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Abstract

Background

Rickettsia africae, the etiological agent of African tick bite fever, is widely distributed in sub-
Saharan Africa. Contrary to reports of its homogeneity, a localized study in Asembo, Kenya
recently reported high genetic diversity. The present study aims to elucidate the extent of
this heterogeneity by examining archived Rickettsia africae DNA samples collected from dif-
ferent eco-regions of Kenya.

Methods

To evaluate their phylogenetic relationships, archived genomic DNA obtained from 57 ticks
a priori identified to contain R. africae by comparison to ompA, ompB and gitA genes was
used to amplify five rickettsial genes i.e. gltA, ompA, ompB, 17kDa and sca4. The resulting
amplicons were sequenced. Translated amino acid alignments were used to guide the
nucleotide alignments. Single gene and concatenated alignments were used to infer phylo-
genetic relationships.

Results

Out of the 57 DNA samples, three were determined to be R. aeschlimanii and not R. africae.
One sample turned out to be a novel rickettsiae and an interim name of “Candidatus Rickett-
sia moyalensis” is proposed. The bonafide R. africae formed two distinct clades. Clade |
contained 9% of the samples and branched with the validated R. africae str ESF-5, while
clade Il (two samples) formed a distinct sub-lineage.

Conclusions

This data supports the use of multiple genes for phylogenetic inferences. It is determined
that, despite its recent emergence, the R. africae lineage is diverse. This data also provides
evidence of a novel Rickettsia species, Candidatus Rickettsia moyalensis.
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Author Summary

Rickettsia africae is a bacterium mainly vectored by Amblyomma and Rhipicephalus spe-
cies of ticks. It is the etiological agent of African tick bite fever (ATBF), a spotted fever
rickettsiosis that presents as an acute febrile illness characterized by petecheal skin hemor-
rhages, from which the name is derived. This bacterium is probably the most important in
sub-Saharan Africa, including Kenya, in terms of incidence and prevalence. This notwith-
standing, the disease is poorly understood and is often mistreated as malaria, and therefore
qualifies as a highly neglected disease. This study examined the genetic relationships of R.
africae collected from diverse eco-regions of Kenya. We present data that indicate high
genetic diversity in Kenya’s R. africae and corroborate a recent study that reported similar
genetic diversity in R. africae samples collected from a localized area in western Kenya.
Importantly, we describe a divergent lineage and propose the name Candidatus Rickettsia
moyalensis.

Introduction

Rickettsiae are obligate intracellular gram negative bacteria, belonging to the class alpha-pro-
teobacteria. They are found in a diverse array of hosts ranging from vertebrates, arthropods,
annelids, amoeba and plants. Based on a host perspective, the non-vertebrate-associated Rick-
ettsia remain understudied and poorly characterized [1]. In contrast, the vertebrate-associated
Rickettsia that are vectored by hematophagous arthropods such as ticks, fleas, lice and mites
are better studied, are responsible for rickettsial diseases that are important cause of illness and
death worldwide [2]. To date, this genus consists of 29 validated species and numerous partially
characterized species [3,4], thus illustrating the difficulties of unravelling the composition of
this seemingly homogeneous group of bacteria.

Phenotypic characters such as pathogenicity, growth temperature requirements, ability to
polymerize host cell actin, and cross reactivity to somatic antigens of Proteus vulgaris strains
(OX19 and OX2) and P. mirabilis OXK have been used to infer evolutionary relationships
amongst rickettsiae [5]. From these criteria, the genus rickettsia was organized into three bio-
types, namely, spotted fever group (SFG), typhus group (TG) and scrub typhus group (STG).
The phenotypic characters have been found to be unreliable estimators of their phylogeny [6].
The advent of molecular tools brought major reorganizations in rickettsia taxonomy. For
instance, by analysis of Rickettsia 16S rRNA (rrs), STG was removed from the genus Rickettsia
and placed into its own genus, Orientia. This genus currently has only two species, O. tsutsuga-
mushi [7] and a recently described O. chuto [8].

Several genes have been used for Rickettsia phylogenetic systematics: the rrs [5], gltA [9],
17kDa [10], ompA [11], ompB [12], sca4 [13], sca2 [14], and more recently, complete genomic
sequences [15,16]. Currently, the genus delineates into four clades [17-19]: (i) The SFG which
is the most derived, and consists of 23 validated species including R. africae, and numerous
partially characterized species. Using whole genome approach, it has been realized that some of
the members of rickettsiae such as R. helvetica do not fit in the SFG [16,20]). (ii) The transi-
tional group (TRG) whose members are R. akari and R. felis. (iii) The TG which has only two
members, namely, R. typhi and R. prowazekii; and (iv), the ancestral group (AG), whose mem-
bers consists of R. bellii and R. canadensis. The use of the name TRG has been challenged
[15,21]). In addition to the systemic of vertebrate-associated Rickettsia, clades associated with
non-vertebrate Rickettsia have been described [16,19].
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Of the rickettsiae, R. africae is probably the most important in Africa. It is the aetiological
agent of African tick bite fever [22] and the most reported [23]. It has been reported in 22 sub-
Saharan countries [3], the West Indies [24] and Oceania [25]. In Kenya, a recent surveillance
study of rickettsiae in ticks identified 104 rickettsiae, of which 93% were R. africae, clearly,
demonstrating its dominance [26]. R. africae is vectored by Amblyomma ticks, primarily A.
variegatum and A. hebraeum. Infections have also been detected in many other ticks species
[3,26-28] by PCR and not by competency studies.

In general, Rickettsia species are very closely related. Within the SFG where R. africae
belongs, the mean nucleotide homogeneity with rrs, gltA, ompA, ompB and sca4 genes ranges
from 82.2% to 99.8% [29]. Considering this high interspecies homogeneity, intraspecies differ-
ences are even smaller. For example, using the more variable multi spacer typing that combined
diksA-xerC, mppA-purC, and rpmE-tRNAfMet spacer sequences, it was impossible to discrimi-
nate R. africae strains [30]. Using ompA and ompB genes, many groups have however reported
heterogeneity [25,31,32]. A recent study reported an even higher heterogeneity of R. africae
samples collected from a localized area in Western Kenya [33]. The study reported here sought
to determine how widespread the heterogeneity of Kenya’s R. africae is by examining DNA
samples collected from different eco-regions of Kenya.

Methods
Ethics statement

This study was carried out using ticks collected from domestic animals presented for slaughter.
The tick samples were collected under protocol SSC#1248 that was reviewed and approved by
the Animal Use Committee of the Kenya Medical Research Institute.

Sample acquisition and study site

Details of the areas the tick were collected from, method of collection, DNA extraction and pre-
liminary genotyping have been published before [26] and are summarized in S1 Table.

Amplification of target genes

Sequence data for 57 tick-extracted DNA samples that had been identified as R. africae by com-
parison to 385 bp citrate synthase (gltA) gene, 530 bp outer membrane protein A gene (ompA)
and 444 bp outer membrane protein B gene (ompB) were obtained from our laboratory's data-
base from a previous study [26]. The sequences of both strands were re-checked for correctness
and errors cleaned. Samples with short or missing sequences were re-amplified and re-
sequenced. Two additional genes: the 450 bp 17kDa and 2700 bp sca4 genes were also amplified
and sequenced.

Primers used to amplify target genes are listed in Table 1 and are previously described [34].
PCR reagents were obtained from Applied Biosystems (CA, USA) and reactions performed in
a 25 pL reaction volume containing 10 uM of each primer, 200 uM of ANTP mix, 1.5U Taq
polymerase and 2 mM MgCl,. Amplification was carried out in a DNA thermal cycler (HID
Veriti) from Applied Biosystems (CA, USA). The following conditions were used for amplifica-
tion: For ompA and gltA genes: 3 min of initial denaturation at 94°C, then 40 cycles at 94°C for
30 sec, 53°C for 30 sec, 68°C for 1 min. For the ompB gene: 3 min of initial denaturation at
95°C, then 40 cycles at 95°C for 30 sec, 50°C for 30 sec, 68°C for 1 min 30 sec. For the 17kDa
gene: 5 min of initial denaturation at 94°C, then 35 cycles at 94°C for 30 sec, 50°C for 1 min,
68°C for 1 min. For sca4: 5 min of initial denaturation at 95°C, then 40 cycles at 95°C for
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Table 1. Primers used for PCR and sequencing.

Gene Oligo Sequence (5'-3')

gltA 1-2CS49Fw: ACCTATACTTAAAGCAAGTATYGGT
'CS1234Rv: TCTAGGTCTGCTGATTTTTTGTTCA
2CS1258Rv: ATTGCAAAAAGTACAGTGAACA

ompB 2RAK1009Fw: ACATKGTTATACARAGTGYTAATGC
'OmpB1902Rv: CCGTCATTTCCAATAACTAACTC
2RAK1452Rv: SGTTAACTTKACCGYTTATAACTGT

ompA 'OmpAM50Fw: TTGCGTTATAACACTTTTTAAGTGA
'"OmpA642Rv: ATTACCTATTGTTCCGTTAATGGCA
2190-70Fw: ATGGCGAATATTTCTCCAAAA
2190-701Rv: GTTCCGTTAATGGCAGCATCT

sca4 'D1Fw: ATGAGTAAAGACGGTAACCT
'D3069Rv: TCAGCGTTGTGGAGGGGAAG
2RrD749Fw: TGGTAGCATTAAAAGCTG
2RrD2685Rv: TTCAGTAGAAGATTTAGT

17kDa "Rp17kFw: AATGAGTTTTATACTTTACAAAATTCTAAAAACCA
2Rr2608Rv: CATTGTTCGTCAGGTTGGCG
2Rr1175Fw: GCTCTTGCAACTTCTATGTT

Fw = Foward primer; Rv = Reverse primer;
" = primary PCR;
2 = secondary PCR and sequencing

doi:10.1371/journal.pntd.0004788.t001

Amplicon size
385bp

444pp

530bp

2700bp

450bp

45 sec, 60°C for 30 sec and 68°C for 3 min. All the amplifications were then completed by hold-
ing for 7 min at 72°C. To ascertain correct product sizes, a portion of the amplicons (5uL) was
run on a 1% (w/v) agarose gel containing ethidium bromide. Product sizes were estimated by

comparing with a molecular mass standard (1kb plus ladder, Invitrogen, (CA, USA).

Gene sequencing

The PCR products were purified using Isolate II PCR and Gel Kit (Bioline, UK) as recom-
mended by the manufacturer. The purified PCR products were sequenced in both directions
using the Big Dye Terminator Cycle Sequencing Kit v 3.1 (Applied Biosystems, CA, USA) and
the sequences analyzed by capillary electrophoresis in a 3130 Genetic Analyzer (Applied Bio-
systems). The sequences were proofread, edited and assembled into consensus sequences using
CLC Main Workbench v 7 (CLC Inc, Aarhus, Denmark), and used to query GenBank using
the nucleotide Basic Local Alignment Search Tool (BLAST) [35].

Phylogenetic data analysis

Six different alignments were generated: Five of them corresponded to sequences of each target
gene (gltA, ompA, ompB, 17kDa and sca4), and one corresponding to the concatenated
sequence of all the five genes as well as the validated rickettsia strains derived from GenBank

(see S2 Table for names of reference strains and their accession numbers). To ensure the accu-
racy of these alignments, nucleotide sequences were translated to their respective amino acids
using the translate tools in the CLC Main Workbench v7. Amino acid alignments were made
using Muscle v 3.8 software [36]. The protein alignments were then used to guide the corre-
sponding nucleotide alignments using TOPALIi V2 software [37].
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For phylogenetic inference, MEGA v7 software [38] was used to estimate the best substitu-
tion model as well as estimate for the Maximum Likelihood (ML) trees for the individual
genes. The concatenated alignment tree was also estimated with the ML method using a Gen-
eral Time Reversal (GTR) nucleotide substitution model with a gamma distribution (GTR+G).
For bayesian probability analysis, jModeltest v 2.1 [39] was used to determine the GTR+G as
the best fit model for gltA, ompA, ompB, 17kDa and sca4 gene alignments. A partitioned analy-
sis was then performed on the concatenated dataset using a bayesian Markov Chain Monte
Carlo (MCMC) method implemented with MrBayes software v 3.2 [40]. The cluster confidence
was given as posterior probabilities.

Results
Sample description

In total, 57 tick DNA samples were available for analysis. From these and as shown in supple-
mentary information (S3 Table), 45 sequences were obtained for gltA (Genbank accession
KX368721-KX368765), 57 for ompA (Accession: KX368868-KX368924), 44 for ompB (Acces-
sion: KX368823- KX368867), 57 for 17kDa (Accession: KX368766-KX368822) and 40 for sca4
(Accession: KX368925-KX368964). The gene sequences were subjected to BLAST analysis for
a preliminary verification of their identity. BLAST results are shown in S1 Table.

Single gene topology trees and their ability to resolve study samples

The topology of the gltA gene tree inferred with the ML method is shown in Fig 1, panel A. The
tree shows unresolved evolutionary relationships (nodes with <50% bootstrap support values).
Overlooking these clade credibility values, a major cluster (clade I) consisting of 89% of the
sequences was observed in the more derived parts of the tree. The other two distinct clades
were samples from the North Eastern part of Kenya. Clade II consisted of samples (044 and
045 from Wajir) that diverged as sister operational taxonomic units (OTUs). Clade III samples
clustered at the basal part of the tree and came from Moyale (139, 135, 136 and 176) and Wajir
(577).

In comparison to gltA, the ompA tree resolved majority of the nodes into three well sup-
ported groups (Fig 1, panel B). As in gltA, clade I had the majority of OTUs (52/57, 91%), and
was the most derived. Majority of the nodes were unresolved, and the members clustered in a
polytomy. As in gitA, clade II formed a dichotomy made of samples 044 and 045 from Wajir.
Clade III constituted a cluster of 176_Moyale, 164_Wajir and 195_Machakos in the basal parts
of the tree. In this clade, only 176_Moyale was shared with the gltA gene tree.

As shown in Fig 1, panel C, ompB also resolved the study OTUs into three groups. Clade I
contained 40/44 (91%) members in a polytomy. Clade II contained the same sister OTUs (044
and 045) from Wajir. Clade III had the same samples as in the ompA gene tree. As with gltA,
ompA and ompB genes, the topology of the 17kDa gene tree was consistent in delineating three
clades (Fig 1, panel D). Clade I contained 52/57 (91%) of unresolved OTUs. Clade II consisted
of sister OTUs (044 and 045) from Wajir, while clade III consisted of 164_Wajir, 195_Macha-
kos and 176_Moyale

Compared to gltA, ompA, ompB and 17kDa, the sca4 gene tree was better resolved especially
in delineation of clade I (Fig 1, panel E) which consisted of 35/40 (86%) OTUs. Clade II con-
sisted of sister OTUs (044 and 045) from Wajir. Clade III consisted of 176_Moyale, 164_Wajir,
and an additional member 293_Migori.
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Fig 1. Phylogeny of Rickettsia study samples isolated from diverse eco-regions of Kenya. Maximum Likelihood trees were obtained from (A) gitA,
(B) ompA, (C) ompB, (D) 17kDa and (E) sca4 partial nucleotide sequences. Members of clade I, Il and Ill are shown beside the bolded red, blue and
green lines respectively. Numbers at the nodes are bootstrap proportions with 1000 replicates. Only bootstrap values >50% are shown. The scale bar
indicates the number of substitutions per nucleotide position.

doi:10.1371/journal.pntd.0004788.9001

Concatenating gltA, ompA, ompB, 17kDa and sca4 genes allows better
phylogenetic resolution

In order to improve the phylogenetic resolution of individual genes, the five genes were
concatenated. Out of the 57 samples initially available for analysis, only 39 were included in the
concatenation. The choice of the 39 was influenced by availability of the limiting gene (39 sca4
samples), and not missing more than one of the other four gene sequences. The concatenated
sequences also included validated Rickettsia species available in GenBank. The concatenated
tree constructed with Bayesian method is shown in Fig 2. The validated Rickettsia sequences
delineated into the three known Rickettsia clades: TG, TRG and SFG. All the 39 study OTUs
lay within the SFG clade, of which 33/39 (84%) clustered with the validated R. africae str ESF-5
shown as clade I. The two sister OTUs (044 and 045) from Wajir formed a distinct clade (clade
IT) that shared the most recent common ancestor with clade I. Two other samples (164_Wajir
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Fig 2. Bayesian probability tree of study samples with validated Rickettsia species. The tree is based on partitioned concatenated
datasets of gltA, ompA, ompB, 17kDa and sca4 partial nucleotide sequences. Amino acid alignments were used to guide the nucleotide
alignments. The tree is estimated using a GTR+G substitution model as implemented in MrBayes v3.2. The tree is a consensus of 15,002 trees
(post burn-in) pooled from two independent Markov Chain run in parallel. Thin lines indicate posterior probability values of < 1. Lineage diversity
within the R. africae study samples is highlighted in red and blue to indicate clades i and ii respectively. Samples previously misclassified as R.
africae are now classified as R. aeschlimanii (black diamond). Study sample 176_Moyale branches distinctly from other rickettsiae and is
considered a novel rickettsia species and a provisional name "Candidatus rickettsia moyalensis" (black circle) is proposed. NB: Although
293_Migori (open circle) branched as a lone taxon, it clustered with R. aeschlimanii by Maximum Likelihood method. Non-spotted fever group
lineages are highlighted orange for transition group and grey for typhus group. The status of R. helvetica (shown in black cross), originally in
spotted fever group is now uncertain [20].

doi:10.1371/journal.pntd.0004788.9002

and 195_Machakos) previously identified as R. africae [26] delineated with the validated R. aes-
chlimanii. The positions of these OTUs held when tested by ML method (S1 Fig).

The position of 293_Migori was however tenuous, as it branched with R. aeschlimanii on
ML method, but as a lone taxon between R. heilongjiangensis and R. slovaca on Bayesian analy-
sis. Another interesting sample 176_Moyale branched as a lone taxon with total statistical sup-
port (a posterior probability value of 1), thus raising questions concerning its taxonomic status.
We consider this sample as a novel rickettsiae and an interim name of “Candidatus Rickettsia
Moyalensis” is proposed.
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Phylogeny of R. africae study OTUs and those collected previously in
Kenya

The ompA gene sequences obtained from our study samples and those published previously
collected in Kenya [23,31] were used to generate a phylogenetic tree (Fig 3). With this tree,
three clades were discernible. Clade I contained majority of the OTUs 61/66 (92.4%) and a
cluster of other 7 that formed a subclade within clade I, that consisted of OTUs published in
previous studies. Clade II consisted of sister OTUs (044 and 045) from Wajir, and a basal clade
III that consisted of members 176_Moyale, 164_Wajir, and 195_Machakos. Clearly, five of our
sequences (044, 045 and 164 from Wajir, 176 Moyale and 195 Machakos) are distinct from
those described previously.

Discussion

In this study, a combination of relatively conserved (gltA, 17kD) and variable (ompA, ompB,
and sca4) genes were used to infer the evolutionary topology of R. africae using DNA samples
obtained from ticks [26]. This work expands on a recent study that reported a significant het-
erogeneity of R. africae samples collected from a localized area in Western Kenya [33]. We also
report on possible existence of a sub-lineage within the R. africae samples, as well as identify a
putative novel Rickettsia species that was associated with R. appendiculatus tick collected from
a cow in Moyale County, in Northern Kenya.

Due to its intracellular lifestyle, rickettsiae are highly dependent on their primary tick vec-
tors and tend to be selective for the tick species they infect. For example, R. africae are primarily
vectored by the Amblyomma species [41] but infections have also been found in Rhipicephalus
and Hyalomma ticks [3]. As shown in S1 Table, 84% of the R. africae sequences came from
Amblyomma and Rhipicephalus ticks. The remaining 16% came from H. truncatum and other
unspeciated Hyalomma ticks. Nevertheless, without competency studies, it is difficult to say
which of these findings were true infections.

The gltA gene codes for citrate synthase, an enzyme ubiquitously found in nearly all living
cells, and is central in energy metabolism [42]. Evolutionary history inferred from this gene
demonstrated low sequence divergence and yielded poorly supported clades with unresolved
nodes (Fig 1, panel A). This is expected considering that, even within the Rickettsia genus, gltA
gives poor interspecies resolution especially for the more derived branches of the SFG [9]. Nev-
ertheless, three unsupported groupings (Fig 1, panel A, shown by red, blue and green lines)
were discernible. It could be argued that the lack of resolution emanated from using a small
fragment (385 bp) compared to 1234 bp that was used by Roux et al [9]. The Roux study aimed
to develop gltA gene as a phylogenetic marker for Rickettsia species. From their generated phy-
logenies, the resolution decreased within the more recently emerged species, of which R. africae
is a member. Our study that focused on intra-species variation within the R. africae lineage had
similar problems with gltA and it is doubtful that a longer gltA that failed to resolve the recently
evolved rickettsiae would have resolved variation within the study OTUs. We think longer frag-
ments may have increased the number of variable characters within the gene but not the
resolution.

As shown in Fig 1 (panels B, C and D), gene trees derived from ompA, ompB and 17kDa
had very similar topologies and the three groupings seen in gltA tree were better supported.
This topological concordance gives credence to the derived gene trees. By BLAST analysis,
majority of the OTUs clustering in clade I were identical to R. africae reference strain ESF (S1
Table).

Tree topologies derived from individual genes identified clades II and III as outliers (Fig 1,
blue and green lines). Interestingly, for all the genes, clade II had only two members
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Fig 3. Phylogeny of Rickettsia sequences from this study and those collected previously in Kenya
[23, 31]. ompA nucleotide sequences of study isolates and other R. africae reported from previous studies
[23,31] were analysed by Maximum Likelihood method using MEGA v7 based on the Hasegawa-Kishino-
Yano (HKY) model of substitution. The tree has a log likelihood ratio of -1049 and involved all codon
positions. Members of clade |, Il and Ill are shown beside the bolded red, blue and green lines respectively.
Sequences from Parola et al 2001 [23] are shown as black triangles and those from Macaluso et al 2003 [31]
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by black circles. Numbers at the nodes are bootstrap proportions with 1000 replicates. Only bootstrap values
>50% are shown. The scale bar indicates the number of substitutions per nucleotide position. Clearly, five of
our sequences (044, 045 and 164 from Wajir, 176 Moyale and 195 Machakos) are distinct from those
described previously.

doi:10.1371/journal.pntd.0004788.g003

(044_Wajir and 045_Wajir) that appeared as a sub-lineage within R. africae. With four of the
five genes analysed, BLAST analysis of the two samples showed highest identity to R. africae
(accession no. HQ335126) with 99% for gltA, >99% for ompA (accession no. HQ335132), 99%
for 17kDa (accession no. KF646137) and 100% for sca4 (accession no. CP001612). BLAST
analysis of the ompB gene showed highest homology (98%) to R. mongolotimonae (accession
no. DQ097083). Within our study OTUs, members of clade III were the most genetically dis-
tant. With the Sca4, one member (293_Migori) that had consistently been in clade I was placed
in clade III.

From the foregoing, the limitations of gene trees constructed from single genes are evident
and give credence to recommendations to use a variety of genes sampled from different regions
of the genome as the best practice for phylogeny assignment [43]. Fig 2 shows a Bayesian tree
of study OTUs and the validated Rickettsia species derived from a concatenated sequence of
gltA, ompA, ompB, 17kDa and sca4. The concatenated tree confirms the branching orders of
clade I and authenticates members of clade I (044_ and 045_Wajir) as being a sub-lineage of
R. africae. This derivation was confirmed by ML method (S1 Fig). Only after concatenation is
the picture clearer that, the majority of members populating clade III in single gene analysis are
not R. africae. Samples 164_Wajir and 195_Machakos (both associated with H. truncatum
ticks from a cow) delineate with R. aeschlimanii, while 293_Migori appeared as a lone taxon
(Fig 2).

Since sample 176_Moyale did not branch with any of the validated species in the
concatenated tree (Fig 2), its sequence was compared to isolates available in GenBank. With
the 276 bp gltA gene, it was most identical to R. heilongjiangensis (97.0%). With this gene, a
homology of 99.9% is required in order for the sample to qualify as R. heilongjiangensis [29].
With the 489 bp fragment of ompA gene, the DNA was most identical to Candidatus R.
amblyommii (97.0%) against the required homology of 98.8%. With the ompB gene, the 267 bp
fragment was most identical to Rickettsia rhipicephali (99.0%) against a required homology of
99.2% to qualify as R. rhipicephali. With the sca4 gene, the 1846 bp was most similar to R. afri-
cae str ESF5 (97.0%) against the required homology of 99.3%. For the 17kDa, the closest
homology was with Rickettsia raoultii str Khabarovsk (97.0%) identity. There are no published
homology requirements for 17kDa gene. Given this level of nucleotide sequence divergence
from validated Rickettsia species, our results support the consideration of 176_Moyale as a
sample from a new Rickettsia species. Until grown in culture, and its biology elucidated, we
propose that this sample be identified as “Candidatus R. moyalensis”.

Two other studies in Kenya have reported genetic heterogeneity within the R. africae line-
age, one in Maasai Mara game reserve [31] and another in rural farming community in
Asembo, Nyanza province [33]. The current study extends these findings and identifies North-
ern Kenya (Moyale and Wajir) as harbouring more heterogeneous R. africae or completely new
species (Fig 2 and S1 Fig) compared to other regions. To determine homology of our study
OTUs and those described as R. africae variants in previous studies in Kenya [23, 31], ompA
gene sequences were compared. As shown in Fig 3, five of our sequences (044, 045 and 164
from Wajir, 176 Moyale and 195 Machakos) are distinct from those described previously.
Unfortunately, we did not sequence a second region of ompA and ompB genes that were associ-
ated with significant sequence variation [33]. The Rickettsia species dynamics in Kenya are
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probably being moulded by: 1) the highly mobile nomadic populations that move across wide
geographical borders that create opportunities for mixing of rickettsiae from different livestock
species (goats, sheep, cows, donkeys and camels). 2) The encroachment of wildlife habitats by
nomadic pastoralists that introduce previously isolated Rickettsia species in wildlife to live-
stock. We speculate that these factors could be responsible for the observed genetic variations
within the Kenyan R. africae, as well providing opportunity for genetic mixing that may result
in creation of new lineages.

Conclusion

This study provides new information regarding the phylogenetic relationships of the R. africae
lineage. This lineage, though only recently emerged [30] is clearly undergoing diversification,
as observed in the branching order of the samples studied. A definite sub-lineage of R. africae
(samples 044 and 045 from Wajir) was identified. It was impossible to confirm the placement
of sample 293_Migori. Additional sequence data will be required to resolve the ambiguity.
Lastly, a putative novel rickettsiae (sample 176_Moyale) with a proposed name of “Candidatus
Rickettsia moyalensis” was identified. Further work will be needed to determine its prevalence
in Kenya and its implications to human and/or animal disease.

Supporting Information

S1 Table. Rickettsia samples used in the study.
(DOCX)

$2 Table. Names and accession numbers for validated strains used in this study.
(DOCX)

$3 Table. List of Genbank accession numbers of study OTUs.
(DOCX)

S1 Fig. Maximum Likelihood tree of study samples and validated Rickettsia species. A Gen-
eral Time Reversal with Gamma distribution (GTR+G) model was used to infer phylogeny of
concatenated partial sequences of gltA, ompA, ompB, 17kDa and sca4 nucleotide sequences.
Amino acid alignments were used to guide the nucleotide alignments. The tree with the high-
est log likelihood (-8252.6475) is shown. Study samples that are bonafide R. africae aggregate
in clades I and II. Samples previously misclassified as R. africae are now classified as R. aeschli-
manii (black diamond). Study sample 176_Moyale branches distinctly from other rickettsiae
and is considered a novel rickettsia species provisionally named "Candidatus rickettsia moya-
lensis" (black circle). With this method, 293_Migori (open circle) clusters with R. aeschlimanii.
Numbers at the nodes are bootstrap proportions with 1000 replicates. Only bootstrap values
>50% are shown. SFG = spotted fever group, TRG = transition group, TG = typhus group.
The status of R. helvetica (shown in black cross), originally in spotted fever group is now
uncertain [20].
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