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Abstract

As the most abundant protein in mammals and a major structural component in extracellular 

matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our 

body. Persistent disruption to the balance between collagen production and degradation can cause 

a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an 

overproduction of collagen which can cause excessive collagen accumulation in organs, common 

to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. 

Therefore, the ability to monitor the state of collagen is crucial for determining the presence and 

progression of numerous diseases. This review discusses the implications of collagen remodeling 

and its detection methods with specific focus on targeting native collagens as well as denatured 

collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and 

create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
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Introduction

Collagen is the most abundant protein in mammals and is a major component of 

extracellular matrix (ECM) providing a vital structural matrix for tissue development, 

maintenance, and regeneration [1]. The three main types of collagen, type I, II, and III, 

account for nearly 90% of the collagen found in the body; all of these types are fibrous and 

share a triple-helical molecular structure. Normal tissue development involves a dynamic 

collagen remodeling process, which includes both collagen production and degradation. An 

imbalance in these processes causes abnormalities in the structure and metabolism of 

collagen, leading to various pathological conditions, including fibrosis, arthritis, and cancer 

[2]. Thus, the ability to detect structural and metabolic anomalies in collagen would be 

significant in both diagnosing and treating related pathological conditions.

In this review, we highlight the importance of recognizing two different states of collagen–

triple helical, intact collagen, and unfolded, denatured collagen (dn-collagen). Methods of 

detecting and targeting each of these collagens are also reviewed in order to show new 

approaches in utilizing collagen for delivery of drug molecules and imaging modalities.

Targeting and Monitoring Native Collagen

As the most abundant protein in humans, collagen constitutes approximately 25% of the 

total protein. It is the major structural component of the extracellular matrix (ECM) 

supporting cell proliferation, migration, and differentiation [3, 4]. Since collagen is present 

in the ECM of most tissues, it provides potential deposition sites for therapeutic agents. In 

addition, the detection of native collagen could be highly useful for monitoring progression 

and amelioration of diseases that are known to alter collagen remodeling activity such as 

fibrosis and arthritis.
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A. Collagen binding peptides for enhancing growth factor efficacy and for modulating 
native collagen function

Growth factors (GF) are known to bind to the ECM for prolonged activity and timely 

function [5, 6]. ECM components, such as collagen acts as a natural repository that controls 

the presentation and release GFs. GF or GF-mimetics which can bind to collagen has the 

potential to improve in vivo stability and promote sustained release. Here we discuss 

collagen binding peptides (Table 1) that can mediate the attachment of GFs or other 

therapeutics moieties.

Many ECM-binding proteins contain specific domains that have affinity to collagen. 

Inspired by decorin, a collagen binding peptidoglycan was developed which contains a 

dermatan sulfate peptidoglycan (DS-GAG). DS-GAG utilized a peptide sequence derived 

from the collagen I platelet receptor [RRANAALKAGELYKSILYGC (SILY); Kd: 0.86 μM] 

[7, 8]. The original sequence (RRANAALKAGELYKCILY; Kd: 10 nM) [9] has a higher 

binding affinity to collagen type I than the modified version, SILY, but the modification 

allowed dermatan sulfate to be conjugated to the terminus of the peptide. Similar to decorin 

which binds to collagen and inhibit lateral aggregation of collagen fibrils, DS-GAG 

modulated collagen fibril organization[8]. It is likely that the DS-GAG also had protective 

effects for collagens against MMP-mediated degradation by blocking MMP binding sites 

[10] [11]. In addition, DS facilitated cell proliferation by helping FGF receptors dimerize, 

since N-acetylgalactosamine (GalNAc) and iduronate (IdoA) can interact with FGFs (FGF-2 

and FGF-10) and its receptor, FGFR2-IIIb [12, 13]. Further investigation of the original 

sequence of SILY revealed that only GELYKCILY was responsible for the collagen binding 

ability [14]. Goldberg research group conjugated collagen binding domain derived from 

decorin (residues 176–201, MIVIELGTNPLKSSGIENGAFQGMKK; Kd: 0.394 μM) to a 

recombinant pig bone sialoprotein (BSP), P2S [15], which can bind to HA. The conjugate 

promoted mineralization of bone defects by binding to collagen and by inducing nucleation 

of HA [16]. Through mutagenic studies, glutamate (residue 180) was found to be critical for 

specific binding to collagen type I [17]. Recently, new decorin-based peptide that binds to 

type I collagen was developed. This peptide has a sequence of LRELHLNNN (Kd: 0.17 μM) 

[18] and was found to increase the retention of molecules with a molecular weight of less 

than 2 kDa within type I collagen matrix (e.g., collagen gel). Upon matrix degradation in the 

biological system, controlled release of molecules was achieved. DARKSEVQK and 

KELNLVY, also derived from platelets, were found to specifically bind to type III collagen 

and inhibit type III collagen-induced platelet aggregation in a dose-dependent manner [19].

A collagen binding domain (CBD) WREPSFCALS, which was identified from von 

Willebrand Factor (vWF), exhibits low binding affinity (Kd: 100 μM) for collagen type I 

[20]. Another CBD derived from the collagenase is TKKTLRT. Using the recombinant 

protein technique, Dai and coworkers fused TKKTLRT to various GFs via their C-termini, 

including brain-derived neutrophic factor (BDNF), vascular endothelial growth factor 

(VEGF), nerve growth factor β (NGF-β), basic fibroblast growth factor (bFGF), ciliary 

neurotrophic factor (CTNF), bone morphogenic protein 2 (BMP-2), neurotrophin 3 (NT3), 

and platelet-derived growth factor (PDGF). The TKKTLRT sequence restricted the GFs’ 

diffusion and increased the tissue retention of the growth factors which led to enhanced 
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tissue regeneration and wound repair. This sequence was found to promote vascularization 

and cellularization better than the WREPSFCALS because of its higher collagen binding 

affinity, which is presumably due to higher ratio of polar amino acids to non-polar amino 

acids [21]. The TKKTLRT sequence was even fused with single chain fragment variable 

(CBD-scFv) of cetuximab to target collagen rich carcinoma [22].

In addition to collagen specific domains derived from natural ECM binding proteins, there 

are other collagen targeting peptides that were identified using phage-display methods. A 

peptide WYRGRL that binds to α1 chain of type II collagen was discovered via phage-

display and found to target articular cartilage [23–25]. Using this collagen binding sequence, 

Schultz and coworkers achieved targeted drug delivery of the cathepsin D inhibitor for the 

treatment of OA [24]. Three WYRGRL peptides and one cathepsin D inhibitor were tethered 

via a tetrapodal DOTAM [26] template, and the drug conjugate was administered intra-

articularly to not only allow lipophilic drug molecules to penetrate joint compartments, but 

also to enhance the retention of inhibitor within cartilage through its multi-valent binding. 

Another collagen binding peptide, KLWVLPK, was discovered by phage-display and was 

found to specifically bind to collagen type IV. This peptide was attached to lipid-polymeric 

nanoparticles to target sites of balloon angioplasty [27]. It was also incorporated into a 

peptide amphiphile sequence in order to target areas of vascular intervention [28]. When 

conjugated to a β-sheet forming domain, self-assembled nanofibers were formed, which 

were shown to bind to exposed collagens on the injured blood vessels for up to two days. 

Besides the known slow clearance of nanofibers from circulation [29], the multivalent 

presentation of peptides also contributed to the increased binding to nanofibers.

Considering the importance of type I collagen in mediating homeostasis and biological 

development processes, the interactions of type I collagen with other extracellular matrix 

molecules and cell surface proteins have been mapped out [30–32]. For example, collagen 

has binding domains specific for fibronectin as well as integrins. Different types of 

glycoproteins and proteoglycans are involved in modulation of collagen fibrilogenesis and in 

cell attachment. More information about the interactions between collagen, ECM molecules 

and cells beyond the boundary of detecting and targeting of extracellular matrix molecules 

for therapeutic applications can be found in recently published review papers [33, 34]. These 

complex interactions provide a greater understanding about the relationship between ligand-

binding sites and functional domains of type I collagen which will be highly useful in the 

design of collagen targeting molecules for therapeutic modulation of collagen function.

B. Detection of collagen accumulation in fibrosis

Fibrosis is a common pathological outcome of many chronic inflammatory diseases 

affecting nearly all tissues in the body [35, 36]. Fibrosis is signified by the excessive 

accumulation of ECM components, particularly type I collagen, in and around the damaged 

tissues (Fig. 1A) [37, 38]. Tissue repair in response to injury or irritation can progress into 

an irreversible fibrotic response if the tissue injury is severe or repetitive, leading to 

permanent scarring, organ malfunction and, ultimately death, as seen in end-stage liver 

disease [39], kidney disease [40], idiopathic pulmonary fibrosis (IPF) [41] and heart failure 

[42]. In addition, fibrosis is a major pathological feature of many chronic autoimmune 
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diseases, and is a common outcome of rejection of organ transplant and medical implants 

(Fig. 1A) [43, 44].

Currently, there is no single test that can diagnose fibrosis, and clinical methods for 

monitoring the disease progression are very limited. There is no established treatment for 

liver_fibrosis [45], and only a few drugs were approved for treatment of other fibrotic 

diseases (e.g., both pirfenidone and nintedanib were approved for the treatment of IPF) [46–

48]. Biopsy remains the most important, and often the only method for fibrosis detection and 

diagnosis (e.g., in liver fibrosis); however, biopsy is not suited for routine screening/

monitoring because of its cost, and associated morbidity and mortality (rate between 0.01–

0.1% in liver [49]), as well as inaccuracy caused by sampling variation. Therefore, there is 

an unmet need for accurate and non-invasive methods to detect fibrosis. Many imaging 

methods based on the morphologic or mechanical change of the fibrotic tissue in the late 

stage are under development, such as high resolution computed tomography (HRCT), 

magnetic resonance imaging (MRI) [50], ultrasonography (US) [51], as well as biochemical 

assays for identifying protein degradation fragments using ELISA [52, 53]. HRCT can 

provide cross-sectional images of the fibrotic tissues with a quality that depends on the 

radiation exposure [54]. Unfortunately, HRCT can induce cancer and genetic mutations. 

MRI offers deep tissue penetration and high spatial resolution, however, its use is limited in 

diagnosing liver fibrosis as most contrast agents cannot distinguish the different stages of 

liver fibrosis [53]. US is typically used as a diagnostic tool in chest diseases, and as a guide 

for transthoracic needle biopsies [51]. Biochemical assays are non-invasive and suitable for 

high-throughput screening either in preclinical or clinical settings for estimating the safety 

and efficacy of certain therapies [52, 53], but they are neither site-specific nor disease-

specific [55]. Scientists and engineers are addressing limitations of early stage detection 

(e.g., for MRI [56]) and inadequate correlation between the disease and serum markers [52].

Molecular imaging using a specific probe that targets excessive collagen is one appealing 

strategy for detecting fibrosis in its early stage when excess collagen molecules have been 

deposited in the tissue without apparent changes in the anatomy of the tissue. Among several 

collagen binding molecules that were tested [57, 58], EP-3533 (Fig. 1B) which employs a 

type I collagen-specific peptide (Kd: 1.8 ± 1.0 μM) has shown some promise in imaging 

fibrosis [56]. Because the concentration of collagen can increase up to 10-folds during 

fibrosis [59], EP-3533 was able differentiate fibrotic tissues from the healthy ones. A 

combination of intensity strength of the contrast agent and Ultra-short Echo Time Magnetic 

Resonance (UTE-MR) allowed early-stage visualization of fibrotic tissue in the lungs and 

monitoring of the disease progression. The cyclic conformation (achieved by disulfide 

bridge formation) was responsible for the tight collagen binding. This agent was used to 

successfully visualize type I collagen in pulmonary [60] and liver fibrosis (Fig. 1C) [53, 61]. 

In addition, EP-3533 was conjugated to high-density lipoprotein nanoparticles to monitor 

compositional changes in atherosclerotic plague regression [62].

CNA35, a 35 kDa peptide derived from an adhesion protein of Staphylococcus aureus, has 

moderate affinity to type I collagen (Kd ~ 0.5 μM) [63] and is frequently employed for 

collagen imaging [64–66]. For example, in vivo application of CNA35 allowed labeling [66] 

and imaging [67] of atherosclerotic plagues. By binding directly to both individual fibrillar 
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and non-fibrillar collagens, CNA35 allows for detailed visualizations of different structural 

hierarchies of collagen organization for both early and mature collagens [63, 64].

C. Functional assemblies based on collagen binding molecules

Multivalent design is an effective way to enhance the affinity of collagen binding molecules. 

For example, an AB5 dendritic wedge architecture (Figure 2A) was employed to enhance the 

binding affinity of the HVWMQAP which binds to type I collagen [68]. The dendritic 

display demonstrated a 100-fold improvement in collagen affinity compared to monovalent 

HVWMQAP. Significant improvement in the binding of CNA35 to collagen was achieved 

by employing micelle architecture (Figure 2B) [69]. By varying the ratio of CNA35 to lipid, 

different amounts of protein could be loaded in micelles. A fluorescent binding experiment 

showed that the most significant binding was observed with micelles having 5 and 17 

proteins per micelle. A multivalent CNA35 micelle was also reported to target collagen type 

I, II, III, (fiber form) and IV (network-like structure).

Functionalization of nanoparticle surfaces with collagen binding molecules can lead to 

collagen-targeted drug delivery or improved molecular imaging of exposed collagen matrix 

in vivo. Targeting exposed collagen, especially in injured blood vessel, is particularly 

important due to the fact that cardiovascular disease continues to be the leading cause of 

death worldwide [70]. Vascular intervention to treat the disease is also challenged by high 

failure rates from restenosis [71]. In addition, exposed collagen matrix is associated with 

angiogenesis in tumor formation as well as other angiogenesis-dependent diseases [72]. 

Langer and coworkers reported micelle-based paclitaxel delivery system that display 

HWGSLRA on micelle surface as “hooks” for binding to collagen (Figure 2C) [27]. Also, 

peptide amphiphiles can self-assemble into nanofibers (Figure 2D, top) or nanospheres 

(Figure 2D, bottom) which disiplay high density of collagen binding peptides on their 

surfaces [28]. It was shown that nanofibers have preferential binding to injured vessels and 

are cleared at a slower rate relative to nanospheres of similar dimensions. Conjugation of 

peptide amphiphile with fluorescent labels provided molecular imaging of the injured 

tissues.

Targeting and Monitoring Denatured Collagen (dn-collagen)

Collagen degradation is part of normal tissue development and maintenance; however, 

excessive collagen degradation is closely associated with a wide variety of diseases and 

pathological conditions. In cancer, collagen degradation caused by high MMP activity is 

responsible for angiogenesis and tumor progression [73–75]. In atherosclerosis, the thinning 

and weakening of the fibrous collagen cap due to MMP degradation renders the 

atherosclerotic plaques susceptible to rupture which can cause acute myocardial infarction 

and sudden cardiac death [76]. Degradation of type II collagen, the predominant protein in 

cartilage, is the key pathogenesis step of osteoarthritis [77, 78]. During persistent liver 

inflammation and injury, the hepatic stellate cells express MMPs to degrade normal liver 

matrix [79]. These examples highlight the pivotal role of collagen degradation in some of the 

most prevalent and/or life-threatening diseases in current human population. (A list of 

diseases associated with collagen remodeling is found in Table 2).

Wahyudi et al. Page 6

J Control Release. Author manuscript; available in PMC 2017 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since the dn-collagen is present at the disease sites in all of the ailments listed in Table 2, it 

can be targeted similar to intact collagen for the purpose of imaging and drug delivery. The 

field of targeting dn-collagen is in its infancy; so far most targeting strategies are focused on 

MMP activities [80], or on targeting markers that signal collagen degradation [80]. 

Enzymatically digested collagen fragments have been used to develop several types of 

antibodies. Until recently, these antibodies were the only molecules that can directly target 

dn-collagen. Recently, researchers have discovered that collagen hybridizing peptide (CHP), 

also known as collagen mimetic peptides (CMP) can specifically target denatured collagen 

strands. CHP can recognize and hybridize with dn-collagen by re-forming the collagen triple 

helix [82]. Targeting dn-collagen is still a relatively new field, but it holds significant 

potential in advancing therapeutics and diagnostics for numerous human diseases (Table 2).

A. Collagen degradation

Collagen degradation can proceed either on the inside or outside the cells. Intracellular 

degradation occurs either in the lysosome or in the cisternae of the Golgi apparatus [83]. 

However, for the purpose of targeting and imaging disease, extracellular degradation is more 

relevant. Different types of MMPs or collagenases cleave collagen into asymmetrical 

fragments, which are susceptible to nonspecific proteolytic cleavage [84]. Proteolytic 

degradation unravels the triple helical structure of the native collagen and exposes additional 

bioactive sites that enhance cell attachment, migration, and proliferation [85]. Importantly, 

collagen cleavage also weakens the ECM leading to further degradation and many symptoms 

seen in diseases involving dn-collagen [86]. Due to the difficulty of directly measuring dn-

collagen, MMP activity is often used as a surrogate to detect collagen degradation. Various 

methods have been developed to detect MMP activity, including reverse transcription 

polymerization chain reaction (RT-PCR) [87], ELISA assay, and zymography [88, 89]. 

There are also methods based on fluorescence measurements that employ FRET triple 

helical peptide (fTHP), and gelatin conjugated with fluorescein isothiocyanate (FITC) or 2-

methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), as well as colorimetric assay using 

horseradish peroxidase and biotinylated gelatin [90, 91]. Recently, our research group 

discovered that the dn-collagen strands can form triple helices with collagen mimetic 

peptides (CMP) [82].

B. Disease detection and therapeutics associated with collagen degradation

The ability to detect early stages of collagen remodeling is crucial for understanding the 

disease mechanism, prevention of the progression of disease, and evaluating the efficacy of 

available treatments. X-ray radiography, bone scan, magnetic resonance imaging, computed 

tomography, and histomorphometric analysis are considered gold-standard methods to 

measure the quality of bone and cartilage. These methods, however, have limitations in 

terms of sensitivity and reproducibility. Moreover, they lack the ability to detect diseases in 

their early stages. Therefore, there is a need for reliable methods with which early detection 

of changes in bone and cartilage quality can be measured with high fidelity.

There is a wealth of research on identifying biochemical markers associated with 

degradation of bone and cartilage [52, 55, 92–93]. In general, these biochemical markers, or 

neoepitopes, are by-products of enzymatic processes which are involved in the formation 
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and degradation of bone and cartilage. Detection of these biomarkers in biochemical assays 

is usually done by measuring the level of the neoepitopes in body fluids, such as serum, 

plasma, synovial fluid, and urine [92]. There are several methods to detect these biomarkers 

including ELISA, radioimmunoassay (RIA), electrochemical luminescence, and HPLC 

analysis. Two notable epitopes for analyzing bone quality are serum C-telopeptide of type I 

collagen (CTX-I) and serum N-propeptide of type I collagen (PINP), which correlates with 

bone resorption and bone formation, respectively [55]. In contrast, cartilage quality can be 

measured by detecting the level of serum C-telopeptide of type II collagen (CTX-II). These 

are selected as reference markers in clinical settings due to their high sensitivity and 

reproducibility, as well as low cross-reactivity with other biomolecules. Nevertheless, full 

analysis of disease progression and selection of optimal treatment option can be best 

accomplished by a combination of imaging and biochemical techniques.

To date, development of therapeutics against bone diseases with high level of dn-collagen 

has largely focused on inhibiting the function of osteoclasts. One widely-used class of 

therapeutics for osteoporosis is bisphosphonates [94]. As anti-resorptive agents, 

bisphosphonates binds to bone minerals followed by uptake and apoptosis of osteoclasts 

[95]. Nitrogen-containing bisphosphonates, the most advanced drug in its class, disrupt the 

maturation of osteoclasts by inhibiting the function of Farnesyl PyroPhosphate Synthase 

(FPPS) [96]. Denosumab, a monoclonal antibody (mAb) which was recently approved by 

FDA for treating post-menopausal osteoporosis, binds to RANK-L and inhibits maturation 

and function of osteoclasts [97]. In 2010, FDA also approved denosumab for bone 

metastasis treatment. Certolizumab (phase III) is a PEGylated anti-TNFα that is approved 

for treatment of rheumatoid arthritis and Crohn’s disease [98].

In conclusion, there are therapeutics developed for the treatment of diseases associated with 

high activity of collagen degradation; however, other than the bone therapy, discovery of 

drugs for such diseases has been hampered largely by the inability to verify the therapeutic 

efficacy in ECM remodeling. For example, there is no definitive bone remodeling markers to 

interpret clinical outcomes or treatment responses in patients with bone metastases [99]. 

Development of new biomarkers for collagen degradation would be important not only to 

support the drug discovery processes, but also for detecting and managing disease in 

patients.

C. Antibody and phage display in discovering dn-collagen targeting molecules

Since the presence of dn-collagen is a symptom of many degenerative diseases, it is highly 

useful to have molecules that can recognize and specifically bind to the dn-collagen for the 

purposes of detecting disease or drug delivery. Using thermally denatured type I and IV 

collagens, in subtractive immunization technique, mAbs HUIV26 and HUI77 were develop 

and were found to specifically recognize enzymatically digested and denatured collagen 

[100]. HUIV26 specifically recognized thermally dn-collagen type IV, whereas HUI77 

bound to thermally dn-collagens of type I, II, III, IV, and V with a range of affinities. In type 

IV collagen, the domain responsible for inducing angiogenesis exists as hidden interaction 

site (cryptic site) that becomes exposed only after proteolytic degradation or denaturation of 
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collagen triple helix. HUIV26 was reported to target such cryptic sites and was therefore 

used to inhibit tumor growth [101, 102].

D93 (Kd: 6.5 μM), a humanized form of HUI77-derived from monoclonal IgG1 antibody, 

recognizes dn-collagen type IV by binding to a cryptic site of MMP-processed collagen 

[85]. The cryptic site was found to mediate adhesion, migration, and proliferation of tumor 

and endothelial cells [101, 103]. The cryptic site, located on the α1(IV) chain, contained a 

peptide sequence of PGAKGLPGPPGPPGPY (P1337-Y1352). Binding assays revealed a 

sequence of OGAKGLPG-POGPOGPY to be the target of D93 binding. Under the name of 

TRC093 (developed by Tracon Pharmaceuticals Inc.), D93 completed its phase I clinical 

trial in 2010.

In search for quantitative immunoassays for type II collagen, extensive screenings were 

performed against structurally different antigens of type II collagen [104]. Screening 

utilizing an ELISA assay yielded specific monoclonal antibodies E1E5 (IC50: 400 ng/mL) 

and E4A11 (IC50: 500 ng/mL) that interact with dn-collagen type II by binding to an epitope 

on the α1 chain [105]. These mAbs can detect the presence of dn-collagen type II with a 

minimum concentration of 20 ng/mL.

The peptide sequence TLTYTWS which was discovered via phage-display was found to 

specifically bind to a cryptic site on MMP-2 processed type IV collagen [106]. This cryptic 

site was reported to serve as an angiogenic signal for endothelial cells. By binding to the 

cryptic site, TLTYTWS was found to reduce endothelial differentiation in vitro and inhibit 

angiogenesis in vivo. Nonetheless, the binding mechanism of TLTWTWS to the cryptic site 

requires further investigation.

Overall, dn-collagen targeting molecules selected by library approach have revealed new 

knowledge on how changes in collagen structure (which reveal cryptic sites) affect 

collagen’s biological function. In addition, these molecules are expected to facilitate 

development of imaging agents and therapeutics that can specifically target dn-collagens.

D. Collagen Hybridizing Peptide

Collagen hybridizing peptide (CHP) is a rationally designed synthetic peptide that has strong 

propensity to fold into triple helix structure of collagen and is able to target dn-collagen 

strands both in vitro and in vivo. It is also known as collagen mimetic peptide (CMP) due to 

its resemblance to natural triple helical collagen. It is mainly composed of 6–10 repeats of 

triple helicogenic trimeric GlyProPro or GlyProHyp sequence. Since denatured collagen has 

unfolded single collagen strands, and since CHP has a strong propensity to fold into triple 

helix, CHP is able to hybridize to denatured collagen strands with high strength and 

specificity. This is similar to DNA fragments binding to complementary DNA strands [107].

Since CHPs self-assemble into homotrimers which have little driving force for collagen 

binding, the peptides need to be subjected to a condition that favor monomeric state before it 

can be allowed to bind to denatured collagen strands. In this regards, our research group has 

developed two types of CHPs, one based on simple GPO sequence that needs to be heated to 

create single strands, and a photo-caged version which only hybridizes with dn-collagen 
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after UV irradiation. The latter peptide is made of the same GPO sequence as the former but 

contains a photo-cleavable nitrobenzyl group attached to the single central glycine which 

prevents triple helical folding. (Fig. 3A) [108]. Heat inducible CHP can be used when the 

moiety (e.g. imaging modality or drug molecules) to be conjugate to the CHP is sensitive to 

light, whereas photo-inducible, caged CHP can be used when those moieties are heat 

sensitive (e.g. protein). Conjugating imaging agents can turn this peptide into diagnostic 

imaging agents, and attaching drug molecules can turn it into targeted drug delivery system 

[108–110].

The affinity of CHP to denatured collagen is driven by the availability of single strand 

collagen like chain (Fig. 3B, C). CHP can not only bind to fibrillar type (type I and II) of 

collagen, but also network-like collagen (type IV) as long as the triple helical domain of 

these collagens are denatured by proteolytic or other physico-chemical activity (e.g. heat, 

denaturants, mechanical stress). In addition, since CHP is hydrophilic and contains no 

charged amino acid, it is highly inert and shows almost no non-specific binding to other 

biomolecules (Fig. 3D) [109]. Most importantly, triple helical protein structure is an 

extremely rare supersecondary protein structure that is hard to find in proteins other than 

collagen [111]. For this reason, systemic administration of CHP conjugated with a near-IR 

dye demonstrated remarkably specific imaging of tumor as well as high bone remodeling 

activity in transgenic mouse with Marfan syndrome (Fig. 3E).

Therapeutic application of CHP was demonstrated by Raines and coworkers where (PPG)7 

was conjugated to substance P (SubP), a neuropeptide involved in wound healing [110]. 

Similar to peptides based on GPO sequence, the (PPG)7 can hybridize with damaged 

collagen molecules at the wound site, allowing the SubP which is conjugated (PPG)7 to be 

anchored in the wound bed and prevent scar tissue formation. In addition, a cancer-targeting 

delivery agent was developed by displaying (PPG)7 on the surface of M13 bacteriophage. 

[112]. This work took advantage of the fact that cancerous tissues contain high level of 

denatured collagens due to fast tissue remodeling [113]. The bacteriophage displaying CHP 

had a 16-fold higher binding affinity to dn-collagen than the wild bacteriophage. In addition, 

CHP comprised of GPP sequence was used for gene delivery. By incorporating GEKGER 

peptide sequence into the middle of the CHP sequence 

[(GPP)3GPRGEKGERGPR(GPP)3GPCCG], Urello and coworkers demonstrated that the 

CHP could engage the α2β1 integrin for gene internalization into the cell [114].

The CHP was also used to enhance the bioactivity of collagen-based tissue scaffolds [115–

117]. Our research group has conjugated CHP, (ProHypGly)9 to a proangiogenic peptide 

known as QK (KLTWQELYQLKYKGI) which is derived from VEGF. The QK-CHP 

enhanced early signs of angiogenic activity in HUVECs in scaffolds comprised of both 

gelatin and collagen which mimic the ECM of healing tissues [118, 119] suggesting that the 

QK-CHP can potentially be used to promote wound healing response of injured tissues.

Ultimately, CHP, with its simplicity and robust modularity, has the potential to facilitate the 

development of novel therapeutics targeting dn-collagen. Further discussion on assemblies 

and functionalization of CHP can be found in cited articles [82, 107, 120–122].
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Conclusion

Since collagen is the major component of the ECM, providing structural support and key 

factors for tissue proliferation and regeneration, abnormal collagen remodeling activity can 

lead to conditions that result in excessive collagen build-up or collagen degradation, as in the 

case of fibrosis and arthritis, respectively. To understand, and ultimately remediate such 

pathologic conditions, researchers have focused on identifying marker molecules that can 

recognize and bind to either the intact collagens (of accumulated collagen) or the dn-

collagen (of degraded collagen). Through the use of these biomakers, a greater 

understanding of the disease states have been gathered, which in turn, is providing more 

effective steps in preventing the progression of the disease. In addition, these biological tools 

can be utilized in both delivering therapeutics and also evaluating their efficacy. They can be 

an excellent, so called, “theranostics” for common pathologic conditions with high collagen 

remodeling activity. Although there are many specific biological markers for intact collagen, 

there are only a few ones specific for dn-collagen, including the newly discovered CHP 

which is a small peptide that can bind to denatured collagen with high specificity. More 

efforts are needed from the research community to discover new biomarkers for denatured 

collagen and at the same time, develop existing markers into useful diagnostics and 

therapeutics that can address human disease associated with excess collagen degradation.
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Figure 1. 
(A) Progression of fibrotic tissue formation caused by chronic inflammation or by 

incompatibility of biomaterial implants; (B) EP-3533, a Gd-bearing collagen-targeted MRI 

contrast agent (reprinted with permission from Ref. 55); (C) In vivo molecular imaging of 

pulmonary (top panel) and liver fibrosis (bottom panel) using EP-3533 (reprinted with 

permission from Ref. 59 and 60).
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Figure 2. 
Multivalent display of collagen-targeting moiety: (A) HVWMQAP presented on AB5 

dendritic wedge (in pink; reprinted with permission from Ref. 68), (B) CNA35 micelle 

(reprinted with permission from Ref. 69), (C) HWGSLRA Nanoburrs (reprinted with 

permission from Ref. 27), (D) Peptide amphiphile nanostructures (reprinted with permission 

from Ref. 28).
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Figure 3. 
(A) Structures of fluorescently labeled CHP and fluorescently labeled and nitrobenzyl caged 

CHP, and schematic illustration of the two approaches (heat- vs photo-triggered) of 

generating single strand CHPs for dn-collagen hybridization (reprinted with permission from 

Ref. 109), (B) Schematics of CHP hybridizing to dn-collagen, (C) Specific binding of 

caged-CHP to gelatin after UV irradiation (reprinted with permission from Ref. 108), (D) 
SDS-PAGE loaded with collagen type I, II, IV, fibronectin, laminin, and endothelial cell 

lysates (2 μg of each protein or lysates), and stained with CF-CHP and CB (reprinted with 

permission from Ref. 109), (E) Systemic injection of near-IR fluorophore conjugated CHP 

into transgenic mouse with Marfan syndrome (reprinted with permission from Ref. 108).
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Table 2

Diseases associated with high level of collagen degradation and remodeling, and their location in the body.

Distribution Diseases and medical research areas

heart myocardial infarct

blood vessels atherosclerotic plaques, blood vessel injury and failure (stroke)

cartilage osteoarthritis, rheumatoid arthritis

bone osteoporosis, bone fracture/healing, Marfan syndrome

ligament & tendon mechanical injury, sports medicine, e.g., rotator cuff tear

skin skin damage (photo, aging), skin cancer

eye cornea injury & infection, corneal healing after LASIK, keratoconus, wet AMD

lung lung inflammation, pulmonary fibrosis

liver liver fibrosis, cirrhosis

kidney nephritis, kidney fibrosis

uterus uterine fibroid

embryo ECM developmental biology, heritable connective tissue disorders

teeth oral inflammation

uterus uterine fibroid

others cancer progression & metastasis, foreign body response to implants
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