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Composition of fecal microbiota of laboratory mice derived from Japanese 
commercial breeders using 16S rRNA gene clone libraries
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ABSTRACT.	 The fecal microbiota of six mice derived from three Japanese commercial breeders was analyzed by using 16S rRNA gene clone 
libraries to construct a database for analyzing the gut microbiota of laboratory mice. The 566 clones were obtained from the clone libraries 
generated from the fecal DNA samples derived from BALB/c, C57BL/6N, DBA/2 and ICR mice. Among these 566 clones, there were 446 
unique 16S rRNA gene sequences. When grouped at the 98% similarity level, the 446 unique sequences consisted of 103 Clostridiales, 43 
Bacteroidales, 5 Lactobacillus and 3 Erysipelotricaceae, as well as sequences from 11 other phyla.
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Gut microbiota contributes to basic gut physiological 
function [8], including protection from pathogens [9, 11, 
18], proliferation and activation of colonic epithelial cells by 
short-chain fatty acids [20], and development of the immune 
system [1, 10]. Gut microbiota also influences oncogenesis 
[17, 24, 25] and the metabolomic profiles of the organs, 
blood and urine of the host [14]. Recently, relationships 
between obesity and gut microbiota have been reported [2, 
22], and their roles in metabolic syndrome have also drawn 
attention [23]. Many strains of laboratory rodents, including 
animal models for human diseases, are available from vari-
ous laboratory animal breeders. Previous studies of labora-
tory animal gut microbiota by culture-based methods have 
reported significant differences in the composition of cecal 
microbiota among mice from different laboratory animal 
breeders [6]. However, culture-based methods are not appli-
cable to non-cultivable bacteria. To overcome the problems 
of culture-dependent methods, PCR-based methods, such as 
denaturing gradient gel electrophoresis (DGGE) [5, 7], ter-
minal restriction fragment length polymorphism (T-RFLP) 
[12, 16] and next-generation sequencing (NGS), have been 
widely applied. In particular, analysis of the gut microbiota 
by using NGS has become common in recent years. How-
ever, the use of NGS is expensive and labor-intensive. By 
contrast, DGGE and T-RFLP are inexpensive methods for 
analyzing the gut microbiota composition. These methods 
can be used to determine the identities of the phylogenetic 
groups in a microbial community, if the restriction enzyme 
cutting sites of the corresponding bacterial strains are 

known. Therefore, it is important to analyze the sequences 
of the phylogenetic groups in a gut microbiota community 
using molecular biological techniques. To identify the major 
phylogenetic groups of the bacteria harbored in laboratory 
mouse gastrointestinal tracts, we studied the murine feces 
derived from three major Japanese commercial breeders by 
creating and analyzing 16S rRNA gene clone libraries.

SPF male C57BL/6N, DBA/2 and ICR were purchased 
from CLEA Japan (CLEA, Tokyo, Japan), Charles River 
Laboratories Japan (CRJ, Yokohama, Japan) and Japan SLC 
(SLC, Hamamatsu, Japan), respectively. SPF male BALB/c 
was purchased from three suppliers (CLEA, CRJ and SLC). 
All mice were used at 8 weeks of age in this study. These 
mice were euthanized immediately after arrival, and fecal 
samples were collected from rectums. This study was ap-
proved by the Institutional Animal Care and Use Committee 
of the Central Institute for Experimental Animals (Permit 
No. 11034).

The DNA isolation from each fecal sample was performed 
using a GTC solution and a T-RFLP kit for microbiota analy-
sis (TechnoSuruga Laboratory, Shizuoka, Japan) according 
to the manufacturer’s instructions. Briefly, the fecal samples 
were suspended in a GTC solution and then homogenized 
in Lysing Matrix E (MP-Biomedicals, Santa Ana, CA, 
U.S.A.) using a FastPrep FP120 (Thermo Savant, Waltham, 
MA, U.S.A.). Thereafter, DNA was extracted from a bead-
treated suspension using a phenol-chloroform extraction 
method and was purified using an UltraClean PCR Clean-up 
DNA purification kit (MO Bio Laboratories, Carlsbad, CA, 
U.S.A.).

The purified DNA was amplified with a TaKaRa PCR 
Thermal Cycler Dice (Takara Bio, Otsu, Japan) using two 
universal primers 8f (5′- AGAGTTTGATCMTGGCTCAG 
−3′) and 1391r (5′- GACGGGCGGTGTGTRCA-3′) [3]. 
PCR reactions were performed in a total volume of 20 µl 
containing 1x Taq buffer, 250 µM dNTPs, 1.5 mM MgCl2, 
0.4 µM of each primer, 10 ng of fecal DNA and 0.5 U of 
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HotStarTaq DNA Polymerase (Qiagen, Venlo, Netherlands). 
The PCR amplification program included preheating at 95°C 
for 15 min; followed by 25 cycles consisting of 95°C for 30 
sec, 50°C for 30 sec and 72°C for 2 min; and a final exten-
sion step at 72°C for 10 min.

The amplified 16S rRNA genes were cloned into Esch-
erichia coli TOP10 cells using a TOPO TA Cloning Kit (Life 
Technologies, Carlsbad, CA, U.S.A.), and transformants 
were randomly selected and subcultured. The plasmid DNA 
was purified using a QIAprep Spin Miniprep Kit (Qiagen). 
The inserted PCR products were confirmed by restriction 
enzyme (EcoR I; Takara Bio) analysis. The purified plasmid 
DNA was outsourced for sequencing analysis (Operon Bio-
technologies, Tokyo, Japan). All of the sequences obtained 
were analyzed using GENETYX-MAC ver. 13 (GENETYX, 
Tokyo, Japan) to identify identical clone sequences. The 
phylogenetic classifications of the obtained 16S rRNA gene 
sequences were estimated using Classifier provided by the 
Ribosomal Database Project, and the closest relative was 
determined by the nucleotide BLAST program provided 
by the National Center for Biotechnology Information. To 
eliminate chimeric sequences, the 16S rRNA gene sequences 
were analyzed with the chimera check program on the 
Greengenes website [4]. A phylogenetic tree was constructed 
based on the neighbor-joining method using MEGA software 
[21]. The nucleotide sequences determined from the clone 
libraries have been deposited into the DDBJ with accession 
numbers AB702715 to AB702926.

A total of 566 clones were obtained from the 6 fecal DNA 
samples. Among these 566 clones, there were 446 unique 
16S rRNA gene sequences. The remaining 120 clones 
were removed, because 77 clone sequences represented 
chimeric sequences and 43 clones shared a completely 
identical sequence with another clone. When grouped at the 
98% similarity level, the 446 unique sequences consisted 
of 103 Clostridiales, 43 Bacteroidales, 5 Lactobacillus, 3 
Erysipelotricaceae and sequences from 11 other phyla (data 
not shown). Using representative sequences, which were 
submitted to DDBJ, a phylogenetic tree was constructed 
for Clostridiales (Lachnospiraceae and Ruminococcaceae) 
and Bacteroidales (Figs. 1, 2 and 3). As shown in Fig. 1, 
numerous sequences belonged to Lachnospiraceae, particu-
larly the Clostridium coccoides group. Numerous sequences 
obtained from this study were classified into characteristic 
clusters. In addition, a number of representative sequences 
were classified into other characteristic clusters. Within the 
Ruminococcaceae, numerous sequences obtained from this 
study were classified into two new characteristic clusters 

Fig. 1.	 Phylogenetic tree showing the relationship between repre-
sentative 16S rRNA gene sequences of Lachnospiraceae from the 
clones of the feces of six laboratory mice and published sequences. 
The tree was constructed using the neighbor-joining method. Boot-
strap values, based on 1,000 replications, at the nodes of the tree 
show >50% confidence. Scale bar=0.02 substitutions/nucleotide 
position. Accession numbers for each of the published sequences 
are given. Escherichia coli is used as the outgroup for rooting the 
tree. *; Type strains.
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(Fig. 2). Within the Bacteroidales, numerous sequences 
obtained from the mouse feces belonged to Porphyromon-
adaceae (Fig. 3). This characteristic cluster, including the 
majority of the sequences identified as Bacteroidales in this 
study, was classified as Porphyromonadaceae, except for 
Parabacteroides.

The laboratory mice have been bred in strictly controlled 
environment and have a stable quality. Therefore, it was 
estimated to be a preferred way for our study aimed at con-
struction of a database for analyzing the gut microbiota of 
laboratory mice, although we only analyzed the feces of six 
mice using clone library methods. The majority of the clones 

Fig. 2.	 Phylogenetic tree showing the relationship between representative 16S rRNA gene sequences of Ruminococcaceae from the clones 
obtained from the feces of six laboratory mice and published sequences. The tree was constructed using the neighbor-joining method. Boot-
strap values, based on 1,000 replications, at the nodes of the tree show >50% confidence. Scale bar=0.02 substitutions/nucleotide position. 
Accession numbers for each of the published sequences are given. Escherichia coli is used as the outgroup for rooting the tree. *; Type strains.
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Fig. 3.
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obtained from this study were classified as Lachnospiraceae, 
Porphyromonadaceae and Lactobacillus. Previous phyloge-
netic studies of Clostridiales and Bacteroidales in murine gut 
microbiota have been reported by Momose et al. [15], Salz-
man et al. [19] and Kibe et al. [12, 13]. The presence of the C. 
coccoides group, belonging to Lachnospiraceae, in this study 
is consistent with the cluster reported by Kibe et al. [12]. By 
contrast, the clustering of the C. leptum subgroup, belonging 
to Ruminococcaceae, in this study differed from the clusters 
reported by Momose et al. [15]. The Porphyromonadaceae 
detected in this study included an operational taxonomic unit 
(OTU) previously reported to be mouse intestinal bacteria 
(MIB) by Salzman et al. [19] and Kibe et al. [12, 13].

In conclusion, the fecal microbiota of mice derived from 
three Japanese commercial breeders consisted mainly of 
Clostridiales, Bacteroidales and Lactobacillus. Among Clos-
tridiales and Bacteroidales, a high diversity of Lachnospira-
ceae and Porphylomonadaceae (other than Parabacteroides) 
was detected in this study.
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