
An Automated System for Detecting and Measuring Nailfold 
Capillaries

Michael Berks, Phil Tresadern, Graham Dinsdale, Andrea Murray, Tonia Moore, Ariane 
Herrick, and Chris Taylor
University of Manchester, Manchester, United Kingdom

Abstract

Nailfold capillaroscopy is an established qualitative technique in the assessment of patients 

displaying Raynaud’s phenomenon. We describe a fully automated system for extracting 

quantitative biomarkers from capillaroscopy images, using a layered machine learning approach. 

On an unseen set of 455 images, the system detects and locates individual capillaries as well as 

human experts, and makes measurements of vessel morphology that reveal statistically significant 

differences between patients with (relatively benign) primary Raynaud’s phenomenon, and those 

with potentially life-threatening systemic sclerosis.

1 Introduction

Systemic sclerosis (SSc) is a connective tissue disorder which can lead to morbidity and 

mortality, often in young people – with a reported prevalence among adults of 250 per 

million [1]. Clinically, it results in fibrosis and microvascular abnormality, leading to 

ischaemic injury (e.g. ulceration, scarring, and gangrene), particularly in the fingers and 

toes. The commonest presenting feature is Raynaud’s phenomenon (episodic colour change 

and pain in the fingers, usually in response to cold), but this is also a symptom of the more 

common, and relatively benign, primary Raynauds phenomenon (PR).

There is thus a clinical need to distinguish between PR and SSc-related Raynauds 

phenomenon. There is also a pressing need for quantitative biomarkers for monitoring SSc 

response to treatment, both clinically and in clinical trials, where existing endpoints (eg 

digital ulceration) are unreliable, leading to a limited evidence base [2, 3]. Nailfold 

capillaroscopy, a non-invasive technique for imaging capillaries at the base of the fingernails 

(see Figure 1), is already used clinically to assess the degree of microvascular abnormality, 

and has the potential to provide quantitative biomarkers for SSc. Standardised protocols for 

qualitative grading of nailfold images exist [4], but do not provide quantitative data. 

(Semi-)Manual measurements of capillary spacing, vessel width at the tops of loops (apices) 

and vessel tortuosity have been shown to have potential as quantitative biomarkers for SSc 

[5], but are too time-consuming and open to subjective factors for routine use. There is thus 

a clear rationale for developing automated methods for analysing nailfold images.
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In this paper we describe and evaluate a fully automated system for detecting and measuring 

capillaries in nailfold images, adopting a machine learning approach, and building on 

experience with existing semi-automated systems [5, 6]. Specifically, our contributions are: 

(a) a method for detecting vessels and estimating their width and orientation; (b) a method 

for generating candidate capillary apices; (c) a method for refining candidate capillary apices 

and measuring apical width and tortuosity; (d) a large-scale evaluation of performance, 

compared to human experts and; (e) initial results for classifying patients based on image 

level summary statistics of the automated capillary measurements.

In summary we show that our automated system is indistinguishable from human experts in 

detecting and locating capillary apices, and that there are statistically significant differences, 

at the population level, between automated capillary measurements for SSc patients and 

normal or PR subjects.

2 Nailfold Capillaroscopy Data

Our images were acquired by a capillaroscopy system in a tertiary referral centre for patients 

with SSc. Patients gave informed consent. High magnification, 768 × 576, 8-bit monochome 

pixel video frames were captured at a resolution of 1.25μm per pixel. Images captured along 

the nailbed were registered and compounded into a single mosaic (similarly to [7]) showing 

the whole nailfold (Figure 1).

In normal subjects, capillary loops are all similar, arranged regularly and approximately 

vertical. Current clinical practice confines attention to the distal row of capillaries, whose 

apices lie on a smooth, approximately horizontal line near the top of the image. This pattern 

is disrupted in SSc by structural damage to the microvasculature (Figure 1).

We have used a set of 990 mosaics, manually annotated as part of a separate clinical study, 

involving three subject groups: healthy controls (HC), subjects with PR, and patients with 

SSc. Each image was annotated independently by two expert observers, one of whom 

(Observer 1) was the same for every image, with the other drawn from a pool of experts. In 

each image, the observers attempted to mark the locations and apical widths of all distal 

capillaries. This is a challenging and subjective task for which perfect agreement is rare (see 

Section 6).

In a subset of 80 images, Observer 1 provided a precise demarcation of the inner and outer 

edges of the distal capillaries. Regions of interest around these capillaries were created, 

resulting in a set of 450 training RoIs with matching capillary masks, which we used for 

training learning algorithms (Section 3, Section 4, Section 5). The remaining images were 

split into a validation set of 456 images (104 HC, 83 PR, 269 SSc) used to locate capillaries 

and determine the distal row, and a test set of 455 images (104 HC, 83 PR, 268 SSc) used to 

evaluate performance (Section 6).

3 Vessel Detection and Characterisation

Nailfold images are challenging – capillaries are often very low contrast and of variable 

width (10 – 300μm) and appearance, whilst significant artefacts can be present. Although 
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previous work on automated capillaroscopy is limited, we can draw on the extensive 

literature on curvilinear structure detection in medical images (eg [8–10]. In particular, we 

adopt the well-established machine learning approach to predict, at each pixel, the 

probability that it belongs to a vessel (vesselness) [9], and the local orientation and width 

[10]. In the following sections we explain the features we used to describe local image 

structure, and the learning methods we used to obtain vesselness, orientation and width 

models.

3.1 Image Features

To characterise local structure at each training pixel, we use a feature vector of responses to 

symmetric (even) and asymmetric (odd) filters across scale and orientation. Specifically, we 

use a steerable filter bank [11] of directional second order derivatives of a Gaussian kernel 

[8] and their (approximate) Hilbert transforms so that responses at any orientation can be 

computed efficiently. From an initial scale σ = 1 pixel we compute even and odd responses 

at six angles  over five scales, in each case keeping σ fixed whilst downsampling the 

image by a factor of 2 in each direction (i.e. the coarsest scale is equivalent to σ = 16 at the 

original image resolution). For the coarser scales, we use bilinear interpolation to 

approximate the responses at the finest scale. At each pixel the responses at that pixel, along 

with its 8-connected neighbours, are concatenated into a feature vector without further 

manipulation. These features are designed to accommodate the wide range in size, shape and 

orientation of imaged capillaries.

3.2 Learning Vesselness, Orientation and Width Models

We treat vessel detection as a supervised classification problem, and orientation and width 

prediction as regression problems, all based on the features outlined in the previous section. 

We have used Random Forests [12], due to their ease of training, flexibility, relative 

robustness to over-fitting and strong performance in comparable learning tasks, but we do 

not believe the choice of learning method is critical.

For training, we used the 80 fully annotated images described in Section 2 each of which 

provides a binary vessel mask for training a vesselness classifier. To provide ground-truth for 

orientation and width regression, we skeletonised the binary masks, measured orientation 

and width at each centreline point, and propagated the measurements back to every point on 

the binary vessel mask using a simple nearest pixel interpolation. For orientation regression, 

we represented orientation as a unit vector in the complex plane, t = cos 2θ + i sin 2θ, 

doubling the angle θ to make orientation invariant to direction [13], and avoiding 

wraparound problems that arise if angle is used directly.

We trained three random forests (RFs), each containing 100 trees: one classifier on 

background versus labelled vessel pixels, and one regressor each for orientation and width. 

Although orientation and width are only defined for the vessel points, to ensure we generate 

unbiased, random predictions in the background of unseen images, we include background 

points with uniformly sampled random widths and orientations in training the regressors.
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To make predictions in an unseen image we apply the separable basis filters, compute the 

interpolated, steered responses and extract feature vectors, before feeding the vectors 

through the trees in each forest and computing the mean, pooled over all leaf nodes, as the 

prediction output. For orientation, the unit vectors are converted back to radians. The result 

for each input image is a map of vesselness (Vv), orientation (Vθ) and width (Vw) (Figure 

2(a–b)). Note that predictions of width and orientation made in this manner are significantly 

more accurate than analytic estimates, and, by reusing the same features as extracted for Vv, 

requires minimal additional computation.

4 Locating Candidate Capillary Apices

The maps Vv, Vθ and Vw provide an approximate segmentation of vessels and their low-

level properties. However to extract meaningful measurements we need to detect and 

localise the apices of individual capillaries. Treating this as an object detection problem, we 

again adopt a learning approach in which each vessel pixel votes for the location of a nearby 

apex. Specifically, we use RF regression, trained using patches sampled near annotated 

capillary apices in the training data, to encode observed relationships between appearance 

and location [14].

To train the RF, we thin Vv by applying non-maximal suppression along the line normal to 

the estimated vessel orientation. We then extract 64 × 64 training patches, centred at local 

maxima in Vv and scaled and rotated according to the estimated width and orientation. If a 

patch contains a marked apex and is also centred at a vessel pixel in the original training 

masks, we label the patch as positive and record the offset to the apex; otherwise, we label 

the patch as negative. For each patch, a histogram of gradients (HoG) feature vector is 

formed by concatenating weighted histograms of gradient direction, computed for 

overlapping blocks in the patch [15]. A 100 tree RF classifier is then trained to distinguish 

between positive and negative patches, whilst a regression forest is trained to predict the 

offset associated with each positive patch.

For an unseen image, we extract a scale- and rotation-normalised patch about each local 

maximum in Vv (Figure 2(b)) and pass these through the classification forest. The output 

labels at each leaf node are pooled and averaged, forming α(p), the probability that the patch 

contains an apex. The regression forest then predicts the offset to the nearest apex, and 

therefore the apex location in the image. A Gaussian kernel – centred at the apex, scaled by 

σ = Vw (a) and weighted by α(p) – is added to a vote map of apex locations A. Here the 

classifier plays a crucial role in weighting the regressor votes, so that only patches in which 

an apex is visible significantly contribute to A. The local maxima of A are the candidate 

locations for capillary apices (Figure 2(c)).

5 Refining Candidate Apices and Making Measurements

Given a set of candidate apex locations as training data, we can now train a new classifier 

that better discriminates between true apices and false positives, and between distal and non-

distal apices. We do so in two ways: first, we reclassify each candidate, now using patches 
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located only at candidate apex locations; second, we exploit the fact that capillaries should 

lie in a single, approximately horizontal line across the image.

To train the new classifier, we used candidate apices computed for the set of 441 validation 

images. Each candidate (xi, yi) was labelled as positive only if it fell within a circle centred 

at a marked apex with diameter equal to the marked apical width. Of the 13,492 positive and 

24,369 negative samples, the positive samples were further split into 9,735 distal and 3,757 

non-distal capillaries. A 100 tree RF classifier was trained as before, using HoG features 

from scale- and rotation-normalised patches extracted about each sampled candidate from 

the original image (rather than Vv). The outputs of the trees were pooled to give a single 

appearance score, ci ∈ [0, 1], for each candidate, allowing us to define each candidate as the 

tuple of its location and score, (xi, yi, ci). In addition to the final appearance score, the 

location of a candidate relative to the other candidates in any image can indicate its 

likelihood of being a distal row apex. Specifically, we assume the ideal distal row to be a 

smooth line running across the mosaic and passing through every true distal capillary apex. 

If we can estimate this line in an unseen image, we can use the vertical displacement of each 

candidate to the line to classify it as distal or nondistal.

To achieve this, we compute a density map of candidate locations by summing a Gaussian 

kernel centred at each discrete candidate location. Each kernel is weighted by the 

candidate’s appearance score, ci, so that strong candidates contribute more to the density. 

The density for each location in the mosaic can thus be computed as

(1)

where there are N candidates in the image, Z is a normalisation constant so that D sums to 

unity, and σx, σy are functions of the variances of xi, yi. Each apex’s displacement from the 

distal row is then given by

(2)

Using the observers’ annotations, each candidate Ci = (xi, yi, ci, di) in the validation images 

is assigned a label Li ∈ [1, 2, 3] for false positives, distal capillaries and non-distal 

capillaries respectively. Figure 2(e) shows a kernel estimate of the class-conditional 

probability density P(ci, di|Li). The class priors for each label type P(Li) can be estimated 

empirically from the data, allowing Bayes’ rule to be used to compute the class probability, 

P(Li|ci, di), of each candidate, given its appearance score and displacement.

Each candidate is rejected, or labelled as either a distal or non-distal capillary. For each kept 

candidate Ci we record its width Vw(xi, yi), and use Vθ and Vv to compute the entropy of an 

orientation histogram of pixels connected to Ci as a measure of tortuosity. Finally, we 

compute capillary density as the mean distance between the distal apexes.
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6 Results

We applied our detection method (O3) to the set of 455 test images, and compared the 

selected capillaries to the annotations of the two human observers (O1 and O2). In total, 

15,391 capillaries were selected by at least one of the three observers. The results illustrate 

the difficulty of the task. For example, of the 7047 distal capillaries (DCs) marked by O1, 

only 56% were also marked by O2, whilst 74% were marked by the automated system (O3). 

Defining true positives via consensus between the experts, of the 3913 DCs marked by both 

O1 and O2, 84% were marked by O3, which is a probably a workable performance level. 

Given the level of disagreement between the experts, false positives are even harder to 

assess. Of the 7913 DCs marked by O3, 27% were marked by neither O1 nor O2. On the 

other hand, of the 7047 DCs marked by O1, 17% were marked by neither O2 nor O3, and 

44% were not marked by O2.

Overall, the results suggest similar performance between O1, O2 and O3. To test this 

formally, we considered the capillaries (both distal and non-distal) selected by each observer 

as truth and assessed how well each of the two observers detected these capillaries. Table 1 

shows the precision, recall and F-measure for each pair of observers. To test the labelling of 

capillaries as distal or non-distal, we considered all capillaries jointly selected by each pair 

of observers, and computed accuracy and Cohen’s kappa statistic to quantify agreement. 

Accuracy and kappa statistics were not computed for capillary detection because there is no 

defined true negative class for the task (this is effectively the space of all images not 

containing a capillary). In addition to the pairwise tests, we computed equivalent values for 

the software versus the consensus of the two humans.

Standard errors for each value were computed from 1,000 bootstrap samples of the test 

images. For the F-measures and Cohen’s kappa statistics we computed the difference 

between the agreement of O1 and O2 and the average of their individual agreement with O3. 

95% confidence intervals of (−7.01, −3.90) and (−0.019, 0.12) respectively, suggest there 

was no significant reduction between the software’s performance and either human on the 

two tasks (if anything the software showed greater agreement to the humans individually 

than the humans did to each other on the detection task).

Finally, we present initial results for disease status characterisation, based on the 

measurements extracted for the detected capillaries. Distributions of capillary measurements 

(capillary density, median width and median tortuosity) for the three groups HC (104 

images), RP (83 images), and SSc (268 images) are shown in Figure 3. To test for 

differences between the distributions we used the non-parametric Wilcoxon rank sum test. 

Tests for all measurements between all groups showed significant differences at the 0.01 

confidence level (at least), except for the comparison between RP and HC for vessel density 

– an expected result given that we would not expect the RP group to show any signs of 

capillary loss.
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7 Conclusions

We have presented a fully automated system for measuring vessel morphology from nailfold 

capillaroscopy images. Evaluation on a large data set suggests that our system performs as 

well as experts in detecting vessels, and initial results for automated measurement suggest 

that we can detect significant differences between disease groups. Further work will involve 

refining apex detection, adding more sophisticated measurements, and combining 

measurements to make useful predictions for individuals.
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Fig. 1. 
Sections from two nailfold mosaics: one from a healthy control subject (left) and one from a 

patient with SSc (right) showing enlargement, distortion and irregular spacing of capillaries.
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Fig. 2. 
Detecting nailfold capillaries (a) Estimated vessel orientation Vθ, displayed using an hue/

intensity color-map for angle/prediction confidence; (b) Vesselness Vv with oriented local 

maxima marked by green dots. Red dots have α(q) > 0.5 and vote for apex locations; (c) 

Vote map A of apex locations; (d) Estimated distal row (green line), from weighted kernel 

density of maxima in A. Candidate capillary locations are shown as red circles (scaled by 

candidate appearance score) with y displacements to estimated distal line; (e) Mesh plots of 

the joint class conditional distribution over candidate displacement and appearance score, 

viewed from score axis (left) and displacement axis (right): false positves (red), distal 

capillaries (green), non-distal capillaries (blue); (f) Capillaries selected by our method (red 

circle) and experts observers (blue and green squares), solid markers show distal capillaries.
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Fig. 3. 
Distributions of capillary measurements by subject group: (a) Capillary density; (b) Median 

apical width; (c) Median capillary tortuosity.
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Table 1

Pairwise agreement between observers. For each row Oi v Oj denotes the performance of observer i using j as 

ground truth. O1, O2 denotes consensus of the two human observers. Precision, recall and F-measures are 

given for vessel detection, classification accuracy and Cohen’s Kappa statistic for labelling capillaries as distal 

or not.

Observers Capillary detection Distal v Non-distal

Precision Recall F-measure Accuracy Cohen’s κ

O2 v O1 70.7 ± 1.3 46.2 ± 1.8 55.8 ± 1.4 89.5 ± 0.8 0.613 ± 0.025

O3 v O1 66.8 ± 1.1 59.6 ± 0.9 63.0 ± 0.8 90.8 ± 0.9 0.574 ± 0.028

O3 v O2 51.7 ± 1.9 70.5 ± 1.0 59.6 ± 1.3 87.2 ± 1.2 0.557 ± 0.028

O3 v O1, O2 64.1 ± 1.8 80.9 ± 0.7 71.5 ± 1.1 93.6 ± 1.0 0.690 ± 0.034
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