
Sequence analysis

gkmSVM: an R package for gapped-kmer SVM

Mahmoud Ghandi1,*, Morteza Mohammad-Noori2,

Narges Ghareghani3, Dongwon Lee4, Levi Garraway1,5 and

Michael A. Beer4,6,*

1The Broad Institute of MIT and Harvard, Cambridge, MA, USA, 2School of Mathematics, Statistics, and Computer

Science, College of Science, University of Tehran, Tehran, Iran, 3Department of Engineering Science, College of

Engineering, University of Tehran, and Institute for Research in Fundamental Sciences (IPM), Tehran, Iran,
4McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA, 5Dana-Farber

Cancer Institute, Harvard Medical School, Boston, MA, USA and 6Department of Biomedical Engineering, Johns

Hopkins University, Baltimore, MD, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on December 10, 2015; revised on March 7, 2016; accepted on April 10, 2016

Abstract

Summary: We present a new R package for training gapped-kmer SVM classifiers for DNA and pro-

tein sequences. We describe an improved algorithm for kernel matrix calculation that speeds run

time by about 2 to 5-fold over our original gkmSVM algorithm. This package supports several se-

quence kernels, including: gkmSVM, kmer-SVM, mismatch kernel and wildcard kernel.

Availability and Implementation: gkmSVM package is freely available through the Comprehensive

R Archive Network (CRAN), for Linux, Mac OS and Windows platforms. The Cþþ implementation

is available at www.beerlab.org/gkmsvm

Contact: mghandi@gmail.com or mbeer@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We recently introduced a gapped-kmer-SVM classifier (gkmSVM)

(Ghandi et al., 2014a) to detect functional sequence elements in regu-

latory DNA which has been applied to interpret a wide range of gen-

omic datasets (Gorkin et al., 2012; Lee et al., 2015; Pimkin et al.,

2014; Mo et al., 2016; Svetlichnyy et al., 2015). While we released a

version of our earlier kmer-SVM (Lee et al., 2011) as a webserver

(Fletez-Brant et al., 2013), gkmSVM was only released as

Cþþ source code. Here, we present an R package, gkmSVM-R, with

several improvements to facilitate easier implementation and broader

use. Our original gkmSVM-1.3 implementation used a tree algorithm

to compute the kernel matrix (Ghandi, 2012; Ghandi et al., 2014a,

b). In this paper, we describe a new algorithm, iDL-bound, that speeds

up kernel matrix computation. We have implemented the algorithm

in Cþþ and our R package is easily accessible on different platforms.

Our package also includes fast implementations of other kernels

(Leslie and Kuang, 2004; Leslie et al., 2004). We refer the Cþþ code

implementing the faster iDL kernel calculation as gkmSVM-2.0.

2 Usage

Figure 1 shows an overview of the gkmSVM analysis pipeline. Given

two sets of sequences, the goal is to build a predictive model to clas-

sify the two sets. For example, in (Lee et al., 2015) a gkmSVM is

trained to detect regulatory DNA elements active in a cell type by

using chromatin accessible DNA sequences as the positive set and a

set of GC matched inaccessible DNA sequences as negative set. The

model then can score and predict the accessibility of any DNA se-

quence. The first step is to build the kernel matrix (the pairwise simi-

larity scores for all the sequences in the positive and negative sets).

This is done using gkmsvm_kernel function:

gkmsvm_kernel(posfn, negfn, kernelfn);

where posfn and negfn are the input file names for the positive and

negative sets (FASTA format) and kernelfn is the output file name for

the kernel matrix. The second step is to train the SVM model, using:

gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx);

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2205

Bioinformatics, 32(14), 2016, 2205–2207

doi: 10.1093/bioinformatics/btw203

Advance Access Publication Date: 19 April 2016

Applications Note

http://www.beerlab.org/gkmsvm
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw203/-/DC1
Deleted Text: i
Deleted Text: 1 INTRODUCTION
Deleted Text: Svetlichnyy <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: Gorkin <italic>et<?A3B2 show $146#?>al.</italic>, 2012; 
Deleted Text: ; Lee <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: ; <xref ref-type=
Deleted Text: &hx2009;&hx002B;&hx002B;&hx2009;
Deleted Text: &hx2009;&hx002B;&hx002B;&hx2009;
Deleted Text: u
Deleted Text: 2 USAGE
http://www.oxfordjournals.org/


where svmfnprfx is the output file name prefix for the SVM model

(support vectors). Finally to classify/score a sequence, gkmsvm_clas-

sify is used:

gkmsvm_classify(testfn, svmfnprfx, outfn);

where testfn is the sequence input file and outfn is the output. We

have also included new functions genNullSeqs to sample the genome

to generate a GC, length and repeat fraction matched negative se-

quence set and extract FASTA sequences, and gkmsvm_delta to

score the impact of a variant (Lee et al., 2015) as described in the tu-

torial (Supplementary Data).

3 IDL-bound algorithm

The original algorithm in (Ghandi et al., 2014a), calculated the mis-

match profile for all pairs of k-mers with up to D mismatches using

a single depth first search (DFS) traversal of the k-mer tree. This is

fast for small values of D, but search time exponentially grows with

D. Here, we implement an alternative approach that divides the

search into n independent passes. Each pass can be truncated, speed-

ing the overall search. To elaborate, Figure 1b shows an example of

two strings of length L¼10, denoted by u¼u1,. . .,uL and

v¼ v1,. . .,vL. We want to check if they differ in at most D¼3 places.

One approach is to start from the left and compare the two strings

in a left to right order. We stop the search when we observe 4 mis-

matches or reach the end of the string. Alternatively, we can make

the comparison in two passes, from left to right and right to left. If

the strings have at most 3 mismatches, then in one of the two passes

there is at most 1 mismatch in the first half of the search. So we can

stop when we observe more than 1 mismatch, which can greatly re-

duce search time.

LEMMA 1

Given string length L, and maximum mismatch D, there exists L

predetermined passes (each pass is a permutation of 1,. . .,L) where

for any pair of strings with at most D mismatches, the number of

mismatches in the first i comparisons is bounded by iD=Lb c in at

Fig. 1. (a) gkmSVM pipeline overview. (b) Example of a two-pass string comparison. Input strings are compared in two passes: first from left to right and then

from right to left. The search stops when more than one mismatch is found in the first half of the search from each side. (c) Graphical proof for lemma 1. (d)

Example of 14 passes used for L¼7, D¼3

Fig. 2. Comparison of AUC on 467 ENCODE ChIP-seq datasets. gkmSVM-R re-

produces gkmSVM-1.3 (Ghandi et al., 2014a) when C¼1. Our faster algorithm

allowed optimizing over C (shown), but this yields insignificant improvement

in AUC

2206 M.Ghandi et al.

Deleted Text: ,
Deleted Text: 3 IDL-BOUND ALGORITHM
Deleted Text: : 
Deleted Text: .
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw203/-/DC1


least one of the passes. The L passes can be generated by circular

shifting of 1,. . .,L.

To compare two strings, we compare them in L different passes

(orders of letters), and at each pass stop the search if the number of

mismatches exceeds iD=Lb c at the ith step. Lemma 1 guarantees

that if the two strings have D or fewer mismatches, at least one of

the passes will reach the end, which we here prove graphically, simi-

lar to Raney’s problem in (Graham et al., 1994). Given two strings u

and v, we plot the mismatch curve by starting from the origin, and

for each position i, if ui and vi match, we move one unit in x, and if

they do not we move one unit in x and one unit in y. If u and v have

D mismatches, the mismatch curve will end at point (L,D), and the

line segment between the two ends has slope a¼D/L (Fig. 1c). Now

if we repeat u and v and continue the mismatch curve it will also

pass (2L,2D) as shown. If we shift the y¼ a�x line in y so that the

mismatch curve lies entirely below it, the corresponding shift (x*)

gives the cyclic shift that satisfies the iDL-bound.

In gkmSVM-2.0, we divide the search into n¼2L passes, L of

them given by the L circular shifts of 1.L, and the other given by L

circular shifts of the reverse of the scrambled permutation defined as

follows: p 1ð Þ ¼ 1 and p iþ 1ð Þ ¼ 1þ p ið Þ þ qþ eið Þmod L where

ei ¼ 1 if p ið Þ � rqþ rð Þ mod L or p ið Þ > L� qð Þ and ei ¼ 0 other-

wise, q ¼ L=Db c, r ¼ L� qD. Figure 2d shows the 2L permutations

used for L¼7 and D¼3 as an example. In practice, we generate all

the possible patterns of mismatches (all the binary strings of length

L with at most D ones) and assign each mismatch pattern d to the

pass p that gives the minimum cost:

Cp dð Þ ¼
XL

i¼1
wi

Yi

j¼1
pð1�dpj

Þð1� pÞdpj

Here, wi is the square of the number of nodes at depth i in the k-mer

tree, and p¼1/b, where b is the size of the alphabet (e.g. b¼4 for

DNA). This equation generally assigns each mismatch pattern to the

pass that visits most of the match positions first and mismatch pos-

itions toward the end of the search. We then build a k-mer tree using

all the mismatch patterns assigned to each pass and use that to prune

the DFS search in that pass. Since this new algorithm involves inde-

pendent passes, we can easily multithread by running each pass on a

separate thread, following (Lee, 2016).

4 Results

To evaluate the algorithm performance, we applied it to CTCF and

EP300 datasets described in (Ghandi et al., 2014a). Table 1 shows

running times for different values of L and D. We observe an aver-

age improvement of two fold using a single thread and up to 20-fold

using 8 threads. LS-GKM (Lee, 2016), designed for training on very

large datasets, is typically two times slower. With the faster iDL al-

gorithm we were also able optimize the SVM C parameter for the

467 Chip-seq datasets analyzed in (Ghandi et al., 2014a). We repro-

duce the results of gkmSVM-1.3 with gkmSVM-R when C¼1, and

when C is optimized, as shown in Figure 2, there is minimal im-

provement. We therefore recommend running with C¼1.

Funding

M.A.B. was supported by NIH grant R01 HG0007348. M. M-N and N. G.

were supported by grants from IPM (No. CS1391-4-02 and No. 94050016).

Conflict of Interest: none declared.

References

Fletez-Brant,C. et al. (2013) kmer-SVM: a web server for identifying predictive

regulatory sequence features in genomic data sets. Nucleic Acids Res., 41,

W544–W556.

Ghandi,M. (2012) A sequence based model for nucleosome positioning in

yeast. (Doctoral dissertation). Proquest/UMI 3537355.

Ghandi,M. et al. (2014a) Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput. Biol., 10, e1003711.

Ghandi,M. et al. (2014b) Robust k-mer frequency estimation using gapped k-

mers. J. Math. Biol., 69, 469–500.

Gorkin,D.U. et al. (2012) Integration of ChIP-seq and machine learning re-

veals enhancers and a predictive regulatory sequence vocabulary in melano-

cytes. Genome Res., 22, 2290–2301.

Graham,R.L. et al. (1994) Concrete Mathematics: A Foundation for

Computer Science 2nd ed. Addison & Wesley, Boston.

Lee,D. et al. (2011) Discriminative prediction of mammalian enhancers from

DNA sequence. Genome Res., 21, 2167–2180.

Lee,D. et al. (2015) A method to predict the impact of regulatory variants

from DNA sequence. Nat. Genet., 47, 955–961.

Lee,D. (2016) LS-GKM: a new gkm-SVM for large-scale datasets.

Bioinformatics, inpress.

Leslie,C. et al. (2004) Mismatch string kernels for discriminative protein clas-

sification. Bioinformatics, 20, 467–476.

Leslie,C. and Kuang,R. (2004) Fast String kernels using inexact matching for

protein sequences. J. Mach. Learn. Res., 5, 1435–1455.

Mo,A. et al. (2016) Epigenomic landscapes of retinal rods and cones. eLife, 5,

e11613.

Pimkin,M. et al. (2014) Divergent functions of hematopoietic transcription

factors in lineage priming and differentiation during erythro-megakaryopoi-

esis. Genome Res., 24, 1932–1944.

Svetlichnyy,D. et al. (2015) Identification of high-impact cis-regulatory muta-

tions using transcription factor specific random forest models. PLoS

Comput. Biol., 11, e1004590.

Table 1. Comparison of running times (min)

EP300, L¼10, k¼6 CTCF, L¼10, k¼6 CTCF, L¼12, k¼6

nthread D ¼ 3 D ¼ 4 D ¼ 3 D ¼ 4 D ¼ 3 D ¼ 4 D ¼ 5 D ¼ 6

gkmSVM1.3 1 15.7 50.3 18.1 67.1 21.3 115.0 447.8 1237

gkmSVM2.0 1 9.0 33.9 13.6 49.8 7.3 34.2 136.8 570.7

gkmSVM2.0 4 2.4 11.4 3.6 18.3 2.2 10.4 53.2 140.7

gkmSVM2.0 8 1.4 6.1 2.2 8.6 1.4 5.7 30.2 77.1

Lsgkm 1 21.5 65.2 28.0 82.6 57.4 176.8 473.1 1167

gkmSVM 2207

Deleted Text: .
Deleted Text: &hx2019;
Deleted Text: n&hx2019;t 
Deleted Text: <italic>.</italic>
Deleted Text: r
Deleted Text: 4 RESULTS
Deleted Text: [TQ2]
Deleted Text: 20 

