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Abstract
Recent studies have revealed that bile acids (BAs) 
are not only facilitators of dietary lipid absorption but 
also important signaling molecules exerting multiple 
physiological functions. Some major signaling pathways 
involving the nuclear BAs receptor farnesoid X receptor 
and the G protein-coupled BAs receptor TGR5/M-BAR 
have been identified to be the targets of BAs. BAs 
regulate their own homeostasis via  signaling pathways. 
BAs also affect diverse metabolic pathways includ-
ing glucose metabolism, lipid metabolism and energy 
expenditure. This paper suggests the mechanism of 
controlling metabolism via  BA signaling and demon-
strates that BA signaling is an attractive therapeutic 
target of the metabolic syndrome. 
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Core tip: Bile acids (BAs) are important molecules that 
participate in various metabolic pathways. BA signaling 
mechanisms are attractive therapeutic targets of the 
metabolic syndrome. In this review, we show the mecha-
nisms of controlling glucose, lipid and energy metabolism 
via BA signaling. Furthermore, the authors also describe 
how those basic scientific studies have been applied to 
the clinical setting. Particularly, bile acid binding resin 
(BABR) originally used to treat hypercholesterolemia 
also stimulates incretin secretion and improves glucose 
metabolism. In addition to BABR, the clinical application 
of farnesoid X receptor and TGR5/M-BAR agonists are 
ongoing for the treatment of metabolic syndrome. The 
effects of bariatric surgery on glycemic control are also 
associated with BA metabolism. 
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INTRODUCTION
Bile acids (BAs) are the main constituents of bile and 
amphipathic molecules, containing both hydrophilic and 
hydrophobic regions. BAs are synthesized from cholesterol 
in the liver, stored in the gall bladder, and flow into the 
small intestine after meal ingestion. Intestinal BAs faci
litate digestion and absorption of lipids and fatsoluble 
vitamins[1]. 

Recent reports suggest that BAs are responsible 
not only for the absorption of lipids but also for signal 
transduction. Some major signaling mechanisms have 
been identified, including the MAPK pathways, nuclear 
hormone receptor farnesoid X receptor (FXR)mediated 
pathway and G protein-coupled receptor TGR5/M-BAR 
(also named GPR131)-mediated pathway[2-5]. BAs have 
been demonstrated to be natural ligands of FXR. The 
main role of the FXR signaling pathway is regulating both 
enterohepatic circulation and BA biosynthesis to maintain 
the homeostasis of BA[6]. In addition, FXR signaling has 
been known to regulate lipogenesis gene expression and 
improve hepatic steatosis[7]. Moreover, recent studies 
have shown that BAs and FXR signaling are associated 
with the beneficial glycemic effects of bariatric surgery 
and regulation of autophagy[810]. BAs also activate TGR5/
M-BAR. The TGR5/M-BAR signaling pathway stimulates 
energy expenditure in both brown adipose tissue (BAT) 
as well as skeletal muscle[11]. Furthermore, TGR5/M-BAR 
plays a role in hepatic microcirculation as well as cytokine 
release from macrophages[12]. Taken together, BAs not 
only participate in the digestion and absorption of lipids 
but also in various metabolic pathways. BA signaling 

participates in various diseases such as cancer, immune 
disorders, and metabolic syndrome[13-15]. In this review, 
we summarize the current knowledge of the metabolic 
regulation mechanisms of BAs and propose BA signal
ing pathways as a therapeutic target of the metabolic 
syndrome. 

BILE ACIDS METABOLISM
The majority of synthesized BAs are secreted into the 
bile and kept in the gallbladder. When food enters the 
gastrointestinal tract, bile flows into the small intestine, 
and are efficiently absorbed by active transport and 
passive diffusion in the terminal ileum. BAs are then 
transported again to the liver through the portal vein and 
reuptaken at the sinusoidal membranes of hepatocytes. 
These BAs are then secreted into the bile again; each 
BA molecule can complete 412 cycles of circulation per 
day[16]. 

BA synthesis has two differential pathways: The 
“classic (or neutral) pathway” and the “alternative (or 
acidic) pathway”. In the classic pathway, the enzyme 
cholesterol7α-hydroxylase (CYP7A1) hydroxylates 
the C7α position during the first step. In the alternate 
pathway, the enzyme sterol-27α-hydroxylase (CYP27A1) 
first hydroxylates the C27 position. The classic pathway 
seems more important than the alternative pathway 
because the classic pathway is responsible for main-
taining cholesterol homeostasis by controlling BA syn
thesis[17]. The rate-limiting enzyme CYP7A1 converts 
cholesterol to 7α-hydroxycholesterol, and other enzymes 
including sterol12α-hydroxylase (CYP8B1), 25-hydroxy-
cholesterol7α-hydroxylase (CYP7B1) and CYP27A1 
convert 7α-hydroxycholesterol to primary BAs, including 
cholic acid (CA) and chenodeoxycholic acid (CDCA)[18]. 
CYP8B1 controls the production of CA, and CA regulates 
the CA/CDCA ratio in humans or the CA/MCA ratio in 
mice by mediating feedback regulation[19]. Regulation 
of this ratio is important because previous studies 
demonstrated that the ratio of CA/CDCA is associated 
with liver diseases in humans[20]. For example, this ratio 
is decreased in patients with liver cirrhosis and hepatic 
cancer but is increased in cholestasis. Most of the BAs 
are conjugated to glycine or taurine, and the ratio of BAs 
conjugated to taurine and glycine differ depending on the 
animal species. In humans, the ratio of BAs conjugated 
to taurine and glycine are approximately 1:2, and most 
BAs are conjugated with taurine in mice. BAs inhibit 
the expression of CYP7A1 and CYP8B1 in liver through 
several pathways, which are mainly FXR-dependent. 
BAs activate FXR, leading to the upregulation of a small 
heterodimer partner (SHP; NR0B2), which suppresses 
the activity of hepatocyte nuclear factor4α (HNF-4α; 
NR2A1), liver X receptor (LXR; Nr1h3) and liver receptor 
homolog-1 (LRH-1; NR5A2), which are both required 
for transcriptional induction of BA synthesis enzymes 
via binding to BAresponse elements in promoters[21-23]. 
Additionally, the intestinal activation of FXR by BAs 
causes an increased expression of fibroblast growth 
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factor (FGF)-15 in rodents and FGF-19 in humans. 
BAs absorbed in the terminal ileum activate intestinal 
FXR and induce enterocytic production of FGF-15/19. 
This FGF-15/19 is passed from the portal vein to the 
hepatocytes and couples with a receptor, FGF receptor 4 
(FGFR4). These signaling pathways via FGF-15/19 and 
FGFR4 induce receptor dimerization, autophosphorylation, 
and c-Jun N-terminal kinase pathway activation resulting 
in the repression of CYP7A1 transcription (Figure 1)[24,25]. 
A second BA receptor, TGR5/M-BAR, also contributes to 
regulation of BA homeostasis. TGR5/M-BAR knockout 
mice present with a decrease in the BA pool size and 
the impaired suppression of CYP7A1 expression upon 
BA administration[26,27]. Vitamin D also regulates BAs 
synthesis. Vitamin D receptor activation induces the 
expression of FGF-15/19, and BA synthesis is decreased 
by reducing CYP7A1 expression[28,29]. BAs regulate BA 
homeostasis via FXR, TGR5/M-BAR and other signaling 
pathways primarily by maintaining gene expression of 
the rate-limiting enzymes CYP7A1 and CYP8B1.

BILE ACIDS IN GLUCOSE METABOLISM
Previous studies have clarified that BAs affect glucose 
metabolism. Glucose induces the expression of FXR 
and CYP7A1, and insulin reduces their expression in 
vitro[30]. Further studies have shown that BAs seem to 
regulate gluconeogenesis, but the mechanisms remain 
poorly understood. Some studies have indicated that 
the expression of phosphoenolpyruvate carboxykinase 
(PEPCK), which is the rate-limiting enzyme of gluconeo-

genesis, is suppressed by BAs in human liver cancer 
cells (HepG2 cells) and the mouse liver[31-33]. Additionally, 
enzymes such as glucose 6phosphatase and fructose 
1,6-bisphosphatase 1 which also participate in gluco-
neogenesis are repressed by BAs[31]. These effects 
are decreased in FXR and SHP knockout mice, which 
supports the idea that BAs suppress gluconeogenesis 
in a FXRSHPdependent manner[33]; however, others 
have reported that FXRdependent signaling induces 
PEPCK expression and increases gluconeogenesis in 
primary hepatocytes and rat hepatoma cell lines[34]. 
In terms of glycogen synthesis, BAs increase hepatic 
glycogen synthesis and storage, resulting in decreased 
blood glucose levels in an FXRdependent manner 
(Figure 2B)[35]. A previous study demonstrated that 
long-term FXR activation (3 mo) with a synthetic FXR 
agonist, GW4064, worsened glucose intolerance and 
insulin resistance in high-fat fed C57BL/6J mice[33,36]. The 
mechanism behind the effects of GW4064 is lowering 
the BA pool size following FXR activation. Some reports 
have suggested that shortterm (10 d) FXR activation 
by the synthetic FXR agonist GW4064 reduced glycolytic 
gene expression and improved insulin resistance in ob/
ob or db/db mice[35,37]. In contrast, the difference of the 
GW4064 administration period may lead to the opposite 
result. Long-term administration of BAs, the endogenous 
natural ligands of FXR, did not decrease the BA pool 
size and subsequently improved glucose intolerance and 
insulin resistance[36]. 

BA administration improved metabolism including 
glucose tolerance and insulin resistance. The beneficial 
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effects of BAs, such as a decrease in gluconeogenesis 
and increase in glycogen synthesis, seem to occur not 
only through FXR signaling but also through a number 
of other signaling molecules, such as TGR5/M-BAR. 
BAs stimulate incretins, such as glucagonlike peptide1 
(GLP-1; Figure 3). GLP-1 is secreted by dietary stimulation 
from enteric L cells and promotes insulin secretion by 
binding to the GLP-1 receptor in the pancreatic β cell. 
Further, GLP-1 maintains pancreatic function, and GLP-1 
receptor agonists have been developed for the treatment 
of diabetes[38]. TGR5/M-BAR signaling causes GLP-1 
secretion in mouse enteroendocrine STC-1 cells[39]. 
Moreover, 6-ethyl-23(S)-methylcholic acid (6EMCA or 
INT-777[40]), a semisynthetic TGR5/M-BAR agonist, 
stimulates the secretion of GLP-1 in both mouse and 
human enteroendocrine cells. In the present study, knock
down of TGR5/M-BAR by shRNA decreased 6EMCA-
induced secretion of GLP-1 in STC-1 cells[41]. The natural 
TGR5/M-BAR agonist oleanolic acid also improves the 
metabolism of glucose[42]. This evidence indicates the 
importance of TGR5/M-BAR in GLP-1 secretion. An in 
vivo study with TGR5/M-BAR transgenic and TGR5/M-BAR 
knockout mice strongly supports the relationship between 
TGR5/M-BAR and GLP-1 secretion[43]. Considering the 
current mechanism, TGR5/M-BAR activation increases 
cAMP levels and the ATP/ADP ratio, which then leads to 
depolarization of the plasma membrane as well as Ca2+ 
mobilization, resulting in increased GLP-1 release[41]. 
Additionally, a human genetic study revealed an asso
ciation between a single nucleotide polymorphism, 

rs3731859, of the TGR5/M-BAR gene and various 
metabolic indexes including BMI, waist circumference, 
intramyocellular lipid, and fasting serum GLP-1 levels[44]. 
Hence, these findings suggested that GLP-1 secretion 
was stimulated by TGR5/M-BAR signaling in vivo. BAs 
and TGR5/M-BAR could become therapeutic targets of 
diabetes. 

BILE ACIDS IN LIPID METABOLISM
BAs are important in regulating triglyceride (TG) meta-
bolism as well as cholesterol metabolism. The relationship 
between BAs and TG was first reported in the treatment 
of gallstones with CDCA. CDCA treatment decreased 
the serum TG level in patients with gallstones[45]. In 
fact, BAs or a synthetic FXR agonist affected TG meta-
bolism via several mechanisms including the FXR
mediated pathway. The target of FXR, SHP, suppressed 
upregulation of sterol regulatory elementbinding 
protein1c (SREBP1c), the master regulator of fatty 
acid and TG synthesis, to reduce the expression of the 
lipogenic genes such as acetyl CoA synthetase, acetyl 
CoA carboxylase, stearoyl CoA desaturase 1, and fatty 
acid synthase[7,46]. In addition, the TG-lowering effects 
were attenuated in SHP knockout mice, indicating that 
lipogenesis mediated by SREBP1c is suppressed in 
an FXRSHPdependent manner[7]. Additionally, FXR 
activation by BAs increases expression of apolipoprotein 
(Apo) CⅡ. Apo CⅡ activates lipoprotein lipase, which 
in turn stimulates TG hydrolysis in very low density 
lipoprotein (VLDL) and chylomicrons, and also facilitates 
the clearance of TG from the serum[47]. The expression 
of ApoCⅢ and angiopoietin-like protein 3, which inhibits 
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the activity of lipoprotein lipase, were repressed by FXR 
stimulation with BAs[48-50]. In addition, FXR induces the 
expression of the VLDL receptor, which acts to clear 
plasma TG (Figure 2A)[51]. 

BAs also represses the expression of microsomal 
triglyceride transfer protein (MTP) and ApoB in an FXR-
independent manner to suppress the formation of 
VLDL and chylomicrons[52]. Not only VLDL but also high 
density lipoprotein (HDL) clearance are suggested to be 
subject to modulation by BAs. Expression of scavenger 
receptor B1 (SRB1), a molecule in charge of hepatic 
uptake of HDL, is decreased, and HDL-C (HDL-cholesterol) 
is elevated in FXR knockout mice[53]. In addition, the 
administration of an FXR ligand increases hepatic SRB1 
expression and decreases HDL-C levels (Figure 2A)[54]. 

BAs control other major regulators of lipid metabo
lism such as proliferatoractivated receptor α (PPARα) 
and pyruvate dehydrogenase kinase-4 (PDK4). The 
nuclear receptor PPARα, which is activated by free fatty 
acids (FFA), decreases serum TG levels and exerts an 
important role for controlling enzymes participating in 
fatty acid β oxidation (Figure 2A)[55]. A study suggested 
that BAs directly regulate PPARα through FXR in humans, 
but not in mice[56]. PDK4 is also up regulated by BAs 
in an FXRdependent manner, resulting in inactivation 
of pyruvate dehydrogenase, decreased glycolysis and 
increased oxidation of fatty acid β[57]. BAs are also 
associated with atherosclerosis[58,59]. Treatment with 
TGR5/M-BAR agonist INT-777 represses the activation of 
inflammatory cytokines such as NF-κB and inhibits foam 
cell formation and subsequent atherosclerotic plaques. 
In addition, INT-777 does not inhibit atherosclerosis 
in TGR5/M-BAR knockout mice, supporting the anti-
atherosclerotic effect of TGR5/M-BAR (Figure 3)[58]. 

BILE ACIDS IN ENERGY METABOLISM
BAs have been reported to stimulate adaptive thermo
genesis and energy expenditure via TGR5/M-BAR 
(Figure 3)[11]. TGR5/M-BAR activation leads to increased 
intracellular cAMP levels, activation of PKA and induc
tion of CREB phosphorylation. This series of signaling 
activity induces the expression of genes bearing a cAMP 
responsive element and exists in various tissues[60,61].

In the BAT, TGR5/M-BAR stimulation increases the 
intracellular cAMP level and induces cAMPdependent 
iodothyronine deiodinase type 2 (Dio2) expression, 
which converts inactive thyroxine (T4) to active 
3,5,3’-triiodothyronine (T3) to evoke increased energy 
expenditure[11]. Dio2 increases the nuclear T3 level with-
out various unwanted side effects caused by increased 
blood T3 levels. Only 20% of nuclear T3 is produced 
and secreted from the human thyroid gland, and the 
remaining nuclear T3 is supplemented from other 
tissues. Dio2 supplies approximately 50% of the T3 
in the nucleus including the BAT[62]. The BAT is one of 
the most important targets of BAs to increase energy 
expenditure. Although BAT had been regarded as a 
tissue only in newborn infants, recent studies with FDG-

PET revealed the existence of BAT in the shoulders 
and neck in adult humans, especially with brief cold 
exposure[63-65]. Furthermore, several groups have shown 
the importance of BAT in adult humans. In healthy 
patients, the amount of BAT is large and its activity is 
high but are reduced in obese patients[6668]. In addition, 
TGR5/M-BAR and Dio2 are co-expressed in skeletal 
muscle in humans, which suggests the presence of a 
thermogenic mechanism in humans[11]. Moreover, a 
recent study found another type of adipocyte termed 
“beige” cells which are derived from white adipose 
tissue. These adipocytes also respond to cyclic AMP 
stimulation with high uncoupling protein (UCP) 1 ex-
pression and respiration rates similar to BAT cells[69,70]. 
These accumulating findings suggest a therapeutic 
approach to improve obesity and metabolic syndrome 
by increasing energy expenditure through TGR5/M-BAR 
stimulation. 

BILE ACIDS IN AUTOPHAGY
Autophagy is an evolutionarily conserved catabolic sys
tem that maintains energy homeostasis by recycling 
nutrients in the fasted state. Recent studies have re
vealed that FXR stimulation suppresses autophagy in 
the liver. FXR and peroxisome PPARα competitively bind 
to the promoter regions of autophagic genes, and these 
receptors show conflicting effects on transcription[8]. 
In the liver, PPARα activation under fasted conditions 
promotes autophagic lipolysis, while FXR activation under 
fed conditions suppresses autophagy. That is, PPARα 
and FXR competitively regulate autophagy based on 
the nutritional condition (Figure 4A). Another study also 
revealed that FXR and cAMP response elementbinding 
protein (CREB), which is a transcriptional activator 
under starvation, competitively regulate autophagy in 
the liver[9]. In the fasted condition, CREB binding to its 
coactivator CREB regulated the transcription coactivator 
2 (CRTC2) to induce CRTC2 activity and subsequent 
autophagic-related gene expression. Additionally, FXR 
stimulation caused by feeding disrupts the functional 
CREB–CRTC2 complex and downregulates autophagy 
(Figure 4B). In any case, there is no doubt that FXR acts 
as a suppresser of autophagy. 

ROLES OF BILE ACIDS IN THE 
GASTROINTESTINAL TRACT
Intestinal FXR has been recently identified as a possi
ble target for improving metabolic syndrome. Intestinal 
FXR activation induces the expression of FGF-15/19, 
and several studies have demonstrated that FGF-15/19 
affects glucose and energy homeostasis. FGF-19 
transgenic mice showed increased hepatic β oxidation, 
reduced adipose tissue weight, and improved glucose 
tolerance and insulin sensitivity[71]. In mice, hepatic 
acetyl-CoA carboxylase 2 (ACC2) mRNA was decreased, 
and the mass of the BAT was increased. ACC2 exists at 
the mitochondrial membrane and converts acetyl-CoA 
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to malonyl-CoA. ACC2 activation results in an elevation 
of malonyl-CoA levels, which inhibit carnitine palmitoyl 
transferase-1 (CPT-1) activation[72]. CPT-1 transfers FFA 
from the cytoplasm to the mitochondria and induces fatty 
acid β oxidation. Thus, the overexpression of FGF-19 
suppresses ACC2 mRNA levels, decreases malonyl-CoA 
levels, activates CPT-1, and thereby increases β-oxidation 
in the liver. In addition, hyperglycemia is improved upon 
administration of FGF-19 protein in obese mice[73]. Fur
thermore, activation of intestinal FXR by administration 
of fexaramine, an FXR agonist, improved obesity and 
insulin resistance by inducing FGF-15, changing the 
serum BA composition and stimulating systemic TGR5/
MBAR[74]. These results suggest the possibility that 
metabolic disease is improved through the intestinal FXR
FGF-15/19 signaling pathway (Figure 5B). 

The primary BAs excreted into the intestine become 
deconjugated BAs and are converted into various secon
dary BAs by microbial enzymes[75]. In germ-free (GF) 
mice, a decrease in the gut microbiota that facilitate BA 
deconjugation leads to increased taurobetamuricholic 
acid (T-β-MCA). In comparison to conventionally raised 
mice, FXR-dependent BA synthesis is reduced in GF 
mice. Therefore, T-β-MCA is an FXR antagonist, and 
the microbiota affect bile acid homeostasis via the inhi
bition of intestinal FXR signaling by change in the BA 
composition[76]. In contrast to previous reports, recent 
studies have noted that alteration of the BA composition 
by microbiota and inhibition of intestinal FXR activity 
improved lipid and glucose metabolism. Increased T-β
MCA reduced intestinal FXR activation and decreased 
serum ceramide levels through repression of ceramide 
synthesis. Decreased ceramide downregulated expression 
of hepatic SREBP1c and resulted in an improvement of 
obesity and nonalcoholic fatty liver disease (NAFLD)[7779]. 
Additionally, intestinal FXR deactivation may also improve 
glucose metabolism as well as lipid metabolism. FXR 

activation in L cells decreased glycolysis, proglucagon 
expression and cAMP levels. Thus, GLP-1 production 
and secretion were inhibited (Figure 5A)[80]. Conflict-
ing opinions suggest that microbiota regulation of BA 
homeostasis and intestinal FXR activation are involved 
in controlling hepatic lipid accumulation and glucose 
metabolism. Further studies are needed to clarify the 
roles of intestinal FXR signaling for improving metabolic 
diseases. 

Bariatric surgery provides another clue to identify
ing the link between BAs and glucose homeostasis. 
Bariatric surgery, particularly gastric bypass surgery, is 
an established modality for obesity and type 2 diabetes 
mellitus, albeit that the mechanism of its effectiveness 
remains unclear. Interestingly, an improvement in gly
cemic control is seen soon after the surgery, when the 
body weight remains unchanged. Therefore, some of 
the antimetabolic syndrome effects of this surgical 
intervention appear to be independent of body weight 
reduction. One recent study suggested that BAs might 
participate in this immediate effect of bariatric surgery. 
Following gastric bypass, the bile flow is changed, which 
leads to an increase in plasma BA level and incretin 
secretion[81]. Hormonal factors and the gut microbiota 
might also be involved in the effects of this surgery. 
The gut microbiota is responsible for the enteral BA 
metabolism, and the normal spectrum of gut micro
biota is impacted by gastrointestinal surgery. As one 
example, the predominant presence of Firmicutes 
was reportedly diminished, and other species, such as 
methanogens and Prevotellacaea, were also inhibited 
after bariatric surgery[82]. In addition to these studies, 
recent research has revealed that FXR is associated with 
the effect of bariatric surgery[83]. Interestingly, in FXR 
knockout mice, metabolic improvements such as weight 
loss and improved glucose tolerance were reduced after 
bariatric surgery. Furthermore, the surgery changed the 
gut microbial communities differently between wild type 
and FXR knockout mice. This study suggested that BAs 
may affect glucose homeostasis via FXR signaling and 
alterations of the gut microbiota after bariatric surgery. 
Further investigations are expected. 

Bile acid binding resin (BABR) is an effective drug for 
the treatment of hypercholesterolemia by lowering LDL-
cholesterol. BABR absorbs BAs in the intestine, thereby 
preventing their uptake in the ileum, interrupting their 
enterohepatic circulation, and facilitating their excretion 
in the feces. The inhibition of the enterohepatic circula-
tion leads to a reduction of the BA pool size, repression 
of FXR-SHP and FGF-15/19 signaling, and induction 
of CYP7A1 expression and synthesis of BAs from the 
cholesterol to maintain the BA pool size. A decrease in 
intrahepatic cholesterol levels activates SREBP-2, which 
induces the expression of the LDL receptor (LDLR) to 
enhance cholesterol uptake, reducing serum cholesterol 
levels. In addition to lowering the serum cholesterol 
effect, there is interaction between BABR and glucose 
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Figure 4  Autophagy regulation by the farnesoid X receptor. FXR is asso-
ciated with regulation of autophagy. Two different mechanisms are reported. A: 
FXR and PPARα competitively bind to the promoter regions of autophagic genes, 
and FXR activation suppresses autophagy; B: FXR stimulation disrupts the 
functional CREB–CRTC2 complex and suppresses autophagy. FXR: Farnesoid 
X receptor; PPARα: Peroxisome proliferator-activated receptor α; CREB: cAMP 
response element-binding protein; CRTC2: CREB regulated transcription 
coactivator 2.
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metabolism[84]. In a dietinduced obesity rat model, 
BABR decreased serum glucose and improved glucose 
tolerance[85,86]. In a clinical trial, cholestyramine, a first 
generation BABR, improved glycemia by 13% in patients 
with type 2 diabetes[87]. In addition, a second generation 
BABR also improved glucose clearance and increased 
serum GIP and GLP-1 levels in patients with type 2 
diabetes mellitus[88]. These studies clarified that BABR is 
not absorbed in the body and there are few unwanted 
side effects. Furthermore, BABR can decrease blood 
glucose levels only in high glucose situations. As a result, 
in January 2008, this drug was approved as a therapeutic 
drug for diabetes by the Food and Drug Administration 
(FDA) in the United States[87,8992]. 

Although how BABR improves diabetes remains 
unknown, several possible mechanisms have been pro-
posed. BABRmediated improvement of hepatic insulin 
sensitivity depends on downregulating the hepatic 
cholesterol-LXR-IRS2 pathway[93]. In addition, BABR 
induces GLP-1 secretion via the activation of TGR5/
M-BAR or GPR40, each being activated by BAs binding 
with BABR or unabsorbed long-chain fatty acids[39,94,95]. 
Further, BABR affects the makeup of the BA pool 
and peripheral BAs, which results in the induction of 
peripheral energy expenditure and improved glucose 
tolerance[84]. The BABR effects of improving diabetes 
may be explained by the inhibition of intestinal FXR as 
well as TGR5/M-BAR signaling[80]. BABR colesevelam 
inhibits intestinal FXR activation and improves glucose 
metabolism by increasing proglucagon gene expression 
and inducing GLP-1 secretion in ob/ob mice[80]. These 
findings suggest that inhibiting FXR in the L cell via BABR 
could be a new target for diabetes. 

CLINICAL APPLICATION IN BA 
SIGNALING
Currently, BABR has been approved by the FDA and 
has been clinically used as a diabetes treatment drug. 
The association between bariatric surgery and BA ho-
meostasis was confirmed. In addition to BABR and 
bariatric surgery, other clinical applications based on the 
mechanism of metabolic control via BA signaling are 
ongoing. For instance, INT-747 (also named 6-ethyl-
CDCA), which is a synthetic FXR agonist, exerts a hepato-
protective effect in patients of primary biliary cirrhosis 
(PBC)[9698], and a phase Ⅲ clinical study has already 
been completed and confirmed the effect of PBC. In 
addition to medicine, INT-747 has also entered into a 
study for NAFLD treatment. A phase Ⅱ clinical trial for 
NAFLD has been completed, and an improvement was 
observed in type 2 diabetes mellitus patients with NAFLD. 
Clinical trials with TGR5 agonists, such as INT-777, are 
ongoing, and future studies are expected[40,41,99]. 

Altogether, these clinical applications will elucidate 
the BA signaling mechanisms that will lead to the im-
provement of metabolic disorders including obesity and 
diabetes. 

CONCLUSION
Today, BAs have become important molecules to control 
metabolic homeostasis. In this review we discussed the 
relationship between BA metabolism and signal trans-
mission, such as the FXR and TGR5/M-BAR pathways 
and the possibility that BAs may improve metabolic 
diseases. Current evidence shows that BAs regulate lipid, 
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Figure 5  Conflicting mechanisms of metabolic regulation via intestinal farnesoid X receptor activity. A: FXR activation decreases hepatic TG levels and 
improves glucose metabolism; B: Intestinal FXR activation of FXR agonist leads to FGF-15/19 production and improves nonalcoholic fatty liver disease. Synthesized 
FGF-15/19 changes BA metabolism and serum BA composition, which causes TGR5/M-BAR activation, reduced inflammatory cytokine release, and improved insulin 
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glucose, and energy metabolism via FXR or TGR/M-BAR-
mediated pathways. Furthermore, the clinical application 
of FXR and TGR/M-BAR agonists are ongoing.

Recent studies have focused on intestinal FXR sig
naling; however, conflicting data have been reported 
regarding the metabolic regulation of intestinal FXR 
activity. Further studies are necessary to determine 
intestinal FXR signaling taking into consideration various 
factors such as microbiota regulation, BA pool size, and 
BA composition. 
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