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Abstract

Motivation: Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore tech-

nologies (ONT) produce reads over 10 kb in length, which have enabled high-quality genome as-

sembly at an affordable cost. However, at present, long reads have an error rate as high as 10–

15%. Complex and computationally intensive pipelines are required to assemble such reads.

Results: We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently

mapping and assembling SMRT and ONT reads without an error correction stage. They can often

assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble

45-fold Caenorhabditis elegans data in 9 min, orders of magnitude faster than the existing pipe-

lines, though the consensus sequence error rate is as high as raw reads. We also introduce a pair-

wise read mapping format and a graphical fragment assembly format, and demonstrate the inter-

operability between ours and current tools.

Availability and implementation: https://github.com/lh3/minimap and https://github.com/lh3/

miniasm

Contact: hengli@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput short-read sequencing technologies, such as

Illumina, have empowered a variety of biological researches and

clinical applications that would not be practical with the older

Sanger sequencing. However, the short read length (typically a few

hundred basepairs) has posed a great challenge to de novo assembly

as many repetitive sequences and segmental duplications are longer

than the read length and can hardly be resolved by short reads even

with paired-end data (Alkan et al., 2011). Although with increased

read length and improved algorithms we are now able to produce

much better short-read assemblies than a few years ago, the contigu-

ity and completeness of the assemblies are still not as good as Sanger

assemblies (Chaisson et al., 2015).

The PacBio’s SMRT technology were developed partly as an an-

swer to the problem with short-read de novo assembly. However,

due to the high per-base error rate, around 15%, these reads were

only used as a complement to short reads initially (Bashir et al.,

2012; Koren et al., 2012; Ribeiro et al., 2012), until Chin et al.

(2013) and Koren et al. (2013) demonstrated the feasibility of

SMRT-only assembly. Since then, SMRT is becoming the preferred

technology for finishing small genomes and producing high-quality

Eukaryotic genomes (Berlin et al., 2015).

Oxford Nanopore Technologies (ONT) has recently offered an-

other long-read sequencing technology. Although the per-base error

rate was high at the early access phase (Quick et al., 2014), the latest

data quality has been greatly improved. Loman et al. (2015) con-

firmed that we can achieve high-quality bacterial assembly with

ONT data alone.

Published long-read assembly pipelines all include four stages: (i)

all-vs-all raw read mapping, (ii) raw read error correction, (iii) as-

sembly of error corrected reads and (iv) contig consensus polish.

Stage (iii) may involve all-vs-all read mapping again, but as the error

rate is much reduced at this step, it is easier and faster than stage (i).

Table 1 shows the tools used for each stage. Notably, our tool mini-

map is a raw read overlapper and miniasm is an assembler. We do

not correct sequencing errors, but instead directly produce unpol-

ished and uncorrected contig sequences from raw read overlaps. The

idea of correction-free assembly was inspired by talks given by Gene
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Myers. Sikic et al. (personal communication) are also independently

exploring such an approach.

As we can see from Table 1, each stage can be achieved with

multiple tools. Although we have successfully combined tools into

different pipelines, we need to change or convert the input/output

formats to make them work together. Another contribution of this

article is the proposal of concise mapping and assembly formats,

which will hopefully encourage modular design of assemblers and

the associated tools.

2 Methods

2.1 General notations
Let R ¼ fA;C;G;Tg be the alphabet of nucleotides. For a symbol a

2 R; �a is the Watson-Crick complement of a. A string s ¼ a1a2 � � � an

over R is also called a DNA sequence. Its length is jsj ¼ n; its reverse

complement is �s ¼ a1a2 � � � an ¼ �an �an�1 � � � �a1. For convenience, we

define strand function p : R� � f0; 1g ! R� such that pðs; 0Þ ¼ s and

pðs;1Þ ¼ �s. Here R� is the set of all DNA sequences.

By convention, we call a k-long DNA sequence as a k-mer. We

use the notation sk
i ¼ ai � � � aiþk�1 to denote a k-long substring of s

starting at i. Rk is the set of all k-mers.

2.2 Minimap
2.2.1 Overview of k-mer based sequence similarity search

BLAST (Altschul et al., 1997) and BLAT (Kent, 2002) are among

the most popular sequence similarity search tools. They use one k-

mer hash function / : Rk ! Z to hash k-mers at the positions 1;w

þ1;2wþ 1; . . . of a target sequence and keep the hash values in a

hash table. Upon query, they use the same hash function on every k-

mer of the query sequence and look up the hash table for potential

matches. If there are one or multiple k-mer matches in a small win-

dow, these aligners extend the matches with dynamic programming

to construct the final alignment.

DALIGNER (Myers, 2014) does not use a hash table. It instead

identifies k-mer matches between two sets of reads by sorting k-

mers and merging the sorted lists. DALIGNER is fast primarily be-

cause sorting and merging are highly cache efficient.

MHAP (Berlin et al., 2015) differs from others in the use of

MinHash sketch (Broder, 1997). Briefly, given a read sequence s and

m k-mer hash functions f/jg1� j�m, MHAP computes hj ¼ minf/jð
sk
i Þ : 1 � i � jsj � kþ 1g with each hash function /j, and takes list

ðhjÞ1� j�m, which is called the sketch of s, as a reduced

representation of s. Suppose ðhjÞj and ðh0jÞj are the sketches of two

reads, respectively. When the two reads are similar to each other or

have significant overlaps, there are likely to exist multiple j such that

hj ¼ h0j. Potential matches can thus be identified. A limitation of

MinHash sketch is that it always selects a fixed number of hash val-

ues regardless of the length of the sequences. This may waste space

or hurt sensitivity when input sequences vary greatly in lengths.

Minimap is heavily influenced by all these works. It adopts the

idea of sketch like MHAP but takes minimizers (Roberts et al.,

2004; Schleimer et al., 2003) as a reduced representation instead; it

stores k-mers in a hash table like BLAT and MHAP but also uses

sorting extensively like DALIGNER. In addition, minimap is de-

signed not only as a read overlapper but also as a read-to-genome

and genome-to-genome mapper. It has more potential applications.

2.2.2 Computing minimizers

Loosely speaking, a (w, k)-minimizer of a string is the smallest k-

mer in a surrounding window of w consecutive k-mers. Formally, let

/ : Rk ! Z be a k-mer hash function. A double-strand ðw; k;/Þ-
minimizer, or simply a minimizer, of a string s, jsj � wþ k� 1, is a

triple (h, i, r) such that there exists maxð1; i�wþ 1Þ � j � minði; j
sj �w� kþ 1Þ which renders

h ¼ /ðpðsk
i ; rÞÞ ¼ minf/ðpðsk

jþp; r
0ÞÞ : 0 � p < w; r0 2 f0; 1gg

Let MðsÞ be the set of minimizers of s. Algorithm 1 gives the

pseudocode to compute MðsÞ in Oðw � jsjÞ time. Our actual imple-

mentation is close to OðjsjÞ in average case. It uses a queue to cache

the previous minimals and avoids the loops at line 1 and 2 most of

time. In practice, time spent on collecting minimizers is insignificant.

A natural choice of hash function / is to let /ðAÞ ¼ 0, /ðCÞ ¼ 1;

/ðGÞ ¼ 2 and /ðTÞ ¼ 3 and for a k-mer s ¼ a1 � � � ak, define

/ðsÞ ¼ /ða1Þ � 4k�1 þ /ða2Þ � 4k�2 þ � � � þ /ðakÞ

This hash function always maps a k-mer to a distinct 2k-bit inte-

ger. A problem with this / is that poly-A, which is often highly

Table 1. Tools for noisy long-read assembly

Functionality Program Reference

Raw read overlap BLASR Chaisson and Tesler (2012)

DALIGNER Myers (2014)

MHAP Berlin et al. (2015)

GraphMap Sovic et al. (2015)

minimap this article

Error correction pbdagcon http://bit.ly/pbdagcon

falcon_sense http://bit.ly/pbfcasm

nanocorrect Loman et al. (2015)

Assembly wgs-assembler Myers et al. (2000)

Falcon http://bit.ly/pbfcasm

ra-integrate http://bit.ly/raitgasm

miniasm this article

Consensus polish Quiver http://bit.ly/pbquiver

nanopolish Loman et al. (2015)
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enriched in genomes, always gets zero, the smallest value. We may

oversample these non-informative poly-A and hurt practical per-

formance. To alleviate this issue, we use function /0 ¼ h�/ instead,

where h is an invertible integer hash function on ½0; 4kÞ (Algorithm

2; http://bit.ly/invihgi). The invertibility of h is not essential, but as

such /0 never maps two distinct k-mers to the same 2k-bit integer, it

helps to reduce hash collisions.

Note that in a window of w consecutive k-mers, there may be more

than one minimizers. Algorithm 1 keeps them all with the loop at line

2. This way, a minimizer of s always corresponds to a minimizer of �s.

For read overlapping, we use k¼15 and w¼5 to find

minimizers.

2.2.3 Indexing

Algorithm 3 describes indexing target sequences. It keeps minimizers

of all target sequences in a hash table where the key is the minimizer

hash and the value is a set of target sequence index, the position of

the minimizer and the strand (packed into one 64-bit integer).

In implementation, we do not directly insert minimizers to the

hash table. Instead, we append minimizers to an array of two 64-bit

integers (one for minimizer sequence and one for position) and sort

the array after collecting all minimizers. The hash table keeps the

intervals on the sorted array. This procedure dramatically reduces

heap allocations and cache misses, and is supposedly faster than dir-

ect hash table insertion.

2.2.4 Mapping

Given two sequences s and s0, we say we find a minimizer hit ðh;x; i;
i0Þ if there exist ðh; i; rÞ 2 MðsÞ and ðh; i0; r0Þ 2 Mðs0Þ with x ¼ r�r0

(� is the XOR operator). Here h is the minimizer hash value, x indi-

cates the relative strand and i and i0 are the positions on the two se-

quences, respectively. We say two minimizer hits ðh1;x; i1; i
0
1Þ and

ðh2;x; i2; i
0
2Þ are �-away if 1) x¼0 and jði1 � i01Þ � ði2 � i02Þj < � or

2) x¼1 and jði1 þ i01Þ � ði2 þ i02Þj < �. Intuitively, �-away hits are

approximately colinear within a band of width � (500bp by default).

Given a set of minimizer hits fðh;x; i; i0Þg, we can cluster i� i0 for

x¼0 or iþ i0 for x¼1 to identify long colinear matches. This pro-

cedure is inspired by Hough Transformation mentioned by Sovic

et al. (2015).

Algorithm 4 gives the details of the mapping algorithm. The loop

at line 1 collects minimizer hits between the query and all the target

sequences. The loop at line 2 performs a single-linkage clustering to

group approximately colinear hits. Some hits in a cluster may not be

colinear because two minimizer hits within distance � are always �-

away. To fix this issue, we find the maximal colinear subset of hits

by solving a longest increasing sequencing problem (line 3). This

subset is the final mapping result. In practical implementation, we

set thresholds on the size of the subset (4 by default) and the number

of matching bases in the subset to filter poor mappings (100 for read

overlapping).

2.3 Assembly graph
Two strings v and w may be mapped to each other based on their se-

quence similarity. If v can be mapped to a substring of w, we say w

contains v. If a suffix of v and a prefix of w can be mapped to each

other, we say v overlaps w, written as v! w. If we regard strings v

and w as vertices, the overlap relationship defines a directed edge
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between them. The length of v! w equals the length of v’s prefix

that is not in the prefix–suffix match.

Let G ¼ ðV;E; ‘Þ be a graph without multi-edges, where V is a

set of DNA sequences (vertices), E a set of overlaps between them

(edges) and ‘ : E! <þ is the edge length function. G is said to be

Watson-Crick complete if (i) 8v 2 V; �v 2 V and (ii)

8v! w 2 E; �w ! �v 2 E. G is said to be containment-free if any se-

quence v is not contained in other sequences in V. If G is both

Watson–Crick complete and containment-free, it is an assembly

graph. By definition, any vertex v has a complement vertex �v in the

graph and any edge v! w has a complement edge �w ! �v. Let degþ

ðvÞ be the outdegree of v and deg�ðvÞ be the indegree. It follows that

deg�ðvÞ ¼ degþð�vÞ.
An assembly graph has the same topology as a string graph

(Myers, 2005), though the interpretation of the vertex set V is differ-

ent. In a string graph, V is the set of the two ends of sequences, not

the set of forward and reverse-complemented sequences. De Bruijn

graph can be regarded as a special case of overlap graph. It is also an

assembly graph.

In an assembly graph, an edge v! w is transitive if there exist v

! u and u! w. Removing a transitive edge does not affect the con-

nectivity of the graph. A vertex v is a tip if degþðvÞ ¼ 0 and

deg�ðvÞ > 0. The majority of tips are caused by artifacts or missing

overlaps. A bubble is a directed acyclic subgraph with a single

source v and a single sink w having at least two paths between v and

w, and without connecting the rest of the graph. The bubble is tight

if degþðvÞ > 1 and deg�ðwÞ > 1. A bubble may be caused by missing

overlaps or by variants between haplotypes in multi-ploidy samples

or paralogs. It is preferred to collapse bubbles for high contiguity,

though this introduces loss of information.

2.4 Miniasm
2.4.1 Trimming reads

Raw read sequences may contain artifacts such as untrimmed adapt-

ers and chimaera. The first step of assembly to reduce such artifacts

by examining read-to-read mappings. For each read, miniasm com-

putes per-base coverage based on good mappings against other reads

(longer than 2000 bp with at least 100 bp non-redundant bases on

matching minimizers). It then identifies the longest region having

coverage three or more, and trims bases outside this region.

2.4.2 Generating assembly graph

For each trimmed mapping, miniasm applies Algorithm 5 to classify

the mapping (see also Fig. 1 for the explanation of input variables).

It ignores internal matches, drops contained reads and adds overlaps

to the assembly graph. For a pair of reads, miniasm uses the longest

overlap only to avoid multi-edges.

2.4.3 Graph cleaning

After constructing the assembly graph, miniasm removes transitive

edges (Myers, 2005), trims tipping unitigs composed of few reads (4

by default) and pops small bubbles (Zerbino and Birney, 2008).

Algorithm 6 detects bubbles where the longest path is shorter than d

(50 kb by default). It is adapted from Kahn’s topological sorting al-

gorithm (Kahn, 1962). It starts from the potential source and visits a

vertex when all its incoming edges are visited before. Algorithm 6

only detects bubbles. We can keep track of the optimal parent vertex

at line 1 and then backtrack to collapse bubbles to a single path.

Fermi (Li, 2012) uses a similar algorithm except that it keeps two

optimal paths through the bubble. Onodera et al. (2013) and

Brankovic et al. (2015) have also independently found similar

algorithms.

In addition, if v! w1 and v! w2 exist and

‘ðv! w1Þ < ‘ðv! w2Þ, miniasm removes v! w2 if ½jvj � ‘ðv
! w2Þ	=½jvj � ‘ðv! w1Þ	 is small enough (70% by default). When

there are longer overlaps, shorter overlaps after transitive reduction

may be due to repeats. However, non-repetitive overlaps may also

be removed at a small chance, which leads to missing overlaps and

misassemblies.

2.4.4 Generating unitig sequences

If there are no multi-edges in the assembly graph, we can use v1

! v2 ! � � � ! vk to represent a path consisting of k vertices. The se-

quence spelled from this path is the concatenation of vertex sub-

strings:

v1½1; ‘ðv1 ! v2Þ	 � v2½1; ‘ðv2 ! v3Þ	 � � � � � vk�1½1; ‘ðvk�1; vkÞ	 � vk,

where v½i; j	 is the substring between i and j inclusive, and � is the

string concatenation operator.

In a transitively reduced graph, a unitig (Myers et al., 2000) is a

path v1 ! v2 ! � � � ! vk such that degþðviÞ ¼ deg�ðviþ1Þ ¼ 1 and

(i) v1 ¼ vk or (ii) deg�ðv1Þ ¼ 1 and degþðvkÞ ¼ 1. Its sequence is the

sequence spelled from the path. Intuitively, a unitig is a maximal

path on which adjacent vertices can be ‘unambiguously merged’

without affecting the connectivity of the original assembly graph.

mapped region

Overhang region

b[1] e[1]

b[2] e[2]

l[1]

l[2]

v

w

Fig. 1. Mapping between two reads. b½1	 and e½1	 are the 0-based starting and

ending mapping coordinates of the first read v, respectively. b½2	 and e½2	 are

the mapping coordinates of read w. Lightgray areas indicate overhang re-

gions that should be mapped together if the overlap is real. If the overhang

regions are small enough, the figure implies an edge v ! w with approxi-

mate length ‘ðv ! wÞ ¼ b½1	 � b½2	 and its complement edge �w ! �v with

‘ð �w ! �v Þ ¼ ðl½2	 � e½2	Þ � ðl½1	 � e½1	Þ
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As miniasm does not correct sequencing errors, the error rate of

unitig sequence is the same as the error rate of the raw input reads.

It is in theory possible to derive a better unitig sequence by taking

the advantage of read overlaps. We have not implemented such a

consensus tool yet.

2.5 Formats: pairwise read mapping format and

graphical fragment assembly format
2.5.1 Pairing mapping format

Pairwise read mapping format (PAF) is a lightweight format keeping

the key mapping information (Table 2). Minimap outputs mappings in

PAF, which are taken by miniasm as input for assembly. We also pro-

vide scripts to convert DALIGNER, MHAP and SAM formats to PAF.

2.5.2 Graphical fragment assembly format

Graphical fragment assembly format (GFA) is a concise assembly

format (Table 3; http://bit.ly/gfaspec) initially proposed by us prior

to miniasm and later improved by community (Melsted et al., per-

sonal communication). GFA has an explicit relationship to an as-

sembly graph—an ‘S’ line in the GFA corresponds to a vertex and its

complement in the graph; an ‘L’ line corresponds to an edge and its

complement. GFA is able to represent graphs produced at all the

stages of an assembly pipeline, from initial read overlaps to the uni-

tig relationship in the final assembly.

FASTG (http://bit.ly/fastgfmt) is another assembly format prior

to GFA. It uses different terminologies. A vertex in an assembly

graph is called an edge in FASTG, and an edge is called an adja-

cency. In FASTG, subgraphs can be nested, though no tools work

with nested graphs due to technical complications. In addition, with

nesting, one assembly graph can be represented in distinct ways,

which we regard as a limitation of FASTG.

2.6 Evaluating the layout accuracy
Miniasm outputs the approximate positions of trimmed reads on the

resulting unitigs. We extract these reads, map to the true assembly

with minimap (option: ‘-L100 -m0 -w5’) and select the best mapping

for each read. For a read i, let utgi be the unitig name and ranki be

its index on utgi (i.e. read i is the rankith read on the unitig). If two

reads i and j are mapped adjacently on the true assembly, we say the

adjacency is w-consistent, if (i) utgi ¼ utgj and jranki � rankjj < w,

or (ii) both read i and j are the first or the last w reads of some uni-

tigs. We use w¼5 to detect large structural misassemblies.

3 Results

3.1 The accuracy of minimap
We mapped a human PacBio run ‘m130928_232712_42213_*.1.*’

(http://bit.ly/chm1p5c3) with minimap and BWA-MEM (Li, 2013)

against GRCh37 plus decoy sequences (http://bit.ly/GRCh37d5). We

started from 23 235 reads (131 Mb), filtered out 7593 reads (10 Mb)

without �2 kb BWA-MEM alignments, and further dropped 815

reads (11 Mb) with two or more �2 kb chimeric alignments and 598

reads (4 Mb) with mapping quality below 10. Of the remaining reads,

we found only 2.0% not overlapping the best minimap mapping of

the same read. The majority of them hit to the decoy sequence where

defining the true alignment is challenging as decoy is enriched with in-

complete segments of centromeric repeats. If we exclude hits to the

decoy, the percentage drops to 0.7%. On this input, minimap is 50

times faster than BWA-MEM, while finding similar best mapping

positions. This experiment evaluates both the sensitivity and the spe-

cificity of minimap: if minimap had low sensitivity, it would miss the

BWA-MEM mapping completely; if minimap had low specificity, its

best mapping would often be a wrong mapping.

To test the sensitivity for read overlapping, we aligned all reads

from PBcR-PB-ec (Table 4) against the reference genome with BWA-

MEM, extracted reads with mapping quality �10, and identified

�2kb overlaps between the extracted reads based on their positions

on the reference genome. Minimap finds 93% of these overlaps. It is

more sensitive than MHAP in its sensitive mode (78%) but less than

DALIGNER (98%).

3.2 Assembling bacterial genomes
We evaluated the performance of miniasm on 17 bacterial datasets

(Table 4) with command line ‘minimap -Sw5 -L100 -m0 reads.fa

reads.fa j miniasm -f reads.fa -’. Miniasm is able to derive a single

contig per chromosome/plasmid for all but four datasets: 3 extra

>50 kb contigs for ERS554120, and 1 extra contig for ERS605484,

PBcR-ONT-ec and MAP-006-pcr-1 each. In the dotter plot between

the assembly and the reference genome (similar to Fig. 2), no large-

scale misassemblies are observed. We also applied the method in

Section 2.6. Except ERS473430, the miniasm layouts are 5-consist-

ent with the reference assemblies. For ERS473430, the NCTC pro-

ject page claimed the sample has a plasmid. Miniasm gives two

contigs, but the NCTC assembly has one contig only. The difference

in layout may be an error in the NCTC assembly.
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We have also run the PBcR pipeline (Berlin et al., 2015). PBcR

requires a spec file. We took ‘pacbio.spec’ from the PBcR-PB-ec ex-

ample and ‘oxford.spec’ from PBcR-ONT-ec, and applied them to

all datasets based on their data types. MAP* datasets only provide

FASTA sequences for download. We assigned quality 9 to all bases

as PBcR requires base quality. PBcR assembled all PacBio datasets

without extra contigs longer than 50 kb—better than miniasm.

However, on the ONT datasets, PBcR produced more fragmented

assemblies for MAP-006-2, MAP-006-pcr-1 and MAP-006-pcr-2;

the PBcR-ONT-ec assembly is 300 kb shorter.

With four CPU cores, it took miniasm 14 s to assemble the 30-

fold PBcR-PB-ec dataset and 2 minutes to assemble the 160-fold PB-

ecoli dataset. PBcR, with four CPU cores, too, is about 700 times

slower on PBcR-PB-ecoli and 60 times slower on PB-ecoli. It is

slower on low-coverage data because PBcR automatically switches

to the slower sensitive mode. Here we should remind readers that

without an error correction stage, the contig sequences generated by

miniasm are of much lower accuracy in comparison to PBcR.

Nonetheless, miniasm is still tens of times faster than PBcR exclud-

ing the time spent on error correction.

3.3 Assembling a Caenorhabditis elegans genome
We assembled a 45-fold C.elegans dataset (Table 4). With 16 CPU

cores, miniasm assembled the data in 9 min, achieving an N50 size

2.8 Mb. From the dotter plot (Fig. 2), we observed three structural

misassemblies (readers are advised to zoom into the vector graph to

see the details). PacBio has assembled the same dataset with HGAP3

(Chin et al., 2013). HGAP3 produces shorter contigs (N50¼1.6

Mb), but does not incur large-scale misassemblies visible from the

dotter plot between the C.elegans reference genome and the contigs.

When we take the C.elegans reference genome as the truth, the

method in Section 2.6 also identifies the three structural misassem-

blies. The method additionally finds eight intra-unitig and one inter-

unitig inconsistencies. In all cases, miniasm agrees with HGAP3,

suggesting these inconsistencies may be true structural variations be-

tween the reference strain and the sequenced strain.

We have also tried PBcR on this dataset. Based on the intermedi-

ate progress report, we estimated that with 16 CPU cores, it would

take a week or so to finish the assembly in the automatically chosen

‘sensitive’ mode.

For this dataset, minimap takes 27 GB RAM at the peak. As

minimap loads 4 Gbp bases to index, the peak RAM will be capped

around 27 GB. The memory used by miniasm is proportional to the

number of overlaps. Although it only takes 1.3 GB RAM here, it

will become the limiting factor for larger datasets.

3.4 Switching read overlappers
Miniasm also works with other overlappers when we convert their

output format to PAF. On the 30-fold PBcR-PB-ec dataset, we are

Table 2. Pairwise mapping format (PAF)

Col Type Description

1 string Query sequence name

2 int Query sequence length

3 int Query start coordinate (BED-like)

4 int Query end coordinate (BED-like)

5 char ‘þ’ if query and target on the same strand; ‘–’

if opposite

6 string Target sequence name

7 int Target sequence length

8 int Target start coordinate on the original strand

9 int Target end coordinate on the original strand

10 int Number of matching bases in the mapping

11 int Number bases, including gaps, in the mapping

12 int Mapping quality (0–255 with 255 for missing)

PAF is TAB-delimited text format with each line consisting of the above

fixed fields. When the alignment is available, column 11 equals the total num-

ber of sequence matches, mismatches and gaps in the alignment. Column 10

divided by column 11 gives the alignment identity. If the detailed alignment is

not available, column 10 and 11 can be approximate. PAF may optionally have

additional fields in the SAM-like typed key-value format (Li et al., 2009).

Table 3. Graphical fragment assembly format (GFA)

Line Comment Fixed fields

H Header N/A

S Segment segName,segSeq

L Overlap segName1, segOri1,

segName2, segOri2,

CIGAR

GFA is a line-based TAB-delimited format. Each line starts with a single

letter determining the interpretation of the following TAB-delimited fields. In

GFA, segment refers to a read or a unitig. A line start with ‘S’ gives the name

and sequence of a segment. When the sequence is not available, it can be a

star ‘*’. Overlaps between segments are represented in lines starting with ‘L’,

giving the names and orientations of the two segments in an overlap. The last

field ‘CIGAR’ on an ‘L’-line describes the detailed alignment of the overlap if

available. In addition to the types of lines in the table, GFA may contain other

line types starting with different letters. Each line may optionally have add-

itional SAM-like typed key-value pairs.

Table 4. Evaluation datasets

Name Species Size Cov. N50

PB-ce-40X Caenorhabditis elegans 104M 45 16 572

ERS473430 Citrobacter koseri 4.9M 106 7543

ERS544009 Yersinia pseudotuberculosis 4.7M 147 9002

ERS554120 Pseudomonas aeruginosa 6.4M 90 7106

ERS605484 Vibrio vulnificus 5.0M 155 5091

ERS617393 Acinetobacter baumannii 4.0M 237 7911

ERS646601 Haemophilus influenzae 1.9M 258 4081

ERS659581 Klebsiella sp. 5.1M 129 8031

ERS670327 Shimwellia blattae 4.2M 155 6765

ERS685285 Streptococcus sanguinis 2.4M 224 5791

ERS743109 Salmonella enterica 4.8M 188 6051

PB-ecoli Escherichia coli 4.6M 160 13 976

PBcR-PB-ec Escherichia coli 4.6M 30 11 757

PBcR-ONT-ec Escherichia coli 4.6M 29 9356

MAP-006-1 Escherichia coli 4.6M 54 10 892

MAP-006-2 Escherichia coli 4.6M 30 10 794

MAP-006-pcr-1 Escherichia coli 4.6M 30 8080

MAP-006-pcr-2 Escherichia coli 4.6M 60 8064

Evaluation dataset name, species, reference genome size, theoretical

sequencing coverage and the N50 read length. Names starting with ‘MAP’ are

unpublished recent ONT data provided by the Loman lab (http://bit.ly/

loman006). Names starting with ‘ERS’ are accession numbers of unpublished

PacBio data from the NCTC project (http://bit.ly/nctc3k). PB-ecoli and PB-ce-

40X are PacBio public datasets sequenced with the P6/C4 chemistry (http://

bit.ly/pbpubdat; retrieved on 11/03/2015). PBcR-PB-ec is the PacBio sample

data (P5/C3 chemistry) used in the tutorial of the PBcR pipeline; PBcR-ONT-

ec is the ONT example originally used by Loman et al. (2015). ‘pls2fasta –

trimByRegion’ was applied to ERS* and PB-ecoli datasets as they do not pro-

vide read sequences in the FASTQ format.
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able to produce a single contig with DALIGNER (option -k15–h50),

MHAP (option –pacbio-sensitive) and GraphMap (option -w

owler). DALIGNER is the fastest, taking 65 s with four CPUs.

Minimap is five times as fast on this dataset and is 18 times as fast

on PB-ecoli at 160-fold. Minimap is faster on larger datasets pos-

sibly because without staging all possible hits in RAM, minimap is

able to process more reads in a batch while a large batch usually

helps performance. We should note that DALIGNER generates

alignments while minimap does not. Minimap would probably have

a similar performance if it included an alignment step.

4 Discussions

Miniasm implements the ‘O’ and ‘L’ steps in the Overlap-Layout-

Consensus (OLC) assembly paradigm. It confirms long noisy reads

can be assembled without an error correction stage, and without

this stage, the assembly process can be greatly accelerated and sim-

plified, while achieving comparable contiguity and large-scale accur-

acy to existing pipelines, at least for genomes without excessive

repetitive sequences. Although without the ‘C’ step, miniasm cannot

produce high-quality consensus for many analyses, it opens the door

to ultrafast assembly if we can develop a fast consensus tool match-

ing the speed of minimap and miniasm. In addition, MinION has a

‘read-until’ mode, allowing users to pause sequencing and reload

samples. Fast layout by miniasm could already help to decide if

enough data have been collected.

Our main concern with miniasm is that when we look at a low-

identity match between two noisy reads, it is difficult to tell whether

the low identity is caused by the stochastically higher base error rate

on reads, or because reads come from two recent segmental duplica-

tions. In comparison, error correction takes the advantage of multiple

reads and in theory has more power to distinguish high error rate

from duplications/repeats. Bacteria and C.elegans evaluated in this

article are repeat sparse. We are yet to know the performance of

miniasm given repeat-rich genomes. In addition, miniasm has not

been optimized for large repeat-rich genomes. It reads all hits into

RAM, which may not be practical when there are too many. We need

to filter repetitive hits, introduce disk-based algorithms (e.g. for sort-

ing) or stream hits before removing contained reads. Working with

large complex genomes will be an important future direction.

Oxford Nanopore is working on PromethION and PacBio will

ship PacBio Sequel later this year. Both sequencers promise signifi-

cantly reduced sequencing cost and increased throughput, which

may stimulate the adoption of long-read sequencing and subse-

quently the development of long-read mappers and assemblers. We

hope in this process, the community could standardize the input and

output formats of various tools, so that a developer could focus on a

component he or she understands best. Such a modular approach

has been proved to be fruitful in the development of short-read

tools—in fact, the best short-read pipelines all consist of compo-

nents developed by different groups—and will be equally beneficial

to the future development of long-read mappers and assemblers.
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