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Abstract

Motivation: Finding genes which are directly perturbed or targeted by drugs is of great interest

and importance in drug discovery. Several network filtering methods have been created to predict

the gene targets of drugs from gene expression data based on an ordinary differential equation

model of the gene regulatory network (GRN). A critical step in these methods involves inferring the

GRN from the expression data, which is a very challenging problem on its own. In addition, existing

network filtering methods require computationally intensive parameter tuning or expression data

from experiments with known genetic perturbations or both.

Results: We developed a method called DeltaNet for the identification of drug targets from gene

expression data. Here, the gene target predictions were directly inferred from the data without a

separate step of GRN inference. DeltaNet formulation led to solving an underdetermined linear re-

gression problem, for which we employed least angle regression (DeltaNet-LAR) or LASSO regu-

larization (DeltaNet-LASSO). The predictions using DeltaNet for expression data of Escherichia coli,

yeast, fruit fly and human were significantly more accurate than those using network filtering

methods, namely mode of action by network identification (MNI) and sparse simultaneous equa-

tion model (SSEM). Furthermore, DeltaNet using LAR did not require any parameter tuning and

could provide computational speed-up over existing methods.

Conclusion: DeltaNet is a robust and numerically efficient tool for identifying gene perturbations

from gene expression data. Importantly, the method requires little to no expert supervision, while

providing accurate gene target predictions.

Availability and implementation: DeltaNet is available on http://www.cabsel.ethz.ch/tools/DeltaNet.

Contact: rudi.gunawan@chem.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowing the molecular targets of a drug or chemical compound is

crucial in the drug discovery research for, among other things,

identifying therapeutic properties and side effects, understanding

the mechanism of action of a drug, finding alternative compounds

with similar or greater efficacy and exploring new applications of

a drug for treatment of other diseases (drug repositioning). In this

regard, advances in high-throughput omics technology have been

playing a crucial role in providing the data for elucidating cellular

entities which interact with drug and chemical compounds.

Cellular-wide response such as whole-genome gene expression pro-

file, to genetic perturbations and chemical compounds can now be

measured easily and cheaply. Furthermore, large amount of omics

data are available from the ever-growing public biological data-

bases. Because such data are typically of high dimensionality, the

use of computational methods has become necessary in their ana-

lysis, for example in the inference of gene regulatory networks

(Hurley et al., 2012).
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Computational systems biology has provided many tools to ana-

lyze gene expression profiles for drug target predictions. A summary

of different methods in this topic can be found in a review article

(Chua and Roth, 2011). Briefly, there exist two main strategies:

comparative analysis and network analysis. In comparative analysis,

the gene targets are determined by comparing the gene expression

profiles under drug treatments of interest with those from experi-

ments with known genetic perturbations. This strategy generally in-

volves gathering a compendium of expression profiles from genetic

perturbations and chemical compound treatments with known

mechanisms, followed by an association analysis of the expression

profiles from drugs (e.g. using clustering, distance or connectivity

score) (Hughes et al., 2000; Lamb et al., 2006; Iorio et al., 2010). A

strong degree of association suggests a high similarity between the

molecular targets of a drug of interest and the known perturbations.

In network analysis strategy, a model of the GRN is employed to

predict GRN perturbations caused by drugs. The perturbation ana-

lysis requires constructing a network model of gene transcriptional

regulation. One class of network analysis called network filtering is

based on an ordinary differential equation (ODE) model of the gene

transcription process. By taking the steady state assumption, the in-

ference of GRN and drug targets reduces to solving a multivariate

linear regression problem (see Methods and Materials for more

details). Algorithms from this class of network analysis include

network identification by multiple regression (NIR) (Gardner et al.,

2003), mode of action by network identification (MNI)

(di Bernardo et al., 2005) and sparse simultaneous equation model

(SSEM) (Cosgrove et al., 2008). Here, the gene target predictions

are obtained by first inferring the GRN using a library of gene ex-

pression data from the same species or cell line. Subsequently, the

inferred GRN is used to filter the expression data of drug treat-

ments. More precisely, genes with expressions which could not be

explained by the transcriptional activity of their regulators are

scored more likely to be direct targets of the drug.

Another type of network analysis methods rely on statistical test

or enrichment analysis of the gene expression profiles to identify

drug targets. One strategy called reverse causal reasoning uses litera-

ture-mined gene regulatory networks to generate hypotheses, which

are subsequently scored against the gene expression profile

(Belcastro et al., 2013; Chindelevitch et al., 2012; Martin et al.,

2012). Another set of methods employ a transcription factor (TF)

enrichment analysis followed by an upstream analysis, which in-

volves a search for proteins that are highly connected to enriched

TFs in signal transduction or protein-protein interaction networks

(Chen et al., 2012; Koschmann et al., 2015; Lachmann and

Ma’ayan, 2009; Laenen et al., 2015). Meanwhile, a method called

Master Regulatory Inference algorithm (MARINa) applies gene set

enrichment analysis using a transcriptional regulatory network to

identify TFs whose regulons are enriched for differentially expressed

genes (Lefebvre et al., 2010). Finally, a recent algorithm named

Detecting Mechanism of Action by Network Dysregulation

(DeMAND) uses an input GRN and expression data from control

and drug treatments to identify target genes based on dysregulated

gene interactions (Woo et al., 2015). Despite the differences in how

GRNs are used in network analysis methods, the accuracy of the tar-

get predictions naturally depend on the fidelity of the GRN model.

Unfortunately, the inference of GRN is known to be very challeng-

ing as the problem has been shown to be underdetermined

(Szederkényi et al., 2011; Ud-Dean and Gunawan, 2014).

In this work, we developed a network analysis method called

DeltaNet for predicting the genetic perturbations caused by a drug or

chemical compound using gene expression profiles. DeltaNet is also

based on an ODE model of the GRN, but does not require a separate

step of GRN inference. Instead, the target predictions are obtained

directly from the data, while the GRN is only inferred implicitly.

DeltaNet relies on the least angle regression (LAR) (Efron et al.,

2004) and the LASSO regularization (Tibshirani, 1996) to tackle the

curse of dimensionality of the underlying regression problem. We

demonstrated the advantages of DeltaNet over z-scores and other net-

work filtering methods, namely MNI and SSEM, using compendia of

gene expression data from Escherichia coli, Saccharomyces cerevisiae,

Drosophila melanogaster and Homo sapiens.

2 Methods and materials

2.1 DeltaNet formulation
DeltaNet is based on the following ODE model of gene transcrip-

tional process (Liao et al., 2003):

drk

dt
¼ uk

Yn
j¼1

rj
akj � dkrk (1)

where rk denotes the mRNA concentration of gene k, uk and dk de-

note the mRNA transcription and degradation rate constants of gene

k, respectively, akj denotes the regulatory control of gene j on gene k,

and n denotes the total number of genes. The sign of akj describes the

nature of the regulatory control, where a positive (negative) value rep-

resents activation (inhibition). Meanwhile, the magnitude of akj cor-

responds to the strength of the regulation. We assume that akk ¼ 0,

i.e. there exists no direct self-regulatory loop. While this assumption

may appear limiting, the case studies showed that DeltaNet could ac-

curately predict network perturbations across different species. Under

the steady state assumption, the concentration change of mRNA over

time drk=dt can be set to 0, which simplifies the model above into

rk ¼
uk

dk

Yn

j¼1

rj
akj ¼ gk

Yn
j¼1

r
akj

j (2)

where gk ¼ uk=dk is the ratio between mRNA transcriptional and

degradation rate constants.

Gene expression data of a treatment are typically reported as

ratios with respect to readings from the corresponding control ex-

periments. One can rewrite the model above for gene expression

ratios (dividing both sides of Eq. (2) by the mRNA level in the con-

trol experiment), as follows:

rki

rkbi

¼ gki

gkbi

� �Yn
j¼1

rji

rjbi

� �akj

(3)

where rki and rkbi
denote the mRNA levels of gene k in treatment

sample i and in the corresponding control experiment bi, respect-

ively. The model formulation in Eq. (3) relies on the implicit as-

sumption that the drug treatment affects only mRNA

transcriptional and/or degradation rate constants without causing

any changes in the GRN. Therefore, some care should be taken

when applying DeltaNet and related methods such as MNI and

SSEM to any treatments that may rewire the GRN.

Taking the logarithm of both sides of Eq. (3) leads to the follow-

ing linear expression:

cki ¼
Xn

j¼1

akjcji þ pki (4)

where cki ¼ logðrki=rkbi
Þ denotes the log-fold change (logFC) of

mRNA level of gene k and pki ¼ logðgki=gkbi
Þ denotes the effects of
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treatment in sample i. Typically, a base-2 logarithm is employed in

the analysis of gene expression data (Tarca et al., 2006). According

to Eq. (4), the logFC of gene transcript k in a given sample comes

from a contribution of two factors: (i) changes in the expression of

genes that regulate gene k and (ii) a direct perturbation on the effect-

ive transcription (i.e. the ratio between transcription and degrad-

ation) of gene k by the treatment. A positive (negative) perturbation

variable pki indicates that the effective transcription of gene k is

increased (decreased) by the treatment.

Several network filtering methods have been formulated based

on Eq. (4), such as NIR, MNI and SSEM (Cosgrove et al., 2008; di

Bernardo et al., 2005; Gardner et al., 2003). In these methods, the

inference of gene targets of a treatment is performed in two steps.

The first step involves the identification of GRN, i.e. the coefficients

akj, using gene expression data from experiments with known gen-

etic perturbations (e.g. gene knock-out or silencing) and/or data

compiled from publicly available database. In the second step, the

perturbations pki are calculated for the treatment samples of interest

by network filtering using the GRN identified in the first step.

Consequently, the predictions of gene targets depend on the GRN

inference, a problem that is known to be severely underdetermined

(Szederkényi et al., 2011; Ud-Dean and Gunawan, 2014).

In contrast, DeltaNet generates the target prediction in a single

step based on rewriting Eq. (4) in a matrix-vector format, as follows:

C ¼ ACþ P ¼ A P½ �
C

Im

" #
(5)

where C is the n�m matrix of logFC gene expression data of n

transcripts from m samples, A is the n� n matrix of the coefficients

akj (with zero diagonal entries), P is the n�m matrix of treatment

effects or perturbations pki, and Im is the m�m identity matrix.

Here, we estimate the coefficients of the matrices A and P simultan-

eously by solving the linear regression problem:

CT ¼ CT Im

� � AT

PT

" #
(6)

Since the dimension of the unknowns is larger than the number of

samples, the regression problem above is underdetermined. We em-

ploy two different strategies for solving Eq. (6). The first involves

least angle regression, which is a particularly efficacious model vari-

able selection algorithm for low-sample high-dimensional data

(Efron et al., 2004). In the second implementation, we use LASSO

regularization by constraining the L1-norm of the solution

(Tibshirani, 1996). The details of DeltaNet implementations are

given in the next section.

2.2 DeltaNet implementation
In the implementation of DeltaNet, we treat Eq. (6) as a general lin-

ear regression problem:

Y ¼ XB (7)

where X ¼ CT Im

� �
, Y ¼ CT and B ¼ A P½ �T . The columns of

X and Y are further centered to have zero mean, while those of X

are also normalized to have a unit Eucledian norm. The matrix B

could be solved one column at a time, i.e. the matrices A and P are

obtained one gene at a time. Thereby, DeltaNet involves solving

multiple independent linear regression problems of the type

yk ¼ Xbk, which can be easily parallelized for computational speed-

up. In order to enforce akk¼0, we set the (kth) row of the data ma-

trix C corresponding to gene k to zero when solving bk: The matrix

A, if desired, can be computed by rescaling the appropriate subma-

trix of B. Meanwhile, the matrix P is taken from the solution for B

without rescaling.

Two versions of DeltaNet are available: DeltaNet-LAR and

DeltaNet-LASSO. As the name suggests, DeltaNet-LAR uses the

LAR algorithm to solve the underdetermined regression problem

above. LAR is an algorithm developed for creating sparse linear

models (Efron et al., 2004). Like the traditional forward selection

method, LAR starts with a zero vector as the initial solution (i.e. no

active variables), and adds a new predictor variable (i.e. an active

variable) at every step. LAR employs a less greedy algorithm than

the forward selection method in calculating the coefficients of the

active variables. Briefly, in the first iteration, we choose the pre-

dictor that correlates most with the data (i.e. one that forms the least

angle with the residual vector) and add this variable to the active

set. The solution is updated along the direction of equal angles with

respect to all variables in the active set, until the residuals become

equally correlated with another predictor which is outside the active

set. In the next iteration, this predictor is added to the active set, and

the process is repeated until completion or until a desired number of

active variables is reached.

We employ the LAR algorithm from the MATLAB toolbox

SpaSM (Sparse Statistical Modeling) (http://www2.imm.dtu.dk/

projects/spasm/). In a typical scenario, LAR terminates after m or

fewer steps, since the number of samples m is far fewer than the

number of genes in the dataset. The output of LAR consists of a ser-

ies of solution vectors bi
k, i ¼ 1; 2; � � � ; I, where I is the total number

of steps. In DeltaNet-LAR, the steps are carried out until the relative

norm error kyk �Xbi
kk=kyk falls below a user-defined stopping cri-

terion dr. Setting dr higher would lead to fewer steps taken in LAR

and thus fewer non-zero coefficients in the solution vector bk: The

case studies below showed that the accuracy of DeltaNet predictions

does not depend strongly on dr in the range of 1%� dr�10%. A

higher dr has the benefit of reducing computational time at the

trade-off of slightly reduced prediction accuracy (see Section 3).

In DeltaNet-LASSO, we solve the following penalized minimiza-

tion problem:

min
bk

kyk �Xbkk2 subject to kakk1 � T

where ak is the kth row vector of the A matrix. Here, we employ

GLMNET (Friedman et al., 2010) to generate a regularization path for

the LASSO problem above. Briefly, GLMNET uses the cyclical coord-

inate descent algorithm, which successively minimizes the objective

function one-parameter-at-a-time and cycles over the parameters until

convergence. While LAR could also be modified to generate the regu-

larization path for LASSO (Efron et al., 2004), our experience showed

that GLMNET could reduce the computational times by several folds.

For DeltaNet-LASSO, we implemented GLMNET subroutines for

MATLAB (http://www.stanford.edu/�hastie/glmnet_matlab/).

We perform a k-fold cross validation (CV) method to determine

the optimal T value. Briefly, we randomly divide the data into

k equal-sample parts. For each CV trial, we assign k – 1 parts as the

training set and the remaining part as the test set. We then generate

the regularization path using GLMNET and evaluate the errors of

predicting the test set data as a function of T by rescaling the appro-

priate subvector of bk to ak. The optimal T corresponds to the min-

imum average test errors over k number of CV trials.

Figure 1 illustrates the general workflow of DeltaNet. In the first

case study, we evaluated the performance of DeltaNet in predicting

known gene perturbations in Escherichia coli, Saccharomyces cere-

visiae (yeast) and Drosophila melanogaster (fruit fly). In the second
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case study, we assessed enriched transcription factors among the top

gene target predictions from chemical treatment samples in yeast

and Homo sapiens (MCF7 human cell line) datasets. We compared

the performance of DeltaNet with z-score analysis and two network

filtering methods, MNI and SSEM.

2.3 Gene expression data
For the case studies, we gathered gene expression data from public

databases. For E.coli, we retrieved microarray data from Many

Microbe Microarrays Database (M3D, as of 29th October 2007)

(http://m3d.mssm.edu) (Faith et al., 2008). More specifically, we ob-

tained the robust multi-array average (RMA)-normalized dataset

from the file E_coli_v4_Build_3_chips524probes4217.tab. As sum-

marized in Figure 1, the data comprised 4217 genes and 524 samples

with 319 samples from gene perturbation experiments, 12 samples

from chemical treatments, 55 samples from wild-type control ex-

periments and 138 samples from other conditions (e.g. different

growth phases, nutrient feeding strategies). The logFC expression

data were computed by subtracting the average of wild-type control

experiments from the log-2 RMA intensity data.

For S.cerevisiae, we compiled gene expression data from

ArrayExpress (Parkinson et al., 2007) and Gene Expression

Omnibus (GEO) (Barrett et al., 2013). In order to avoid cross-plat-

form variability, we only used data from Affymetrix GeneChip

Yeast Genome S98. Among 9335 probe sets, we could match 5117

probe sets to gene symbols using ygs98.db package in Bioconductor

(Saccharomyces Genome database as of 9th March 2014). As shown

in Figure 1, the yeast dataset consisted of 566 samples, among which

383 samples were from gene perturbation experiments, 36 samples

from chemical treatments, 140 samples from wild-type control ex-

periments and 7 samples from other conditions. The raw data were

RMA-normalized using justRMA function in the affy package of

Bioconductor (Gentleman et al., 2004), which provided log-2 nor-

malized intensity. The logFC expression data were again calculated

by subtracting the average of all wild-type control samples from the

log-2 RMA intensity.

For multicellular organisms, like Drosophila and human, the

gene expression data should ideally come from the same cell lineage,

as the GRN can vary across cell lines. For D.melanogaster, we com-

piled 330 microarray samples of Affymetrix GeneChip Drosophila

Genome 2.0 from ArrayExpress and GEO, of which 80% came

from experiments using Schneider 2 (S2) cells and the remaining

came from whole-body homogenates. These data originated from

five studies involving gene knock-down (KD) and overexpression ex-

periments. In particular, 242 samples came from genetic perturb-

ations and 88 samples were from wild-type control experiments. We

mapped the probe sets to GenBank accession number using droso-

phila2.db in Bioconductor (Entrez Gene database as of 17th March

2015). The expression data were again pre-processed using

justRMA to give log-2 normalized intensity. We noted that the

RMA intensities of the controls differed significantly among publi-

cations. Therefore, we computed the logFC by subtracting the con-

trol data for each publication separately. In order to reduce

computational complexity, we only used 6165 probe sets which

showed significant differential expression (logFC�1). By using the

median values for multiple probe sets that mapped to one gene, we

further reduce the dimension to 5879 genes.

Finally, for human dataset, we compiled 2537 samples of MCF-

7 human breast cancer cells from the Connectivity Map (C-Map ver-

sion 2) (Lamb et al., 2006). The expression data were first pre-pro-

cessed by using justRMA, based on which we computed the logFC

expression using mean-centering within batches, as recommended in

a previous study (Iskar et al., 2010). We then selected a subset of

569 samples corresponding to 142 different compound treatments

with three or more replicates. The final dataset corresponded to the

median logFC expressions among the respective replicates. We

mapped 19 846 probe sets from Affymetrix GeneChip HT Human

Genome U133 to GenBank accession number using hthgu133a.db

in Bioconductor (Entrez Gene database as of 17th March 2015). For

Fig. 1. Workflow of gene target prediction using DeltaNet. The performance of DeltaNet in predicting known gene perturbations was evaluated using gene ex-

pression data of E.coli, S.cerevisiae and D.melanogaster
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computational speed-up, we performed the gene target analysis

using only 3153 genes that showed significant differential expres-

sions (jmedian logFCj �1) in at least one of the treatments.

3 Results

3.1 Predicting network perturbations
In the first application, we used DeltaNet, MNI, SSEM and z-scores

to predict the targets of gene perturbation experiments in E.coli,

yeast, and Drosophila datasets. The experiments involved known

gene knockouts, over-expression and mutations, which provided the

gold standard data for comparing the methods.

The z-scores were computed according to:

zki ¼
cki � �ck

rk
(8)

where cki is the logFC for gene transcript k in sample i, �ck and rk are

the average and standard deviation of transcript k across all sam-

ples, respectively. For DeltaNet-LASSO and SSEM, we employed a

10-fold cross validation to determine the optimal T as discussed in

Methods and Materials. Meanwhile, for DeltaNet-LAR, we used a

threshold criterion dr of 10%. In the case of MNI, we performed a

grid search optimization for each compendium to determine the par-

ameters Q and thP, which we found to influence the target predic-

tions strongly. Here, we selected the parameter combination giving

the minimum average rank error for samples with known perturb-

ations by employing a 5-fold CV. Meanwhile, the parameter

KEEPFRAC was set such that we retained >200 genes after the last

round of tournament (0.37 for E.coli, 0.35 for yeast and 0.33 for

Drosophila) following the published protocol (Xing and Gardner,

2006). The remaining parameters (NROUNDS and ITER) were set

to their default values. Finally, we used a unit standard deviation for

all samples, as this setting gave much better performance than using

the recommended sample standard deviation.

The test samples of E.coli came from 85 experiments with

known perturbations, while the test samples of yeast comprised 109

experiments (see Supplementary Data). For Drosophila, the test set

came from the study of cell cycle regulators using S2 cells (Bonke

et al., 2013), comprising 91 different perturbation experiments.

Figure 1 gives the numbers of the combined gene targets in the test

samples of E.coli, yeast, and Drosophila test samples, which were

slightly higher than the number of samples since a few experiments

involved more than one gene perturbation. Except for MNI, we ana-

lyzed each sample of experimental replications separately, and used

the median value as the final prediction. In the analysis using MNI,

we followed the published protocol and used the average gene ex-

pression values over replicates as the input data (Xing and Gardner,

2006).

From each method and each test dataset, we obtained a rank list

of genes where we sorted the genes in decreasing magnitudes of the

perturbation variables pki (see Supplementary Data). The ranking re-

flects the confidence level that a gene is directly perturbed in the cor-

responding experiment, while the sign of pki indicates the nature of

the perturbation. In evaluating the performance of the methods, ex-

cept for MNI, a true positive (TP) requires not only a high confi-

dence prediction (i.e. large magnitude in pki), but also the correct

sign of perturbations (a positive sign for gene induction and a nega-

tive sign for gene repression). As MNI did not provide the sign of

the perturbations, we only use the gene ranking in evaluating its

performance.

Figure 2 compares the true positive rate (TPR) as a function of

the gene rank according to DeltaNet, SSEM, MNI and z-scores. The

TPR was computed as the fraction of the known gene perturbations

that appear above a given rank (shown in the x-axis). Figure 2 shows

that DeltaNet significantly outperformed SSEM, MNI and z-scores

for all three test datasets. DeltaNet-LAR and DeltaNet-LASSO gave

relatively the same TPR. The top 10 genes from DeltaNet had on

average 14% and as large as 19% (for D.melanogaster) higher TPR

than the next best method SSEM. MNI gave the worst TPRs among

the methods considered, which could be caused by suboptimal tun-

ing of the parameters. The need to optimize the method parameters

for different datasets is a known drawback of MNI, since the tuning

of these parameters can be computationally demanding (Cosgrove

et al., 2008).

As shown in Table 1, DeltaNet-LAR finished faster than

DeltaNet-LASSO and SSEM. The computational time of DeltaNet-

LAR decreased with increasing dr, as expected. Meanwhile the TPR

of DeltaNet-LAR did not vary significantly for dr between 1 to 10%

(see Supplementary Fig. S1). DeltaNet-LASSO and SSEM had simi-

lar computational times since both methods used the same LASSO

regularization with 10-fold CV. If the optimal method parameters

were known beforehand, then MNI finished quicker than DeltaNet

and SSEM. But, as mentioned above, the parameter tuning could

lead to a high total computational requirement (see Table 1).
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Fig. 2. True positive rates of gene target predictions from DeltaNet, SSEM, MNI and z-scores. The results of DeltaNet-LAR came from analyses using a threshold

dr¼ 10%

2124 H.Noh and R.Gunawan

Deleted Text:  
Deleted Text: &hx2009;
Deleted Text:  
Deleted Text:  
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw148/-/DC1
Deleted Text:  
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw148/-/DC1
Deleted Text:  
Deleted Text: Figure 


Finally, Table 2 gives the area under precision-recall (AUPR) and re-

ceiver operating characteristic curve (AUROC) for each method,

which further confirms the higher accuracy of DeltaNet predictions

over those from the other strategies.

3.2 Predicting transcription factor targets of chemical

compounds
In the second application, we employed the predicted gene targets to

identify transcription factors (TFs) which interact with drug and

chemical compounds. We used the subset of yeast dataset corres-

ponding to chemical treatments and the human MCF-7 dataset.

For yeast dataset, we employed DeltaNet, SSEM, MNI and z-

scores analysis to rank gene targets. For DeltaNet-LAR, we used

dr¼1% in order to keep enough non-zero pki coefficients. We per-

formed a TF enrichment analysis using the top 100 genes for each

chemical treatment sample using Yeastract (Teixeira et al., 2014),

and obtained the adjusted p-values of the enriched TFs. We ranked

the enriched TFs in increasing p-values (i.e. TFs with lower p-values

are ranked higher).

For evaluating the accuracy of the TF prediction, we used protein-

chemical interaction database in Search Tool for Interactions of

Chemicals (STITCH) (http://stitch.embl.de) (Kuhn et al., 2014) as a

reference. STITCH uses experiments, public database and literature

mining as evidence to establish links between chemicals and proteins.

In addition, we also used two publications to establish links between

TFs and acetate (Giannattasio et al., 2013), and between TFs and

rapamycin (Jacinto and Hall, 2003). Among the chemical treatment

experiments in the yeast compendium, only five compounds have TF

interactions in STITCH (with a confidence score>0.7). Figure 3a

compares the rankings of known TF targets of these five chemical

compounds, according to the adjusted p-values from Yeastract for

DeltaNet, SSEM, MNI and z-scores predictions (see Supplementary

Table S1 for more details). Here, DeltaNet gave the best median rank-

ing (69.5), followed by SSEM (85), MNI (92.5), and lastly z-scores

(127). However, differences among the methods were not statistically

significant (see Supplementary Table S2).

For MCF7 dataset, we applied DeltaNet, SSEM and z-scores to

generate the gene target predictions. We could not perform MNI

analysis as we had no known perturbations in the MCF7 dataset for

parameter tuning. For the TF enrichment analysis, we employed

Enrichr (Chen et al., 2013) with the option of position weight matri-

ces using the top 100 predicted gene targets in each sample. Among

the drugs in the dataset, only 21 compounds have at least one re-

ported TF target in DrugBank (Wishart et al., 2006) and STITCH,

which is also in Enrichr. Figure 3b compares the rankings of the

known TF targets of these 21 compounds according to the combined

enrichment scores from Enrichr for DeltaNet, SSEM and z-scores

predictions (see Supplementary Table S3 for more details). Again,

DeltaNet gave the best median ranking (65), followed by z-scores

(83) and SSEM (105). Here, the difference in the median rankings

between DeltaNet and SSEM was statistically significant (see

Supplementary Table S2). Taken together, the outcomes of TF en-

richment analyses above demonstrated that DeltaNet could provide

gene target predictions which agreed better with previously reported

TFs, than the other methods.

Unfortunately, we could not assess the gene target predictions

for the chemical treatment samples from E.coli because the chemical

compounds, namely ampicillin, kanamycin, norfloxacin and spec-

tinomycin, do not have any TF interactions with high confidence

(score>0.7) in STITCH.

Table 1 . Computational times of DeltaNet, SSEM and MNI

Computational timesa (h) E.coli Yeast Drosophila

DeltaNet-LAR dr ¼ 20% 4.34 9.6 5.7

dr ¼ 10% 9.77 18.8 9.2

dr ¼ 5% 13.76 24.6 11.4

dr ¼ 1% 17.20 29.1 12.9

completion 17.90 29.9 13.2

DeltaNet-LASSO 30.5 43.8 42.9

SSEM 33.8 48.6 43.1

MNI Single run 0.16 0.19 0.14

Parameter tuningb 15.58 15.55 11.83

aComputational times were determined based on a single CPU run in a

workstation with AMD Opteron 6282 SE processor and 256 GB RAM.
bThe parameter tuning for E.coli, yeast and Drosophila was performed by

a grid search using 99, 96 and 89 grid points, respectively.

Table 2. AUROC and AUPR of DeltaNet, SSEM, MNI and z-scores

AUROC AUPR

E.coli

DeltaNet-LARa 0.951 0.694

DeltaNet-LASSO 0.942 0.717

SSEM 0.921 0.558

MNI 0.906 0.252

Z-scores 0.860 0.262

Yeast

DeltaNet-LARa 0.890 0.432

DeltaNet-LASSO 0.903 0.402

SSEM 0.893 0.360

MNI 0.876 0.085

Z-scores 0.897 0.233

Drosophila

DeltaNet-LARa 0.966 0.534

DeltaNet-LASSO 0.957 0.527

SSEM 0.882 0.352

MNI 0.846 0.224

Z-scores 0.95 0.243

aDeltaNet-LAR result was obtained using dr¼ 10%.
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Fig. 3. Rankings of known TF targets of chemical compounds based on TF en-

richment analysis of DeltaNet, SSEM, MNI and z-scores predictions. The TFs

are ranked according to (a) the adjusted p-values of Yeastract for yeast data-

set and (b) the combined enrichment scores of Enrichr for human MCF-7

dataset
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4 Discussion

We developed a method called DeltaNet for predicting the molecu-

lar targets of drugs or chemical compounds from gene expression

data. Many applications of great interest and importance in drug

discovery research, including elucidating the mode of action (MoA)

of drugs and the mechanisms of diseases, fall within the problem

that is addressed by this work. DeltaNet formulation uses an ODE

model of gene transcription process under steady state condition.

We employed two strategies for solving the resulting underdeter-

mined linear regression problem: least angle regression (DeltaNet-

LAR) and LASSO regularization (DeltaNet-LASSO). One can relax

the assumption in DeltaNet which sets akk to zero, by treating the

predicted pki as the sum between the self-regulatory feedback and

the perturbations caused by the treatment. In such a case, instead of

using the magnitude of the perturbation coefficients pki to rank

genes, we could use the q-values of pki (Storey, 2002). However, for

the case studies above, we did not observe any improvement in the

prediction accuracy when using gene ranking according to the q-val-

ues (see Supplementary Material and Supplementary Fig. S2).

The output of DeltaNet comprises a ranked list of gene target

predictions. Such a list is amenable for further enrichment analysis

to identify other type of molecular targets, such as TFs in the second

case study above. An upstream analysis can also be applied to find

protein partners of enriched TFs, for example by using

Expression2Kinase (Chen et al., 2012) and Enrichr (Chen et al.,

2013). Beyond TF and protein targets, one can also apply functional

enrichment analysis to obtain the functional relevance of the gene

target predictions. Several web-server tools exist for such a purpose,

notably ToppCluster analysis (Kaimal et al., 2010) which provides

17 categories of human-ortholog gene annotations such as gene

ontology, pathways, microRNAs and human phenotype.

DeltaNet uses the same ODE model of the gene transcription

process as the methods MNI and SSEM, but with a key difference in

the manner by which the target predictions are inferred from the

data. The first phase of MNI and SSEM involve the identification of

the GRN matrix A using a compendium of gene expression data.

The perturbation matrix P is subsequently obtained for the treat-

ment samples of interest by network filtering, which in essence uses

the difference P ¼ C� CA: In MNI, the matrix A is estimated from

training data together with the unknown matrix P, using a proced-

ure that resembles Expectation Maximization algorithm (di

Bernardo et al., 2005). The convergence of this procedure is how-

ever not guaranteed and the solution often varies with the initial

starting guess. Also, the performance of MNI is known to sensitively

depend on the tuning of method parameters which often leads to nu-

merically intensive optimization (Bevilacqua and Pannarale, 2013).

Not to mention, MNI also requires data from known genetic per-

turbations for parameter tuning.

In contrast, SSEM uses LASSO regularization to identify the ma-

trix A using the complete gene expression data, where the perturb-

ation matrix P is initially set to zero. By doing so, SSEM ignores the

treatment or perturbation effects when inferring the GRNs. The ma-

trix P is subsequently obtained from the residuals of the regression

above. The LASSO regularization enforces a limit on the model

complexity, an assumption which is based on the observed sparsity

of GRNs (Gardner et al., 2003; Luscombe et al., 2004; Tegner et al.,

2003). The implementation of LASSO requires selecting the appro-

priate constraint parameter T for model complexity. As the optimal

value is not known a priori and is also problem dependent, a cross-

validation is often used for setting T. As shown in Table 1, analyses

using LASSO, including DeltaNet-LASSO and SSEM, were the

slowest among the methods considered. Here, the majority of the

computational time was contributed by the cross validation step.

One can view DeltaNet as a hybrid between MNI and SSEM.

The inference of the matrices A and P in DeltaNet is performed sim-

ultaneously, which resembles the first step of MNI. But, like SSEM,

we employed a GRN sparsity assumption by way of LAR and

LASSO regularization to tackle the underdetermined problem.

Nevertheless, DeltaNet does not involve an explicit network filtering

step. Instead, the perturbation matrix P for the treatment samples is

obtained together with the other samples in the compendium. We

could therefore fully use the information contained in the available

data (training and treatment sets) in predicting the effects of a treat-

ment. As demonstrated in the case studies, DeltaNet offers a signifi-

cant improvement in the accuracy of target prediction over MNI

and SSEM. Furthermore, DeltaNet-LAR has better numerical effi-

ciency and robustness with respect to parameter tuning over

DeltaNet-LASSO, MNI and SSEM. We therefore recommend

DeltaNet-LAR using a threshold parameter dr of 10%, since in our

experience, this setting provides a good balance between target pre-

diction accuracy and computational performance.

While the difference between DeltaNet and the existing network

filtering methods may appear slight, this deviation is nevertheless

important and fundamental. There were two key factors motivating

the single-step inference in DeltaNet. First, the inference of GRNs

from the typical gene expression has been shown to be underdeter-

mined (Szederkényi et al., 2011; Ud-Dean and Gunawan, 2014).

Thus, any method relying on the solution of such an inference prob-

lem could be sensitive to the associated uncertainty. Second, despite

the underdetermined issue, it is often possible to predict the effects

of a network perturbations from existing gene expression data with

reasonable accuracy (Maathuis et al., 2010). We formulated

DeltaNet based on the premise that the available gene expression

data, while lacking information for the accurate inference of GRN,

have enough information to identify the network perturbations

caused by a treatment.

The differences between the gene target predictions from

DeltaNet-LASSO and SSEM are quite interesting, considering that

both methods employ the same LASSO regularization. In the first

case study, we noted that for yeast and E.coli datasets, DeltaNet-

LASSO produced sparser GRNs than SSEM (see Supplementary Fig.

S3a). This trend is expected since in comparison to SSEM, DeltaNet

formulation has additional degrees of freedom that come from the

perturbation vector. However, the network sparsity between

DeltaNet and SSEM in the Drosophila dataset did not differ signifi-

cantly. We further looked at the set of known gene targets among

the top 10 predictions from DeltaNet-LASSO, but not from SSEM.

For these gene targets (n¼10, 15 and 13 for E.coli, yeast and

Drosophila, respectively), DeltaNet-LASSO clearly produced fewer

non-zero coefficients than SSEM for all three datasets (see

Supplementary Fig. S3b). The observations above indicated a possi-

bility of overfitting in SSEM as the regression problem did not con-

sider perturbations on the genes.

Finally, time-series expression data have become routine and in-

creasingly available in public databases. Applying DeltaNet and

similar methods such as SSEM and MNI to time series data should

be done with caution because of the underlying steady state assump-

tion in the method formulation. In the case studies, we included

time-series data as a part of the training dataset. Excluding time-ser-

ies data however did not affect the accuracy of DeltaNet predictions

significantly (see Supplementary Fig. S4). An extension of DeltaNet

to take advantage of time-series data is currently being developed,

the results of which will be reported in a separate publication.
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