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Abstract

Summary: In a genome-wide association study (GWAS) of an admixed population, such as

Hispanic Americans, ancestry-specific allele frequencies can inform the design of a replication

GWAS. We derive an EM algorithm to estimate ancestry-specific allele frequencies for a bi-allelic

marker given genotypes and local ancestries on a 3-way admixed population, when the phase of

each admixed individual’s genotype relative to the pair of local ancestries is unknown. We call our

algorithm Ancestry Specific Allele Frequency Estimation (ASAFE). We demonstrate that ASAFE

has low error on simulated data.

Availability and implementation: The R source code for ASAFE is available for download at https://

github.com/BiostatQian/ASAFE

Contact: qszhang@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) in humans have focused

on populations of European origin. Hispanic Americans however,

have descended from ancestral Africans, Europeans and Native

Americans. Hispanics exemplify an admixed population, one that

has descended from multiple ancestral populations.

After discovering that an allele is significantly associated with a

trait in a GWAS of admixed individuals, it would be useful to know

the allele’s ancestry-specific frequencies. For a sample of Hispanic

individuals, an ancestry-specific allele frequency would be the fre-

quency of the allele amongst the chromosomes in the sample that

have a particular ancestral origin (either African, European, or

Native American) at the marker. Such frequencies provide informa-

tion about which populations the discovered association might also

be present in, thereby informing the choice of study population for

replication.

To obtain estimates of ancestry-specific allele frequencies, one

might find the allele frequency in each reference panel. However,

this approach is impossible for a marker that is present in the

admixed sample, but absent from a reference panel. This situation

arises when the reference panels are genotyped on a SNP array and

when the admixed individuals have sequence data. Even for a

marker that is typed in the reference panels, this approach suffers

when the reference panels do not exactly match the ancestral popu-

lations. For example, none of the populations in the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2015) are non-

admixed Native American. The ADMIXTURE and STRUCTURE

programs can use admixed genotypes to estimate ancestry-specific

allele frequencies, but require genotypes from reference individuals

of known ancestry in order to identify the frequencies with particu-

lar ancestries. (Alexander et al., 2009; Pritchard et al., 2000)

Furthermore, ADMIXTURE assumes linkage equilibrium amongst

markers, and STRUCTURE’s linkage model assumes linkage equi-

librium amongst markers descended from the same ancestral popu-

lation. (Falush et al., 2003) In contrast, we utilize estimates of local

ancestry, such as those from the RFMix program (Maples et al.,

2013). Estimates of local ancestry from such programs utilize haplo-

type frequencies, and thus make use of linkage disequilibrium. At

markers genotyped in all the reference panels, one can directly ob-

tain ancestry specific allele frequencies from the phased genotypes

and corresponding phased local ancestry estimates. However, at
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markers not genotyped in a reference panel, the phasing of the local

ancestries relative to the genotypes is unknown and further method-

ology is needed to obtain ancestry specific allele frequency estimates.

Here, we derive an EM algorithm (ASAFE) to estimate ancestry-

specific allele frequencies at a bi-allelic marker in a three-way

admixed diploid population, given admixed local ancestries and

genotypes at the marker, with each admixed individual’s genotype

allele order relative to ancestry order unknown. The major advan-

tage of ASAFE over alternative ancestry-specific allele frequency es-

timation approaches is that ASAFE is applicable to markers in the

admixed sample that are absent from a reference panel.

Furthermore, ASAFE takes advantage of linkage-disequilibrium

based information by using local ancestry calls.

Gravel et al. (2013) describe a somewhat similar algorithm to

ASAFE, but only for two-way admixture, and in the slightly differ-

ent setting of estimating the ancestral allele frequency in several

closely related ancestral populations (such as the Native American

ancestors of Columbians, Puerto Ricans and Mexicans). They do

not provide a publicly available implementation of their method.

We provide a publicly available implementation of our algo-

rithm, and a description of its performance on simulated Hispanic

data. Our algorithm applies to any diploid admixed population des-

cended from three ancestral populations, so our method is not re-

stricted to human populations.

2 Methods

A local ancestry inference program such as RFMix (Maples et al.,

2013) can be used to estimate the ancestry across the genome in an

admixed sample. Local ancestral segments tend to extend over long

genomic distances in recently admixed populations because they are

ended only by recombination since the admixture event. Thus al-

though the ancestry may only be estimated at positions that are gen-

otyped in both the admixed and reference individuals, the local

ancestry at most intermediate positions can be inferred with

confidence.

Given local ancestries and genotypes at each SNP, ancestry-spe-

cific allele frequencies can be estimated independently for each SNP,

using an EM algorithm that handles unknown genotype phase rela-

tive to ancestry phase to estimate three ancestry-specific allele fre-

quencies for a bi-allelic marker. We call this algorithm Ancestry

Specific Allele Frequency Estimation (ASAFE). Input data to ASAFE

are individuals’ ancestry pairs for the SNPs for which one would like

estimates, and the same individuals’ genotypes at these SNPs. A der-

ivation of the EM algorithm is given in the Supplementary

Information.

We simulated 10 Mb of sequence data for individuals from each

of three populations representing Europeans, West Africans and

Native Americans. We used 250 individuals from each population

as reference individuals, and created 250 admixed individuals from

additional simulated individuals. Details are in the Supplementary

Information.

We then applied ASAFE to the admixed data, treating genotypes

as unphased and using the known ancestries of the simulated

admixed individuals in the analysis. We gave ASAFE admixed geno-

types and ancestries at 56 003 SNPs, and for each SNP, obtained the

allele frequencies for each of three ancestries, African, European,

and Native American. The computation time was 0.5 h on a Linux

server with a Intel Xeon CPU E5-2630L 2.0 GHz processor.

We assessed the accuracy of ASAFE in the following way. For

each SNP, we estimated ancestry-specific allele frequencies for the

derived allele. For each ancestry, at each SNP, we subtracted the

true ancestry-specific allele frequency from the estimated ancestry-

specific allele frequency. We considered the true ancestry-specific al-

lele frequency to be the sample frequency of the allele amongst

admixed chromosomes descended from that ancestry. To see if the

accuracy of ASAFE might differ depending on the true ancestry-spe-

cific allele frequency, we binned SNPs by their true ancestry-specific

allele frequencies.

3 Results

Table 1 gives summary statistics on ASAFE’s error in estimating an-

cestry-specific allele frequencies for 250 admixed individuals.

ASAFE has low error across all allele frequency bins and ancestries.

Supplementary Table S1 shows error summary statistics for vari-

ous combinations of the three ancestral population allele frequen-

cies. The tested frequency combinations cover a broad range of

possibilities that might be observed for populations more or less

diverged than our simulated Hispanic scenario. Accuracy remains

high in each case. Mean errors (bias) are at most 0.001 in absolute

value and SDs are at most 0.03, with the highest SDs being observed

when the three frequencies are close to each other. Supplementary

Table S2 shows error summary statistics when local ancestry is

called with error. Adding 7% diploid error to the local ancestry calls

leads to mean errors (bias) of at most 0.05 in absolute value while

SDs are at most 0.04.

4 Conclusion

As more GWASs are performed in admixed populations such as

Hispanics, it is becoming increasingly important to estimate ances-

try-specific allele frequencies for bi-allelic markers. We derived an

EM algorithm to estimate ancestry-specific allele frequencies given

data on a 3-way admixed population and provide a publicly avail-

able implementation of the algorithm.
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Table 1. Mean and SD of errors (error¼ estimated ancestry-specific

allele frequency – true ancestry-specific allele frequency) for 56 003

SNPs, grouped by true ancestry-specific allele frequency bins for

African, European (Eur.), and Native American (Nat. Am.)

ancestries

True Ancestry-Specific Allele Frequency Bins

Ancestry Statistic (0–0.2] (0.2–0.4] (0.4–0.6] (0.6–0.8] (0.8–1]

African Mean �0.0011 �0.0003 �0.0004 0.0004 �0.0004

African SD 0.0065 0.0185 0.0233 0.0186 0.0118

Eur. Mean �0.0015 �0.0004 �0.0007 �0.0010 <0.0001

Eur. SD 0.0077 0.0209 0.0249 0.0220 0.0122

Nat. Am. Mean �0.0004 �0.0017 0.0021 0.0048 0.0007

Nat. Am. SD 0.0083 0.0235 0.0238 0.0257 0.0118
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