetic NPs are usually coated with functional polymers like carbohydrates and proteins 

to protect against corrosion and potential toxin release. However, some polymers’ 

mechanical strength and selectivity are not easy to control, so organic linkers are often used 

to create electrostatic interaction. Replacing ions and changing the pH of the immediate 

environment can also modify the binding strength of magnetic particles. Both photothermal 

therapy and magnetic hyperthermia can be done in vivo and in vitro, and several clinical 

trials have been performed 76. Unlike active targeting or physical targeting alone, this 

combination can effectively promote NP internalization by tumor cells 77.
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 4. Modeling applications in drug delivery and nanoparticle device design

 4.1 Models and their applications in the field

Drug delivery NPs become complex because the pharmacokinetic properties of the drug 

itself must be fully understood as well as all parts of the delivery system. NPs can be 

affected by many parameters, including platform (liposomes, polymeric micelles, polymer 

drug conjugates, dendrites), physical parameters (size, shape), and surface chemistry. On its 

way to the target, the NP must pass through and interact with multiple biological barriers, 

including those in the bloodstream, at the site of the tumor, at the surface of the cell, and 

several within the cell. In addition, the efficacy of a NP is highly dependent on individual 

patient conditions.

Because nanoparticle research is complex, with many variables and costly experiments, it is 

an excellent candidate for computer simulations. Simulations can both screen drug and 

carrier candidates and provide design insights towards entirely new NPs. Theoretical and 

computational modeling can be used for any of the drug delivery processes previously 

reviewed to provide solutions for optimized geometry, surface chemistry, or other properties. 

For instance, continuum based modeling is used to study transport and dissolution, 

molecular dynamics are used for cell interaction, and stochastic approaches such as Monte 

Carlo simulations can be used to calculate random variables and take uncertainties into 

account for each patient.

 Continuum Modeling—Transport modeling of NPs through the vascular network is 

challenging due to vastly different blood vessel diameters, which range from centimeters for 

larger vessels to microns for capillaries. Advection-diffusion models are used for transport in 

the larger vessels, where blood is modeled as a simple Newtonian fluid 78-79. In the 

microvascularture, a convection-diffusion-reaction model was developed for nanoparticle 

concentration studies. G. Fullstone 80 used flexible large-scale agent based modeling 

(FLAM) coupled with computational fluid dynamics (CFD) to study NP distribution in 

capillaries. In the microvasculature, red blood cells aid NP dispersion to the vessel walls and 

modify the EPR effect. It was reported that larger NPs (submicron size) are more likely to be 

pushed to the vessel walls than smaller NPs, which in turn gives them a greater chance of 

permeating through diseased vasculatures to reach the target cells 80. NP adhesion with 

endothelial cells modeled with IMEFEM suggests that NP shape affect adhesion, with 

spherical NPs having a lower lateral drift velocity compared with ellipsoids. A NPs binding 

probability can be simulated by randomly assigning initial positions of nanoparticles at the 

channel inlet, applying a Brownian adhesion dynamics model, conducting a number of 

independent trials, calculating the average of number of bonded nanoparticles, and then 

normalizing the total number of nanoparticles for a certain depletion layer thickness and 

shear rate. Nanoparticle deposition and distribution patterns inside the blood vessel network 

can also be simulated using a continuum model 12. Saltzman and Radomsky 81 developed a 

diffusion based kinetics model to study drug release problems in brain tissue. Their 

prediction was validated with drug distribution profiles gained through in vitro experiments.

Pressure, velocity, and blood chemistry will all affect the transport of NPs and can lead to 

premature deformation or release. An accurate prediction of these parameters is thus critical 
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to design stable NPs. Factors that affect NP deformation and release include blood flow 

velocity, shear rate, bonding energy, and porosity. It has been shown that NPs can be 

modeled using a combination of diffusion, swelling, and erosion 79,82,83. Because of 

possible swelling and erosion during circulation, one must assume a dynamic boundary for 

the continuum models during the release process 12. Finite element analysis can be used to 

solve these models.

 Molecular Modeling—Molecular modeling can be used to understand the size, shape, 

and charge distribution within a system. It is based on interactions between atoms and 

molecules for a fixed time period. Free energy minimizations of the system can generate a 

numerical solution for complex system properties. Hence, it can be used in animating 

molecular motion and elucidating both the uptake process and the influence of molecular 

structure, NP size, shape, and surface chemistry. Depending on how potential energies are 

calculated, various molecular modeling methods, including empirical methods, ab initial 

quantum mechanical methods, classic molecular dynamics, and coarse grain molecular 

dynamics can be used to understand drug-carrier and carrier-medium interactions 84.

Empirical molecular descriptors relying heavily on experimental data fitting can be used to 

predict physical properties such as drug solubility, and the diffusion coefficient, which often 

results in complicated artificial parameters. By deriving the theoretical molecular descriptors 

from compound chemical structures, limitations of experiment data can be resolved. 

Quantum mechanical ab initio method is a useful tool for property calculations and higher-

level model calibrations by considering the electronic degrees of freedom. It uses quantum 

mechanical methods such as the density functional theory to determine information about 

electronic behavior. It can simulate a few hundred atoms without any experimental input and 

output information otherwise unavailable, such as the electronic state. Adhikari et al. 85 

studied RGD-4C peptide electronic structure, partial surface charge distribution, and 

dielectric response with ab initio quantum mechanical methods and shed light on the 

peptide-∂vß3 integrin receptor interaction. It is particularly useful for the study of bond 

breaking and formation. Unfortunately this method is very complex and computationally 

intensive to simulate large systems, or to simulate for significant lengths of time.

Classical molecular mechanical simulations are less time consuming compared with the ab 

initial quantum mechanical methods. The potential energy is relatively easy to calculate, so 

they can be used for larger systems and a longer period of time. Coarse-grained molecular 

dynamics are used for large systems and for simulations that run on a timescale of larger 

than 1ms. Instead of calculating all the atoms in the system, subunits are selected for system 

energy calculations. Model parameters need to be fitted with experimental data, so the 

accuracy is limited by the availability of data. Loverde, et al. used coarse grain molecular 

dynamics to study the shape effect of Worm-like PEG-PCL micelles in drug delivery. It was 

found that PEG and the PEG-PCl interface play am important role in drug release 86. Coarse 

grain MD can also be used for cellular uptake process simulations with multi-wall CNT. Dr. 

Gao et al. have modeled the uptake process with CGMD by assuming immobile ligands and 

diffusive receptors 87. They predicted a critical NP size for endocytosis consistent with 

experimental results 87. The studies of Yang and Ma 88 and Ying Li 89 both show that shape 

and initial orientations affect the endocytosis process. Endocytosis is governed by the 
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bending energy of the cell membrane and the ligand-receptor binding energy. Bao and 

Bazilevs 90 also used large-scale coarse-grained MD to understand how PEGylation affects 

NP endocytosis. They found that the repulsive interaction energy between grafted chains and 

cell membranes is larger than the membrane bending energy through endocytosis. Optimal 

grafting density is also predicted for ligand-receptor interactions.

 Stochastic Modeling—Each patient's physical and pathological conditions are 

different, including blood flow rates, red blood cells, vascular networks and receptor 

densities on the tumor cell surface. Even for the same person, these parameters can change 

over time. It is thus crucial to consider uncertainties for the parameters in models. Simply 

using average values can lead to unacceptable errors in the modeling and design of a NP 

platform. Monte Carlo methods are particularly good options when dealing with these 

parameters uncertainties 12.

Monte Carlo method use random generators from certain probability distributions to 

artificially produce samples repetitively and calculate mean and variance of the samples. The 

In fact, Monte Carlo simulations have been used to study the interaction between ligand-

bound NPs with both tumor cells and healthy cells. Many parameter values have been 

considered as inputs in order to understand their effects 91, and it was found that multiple 

weak reversible ligand receptors binding is the most important variable in selective targeting. 

Liu et al. used Monte Carlo simulation to understand the effect of surface functionalization 

of NPs on its binding to endothelium. They found that antibody coverage is the key 

parameter for binding process to occur.92 Recently, Ying Li, etc. quantified the uncertain 

dispersion coefficient of NPs during microvascular drug transport process with Bayesian 

calibration method. 89

 Linking of Multiple Length Scales in Modeling—Drug delivery takes place across 

various time and spatial scales. NP circulation, endocytosis, and drug release can each be 

modeled with appropriate computational methods mentioned above. However, to simulate 

the entire system from drug to patient remains a challenging problem. There are some 

reports on multiscale model frameworks shown in (Fig.8). The input of these systems tends 

to be things like drug attributes, delivery system characteristics and patient specific 

information. Monte Carlo methods and atomic calculations such as molecular dynamics can 

be used to predict physical parameters, diffusivity, and solubility. At the patient scale, MRI 

images taken from experiments can be used to provide the geometry of the vascular network. 

After providing initial concentration and location of injected NPs, the concentration profile 

of NPs in the vascular system can be simulated with immersed FEM analysis. Coarse-

grained MD can use the concentration information together with the drug carrier architecture 

to simulate the interaction between NPs and target cell membranes. When the information is 

passed from one model to another, uncertainties are also passed along. Ying Li provided a 

good example of how to deal with error propagation when connecting models together. By 

coupling different scales together, the drug delivery optimization problem can get much 

closer to the right solution 89.
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 4.2 Challenges and Limitations in Modeling

Computational modeling has not been widely used in pharmaceutical industry for drug 

delivery design due to its limited predictability and accuracy. Most current approaches are 

agent-based empirical models. Mechanism based models are unable to realistically describe 

biological and chemical interactions and delivery processes. The fundamental mechanisms 

of each process needs to be better understood, and can be aided by smarter experimental 

design. Each of the computational models has its limitations. Most of the current 

mechanistic models focus on a particular process instead of coupling with each other to 

simulate the entire process from drug to patient. Linking models of different temporal and 

spatial scales is challenging but will provide the greatest benefit in terms of accuracy.

Mechanistic models require high quality data for parameter estimation, model calibration, 

validation, and error analysis. To track molecules and nanoparticles in living cells and 

tissues over time is challenging, so in vitro data for more physiologically realistic 

simulations is also needed. Repeated experiments are needed to build physiological and 

delivery system variable statistical distributions. Uncertainty quantification and updating is 

required for connecting lower scale level atomistic models with higher scale level continuum 

models as error from one part of the simulation can propagate leading to an unacceptable 

solution.

 5 Conclusion and Future Works

NPs are good candidates for targeted drug delivery carriers. They are widely available, easily 

functionalized with good biocompatibility and stability. Concentrated doses of toxic drugs 

can be encapsulated and delivered by the nanoparticles directly to the tumor site. Currently 

there are three delivery strategies: Passive targeting, which relies on the EPR effect; Active 

targeting, which uses ligand-receptor interactions for more selective drug delivery; and next-

generation photothermal and magnetic hybrid NPs, where drugs release is controlled in both 

time and location using heat generated by the photothermal or magnetic nanoparticle. 

Physical targeting is still at the clinical trial stage.

NPs can self-assemble into different structures, including amphiphilic micelles and 

liposomes, as well as more exotic rotaxanes, dendrimers, and metal core particles. Each of 

these particles has specific strengths and weaknesses and is suitable for the delivery of 

different therapies to different regions. The choice of a nanoparticle has much to do with the 

application in mind- there is not yet a gold standard. Most typical NPs used as drug delivery 

carriers are micelles and liposomes, but there is increasing research into other particles. 

Rotaxanes can release cargo in response to a tailored stimulus, while dendrimers can 

sometimes maximize surface area and cargo capacity when compared with simple spherical 

structures. In addition, metal-core particles are a good choice for physical and combination 

physical-active or physical-passive targeting.

Experimental development of these NPs is challenging, as size, shape, and surface charge 

must all be controlled to carry drugs to the target site. Inappropriate physical parameters not 

only can compromise drug delivery efficacy but also cause serious side effects. Developed 

NPs have to be tested in both living cells and tissue first before they can be moved to in vivo 
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tests. Environmental differences can also impact drug delivery efficacy. Due to the 

complexities of the drug delivery process and the large amount of uncertainty involved, 

computational modeling is mostly applied for NP design optimization. Currently, they are 

not used widely in the pharmaceutical industry due to their poor predictability. Most models 

only focus on specific processes in drug delivery instead of full simulations from the drug to 

the patient scale. Multiscale modeling across different temporal and spatial scales is rare.

In the future, NP design can be better guided by multiscale modeling. However, experiments 

also provide needed data for model calibration, validation, and help to understand the 

mechanisms unique to each drug delivery process. Multiscale models that take in 

personalized data, such as MRI scanned vascular network image, genome, family history, 

targeted cell receptor density, and the physical-chemical properties of NPs should be further 

improved and validated in clinical settings. Collaborative work of computation and 

experiment is already used for more efficient nanocarrier design. Shi, et al 93 used molecular 

docking/MD simulation to screen building blocks for nanocarrier synthesis. Their models 

were validated with experimental synthesis and evaluations of nanocarrier library. Jiang, et 

al 94 employed multiscale modeling together with experiments to understand the building 

blocks’ role in telodendrimer self-assembly process. Recently, microchip device 

development has become another direction to simulate a tumor's microenvironment and test 

the effectiveness of NPs for targeted drug delivery 95,90. Device design can also be 

facilitated by computational models, which will further advance the development of NPs for 

drug delivery.
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Fig. 1. 
Schematic contrast of drug biodistribution after injection of free drug (A) and drug-loaded 

NPs (B).
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Fig. 2. 
Schematic of two types of amphiphilic nanoparticles, liposomes and micelles. Liposomes 

have a double layer and a hydrophilic core, while the core of micelles is hydrophobic.

Yu et al. Page 20

J Nanomater. Author manuscript; available in PMC 2016 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Structures of novel nanoparticles. A) Polyrotaxane NPs are assembled from cyclical 

molecules threaded around a long polymer chain. Hydrophilic ends are added to the chain in 

order to induce self-assembly. Drugs are then added to the finished NP. Adapted with 

permission from 24. B) Graphene functionalized with shielding molecules and ligands. 

Adapted with permission from 25. C) Carbon nanotube schematic. D) Dendrimer schematic. 

E) Metal-core photothermal NP schematic.
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Fig. 4. 
Schematic representation of the disulfide cross-linked micelles formed by oxidization of 

self-assembled thiolated telodendrimer PEG5k-Cys4-L8-CA8 27. Schematic representation of 

the telodendrimer pair [PEG5k-(boronic acid or Catechol)4-CA8] and the resulting boronate 

crosslinked micelles (BCM) triggered by mannitol and/or acidic pH values 28.
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Fig. 5. 
Molecular representation of monomer and the corresponding supramolecular polymer 

formed after their aggregation through specific interactions 35.
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Fig. 6. 
Schematic illustration of enhanced permeation and retention (EPR) effect.
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Fig. 7. 
Differently shaped NPs: sphere, rod, cube and disk. The top shows the transmission electron 

microscopy images of these NPs.5253 The bottom shows the PEGylated NPs with grafting 

density 1.6 chains per nm2 in molecular simulations 51.
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Fig. 8. 
A multiscale-modeling framework for drug delivery processes. Reorganized with permission 

from 12.
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