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Abstract

Motivation: Topological domains have been proposed as the backbone of interphase chromosome

structure. They are regions of high local contact frequency separated by sharp boundaries. Genes

within a domain often have correlated transcription. In this paper, we present a computational effi-

cient spectral algorithm to identify topological domains from chromosome conformation data

(Hi-C data). We consider the genome as a weighted graph with vertices defined by loci on a

chromosome and the edge weights given by interaction frequency between two loci. Laplacian-

based graph segmentation is then applied iteratively to obtain the domains at the given compact-

ness level. Comparison with algorithms in the literature shows the advantage of the proposed

strategy.

Results: An efficient algorithm is presented to identify topological domains from the Hi-C matrix.

Availability and Implementation: The Matlab source code and illustrative examples are available

at http://bionetworks.ccmb.med.umich.edu/

Contact: indikar@med.umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromosome conformation capture techniques (3C, 4C, Hi-C) have

yielded an unprecedented level of information about genome organ-

ization, and many studies are now exploring the relationship be-

tween genome structure and transcription (Cavalli and Misteli,

2013; Chen et al., 2015b; Gorkin et al., 2014). Chromosome con-

formation capture studies suggest that eukaryotic genomes are

organized into structures called topological domains (or topologic-

ally associating domains, TADs). Topological domains can be

defined as linear units of chromatin that fold as discrete three-di-

mensional (3D) structures tending to favor internal chromatin inter-

actions (Dixon et al., 2012; Nora et al., 2012). A majority of

regulatory protein binding sites localize within topological domains.

This suggests that sites associated with domain borders represent

a functionally different subclass of alleles that delimit regions con-

taining housekeeping genes and insulator sites (Van Bortle et al.,

2014). Detecting the topological domains is thus helpful for

studying the relationship between chromosome organization and

gene transcription. For additional works on delineating structural

domains (see Le Dily et al., 2014; Lévy-Leduc et al., 2014; Liu et al.,

2012; Pope et al., 2014; Sexton et al., 2012).

Topological domains can be detected using data from Hi-C,

which allows genome-wide identification of chromatin contacts.

The Hi-C method probes the 3D architecture of the whole genome

by coupling proximity-based ligation with massively parallel

sequencing. The Hi-C data matrix records the contact frequency be-

tween pairs of loci. Topological domains, as regions that have high

intra-contacts, are characterized by diagonal blocks in the Hi-C

matrix. To identify topological domains, in (Dixon et al., 2012) the

authors employed a Hidden Markov Model (HMM) on the direc-

tionally index from a Hi-C matrix to determine regions initiated by

significant downstream chromatin interactions and terminated by a

sequence of significant upstream interactions. Filippova et al. (2014)

formulated the identification problem by maximizing the domain

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2151

Bioinformatics, 32(14), 2016, 2151–2158

doi: 10.1093/bioinformatics/btw221

Advance Access Publication Date: 5 May 2016

Original Paper

http://bionetworks.ccmb.med.umich.edu/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw221/-/DC1
Deleted Text: ; Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2015b
Deleted Text: ; Dixon <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: ,
Deleted Text: ); Liu <italic>et<?A3B2 show $146#?>al.</italic> (2012); Le Dily <italic>et<?A3B2 show $146#?>al.</italic> (2014); L&hx00E9;vy-Leduc <italic>et<?A3B2 show $146#?>al.</italic> (2014); Pope <italic>et<?A3B2 show $146#?>al.</italic> (2014
http://www.oxfordjournals.org/


total reads and introduced a dynamic programming algorithm to

solve the problem with a given scale parameter.

These methods perform analysis on a 1D read index or on a 2D

image segmentation subblock, and they suffer from sensitivity to

initialization (e.g. HMM model parameter adjustment), and high

computational complexity (e.g. dynamic programming for combina-

torial optimization). However, these methods do account for the

fact that Hi-C matrices depend on interactions of loci on the gen-

ome. Specifically, the largest entries in a Hi-C matrix define a graph

whose vertices are loci in the genome and whose edge weights are

the contact frequencies between loci. Loci with high contact fre-

quency are associated with small Euclidean distance in 3D space.

Identifying fine domain resolution structures such as TADs can

directly be translated to the problem of segmenting the graph into

components with weak interconnections. Such graph partitioning

approaches have been well developed in spectral graph theory

(Chung, 1997). Representation of HiC data as a graph and the usage

of graph theoretic approaches have also been investigated by Botta

et al. (2010) and Boulos et al. (2013). While the former uses net-

works to present its experiment results and the later use graph the-

ory to discover hubs in chromatin interaction data, neither of them

discusses from the point of view of the graph segmentation for

chromatin data. Based on a graph theoretic interpretation of Hi-C

matrices, we propose a simple and mathematically sound algorithm

for topological domain discovery based on spectral graph

cuts. Domains at different scales are identified by running the spec-

tral graph cuts algorithm recursively, until the connectivity of the

graph associated with the domain reaches the level of desired

compactness.

Compared with previous algorithms in Dixon et al. (2012) and

Filippova et al. (2014), the proposed spectral method has several

advantages: First, the method leads to topological domains that

are highly correlated with gene transcription. Second, the pro-

posed method admits a unique solution, and does not suffer from

the severe initialization sensitivity of the HMM method, which is

due to the fact that HMM involves an iterative expectation–maxi-

mization (EM) algorithm. Note that stability with respect to ini-

tialization affects the robustness of a method. Third, using the

proposed graph connectivity stopping criterion leads to domains

with sizes more closely related to the inherent structure of the re-

gion. Finally, the proposed method relates the Hi-C matrix to the

spatial coincidence of loci via a graph and has moderate computa-

tional complexity. In the results section, the advantages of the al-

gorithm are confirmed on Hi-C data collected from human

fibroblast.

2 Preliminaries

2.1 Introduction to Hi-C data
Hi-C evaluates long-range interactions between pairs of segments

delimited by specific cutting sites by using spatially constrained liga-

tion, and provides ligation information (segment coordinates, seg-

ment directions, etc) for the pairs (Lieberman-Aiden et al., 2009).

These measurements are formatted into a square symmetric matrix

H, where ½H�ij stands for the total number of read pairs sequenced

between loci i and j, where locus refers to a sequence of non-overlap-

ping windows of equal sizes. This window size is also referred to as

the resolution of the Hi-C matrix where 1 Mb and 100 kb are com-

mon resolutions. A Hi-C matrix is non-negative and diagonally

dominant and tapered because a segment has higher probability of

ligation with proximal regions as compared with distal regions.

Furthermore, segments from chromosome centrometric regions can-

not be uniquely mapped due to the presence of repeated sequences

along the chromosomal strand. Thus there are zero-valued bands in

the Hi-C matrix. These zero-valued bands are usually removed since

they are non-informative. Finally, the entries are always nonnegative

since they record the contact counts between pairs of loci. A Hi-C

matrix therefore naturally associates a graph to the genome, where

vertices are defined by binned loci in the genome, and the edge

weight between a pair of loci is proportional to their contact fre-

quency. Consequently, a TAD is a compact region that can often be

visually distinguished as a diagonal block in the Hi-C matrix. TADs

are strongly connected graph components having strong intra-

connections and weak inter-connections (see the Fig. 1(a)–(c) for

illustration).

2.2 Spectral graph theory
Modeling the spatial organization of chromosomes in a nucleus as a

graph allows us to use recently introduced spectral methods to

quantitively study their properties. Our strategy for identifying topo-

logical domains is based on spectral graph theory applied to the

Hi-C matrix. Relevant concepts are reviewed below.

We define a undirected graph as the ordered pairs of sets

G ¼ ðV;EÞ where V ¼ fv1; v2; . . . ; vNg is a finite set of vertices

with cardinality N, and E is an edge set consisting of elements of

the form fvi; vjg; i 6¼ j. The adjacency matrix AðGÞ (or A for short)

is the symmetric N�N matrix encoding the adjacency relation-

ships in the graph G, such that ½AðGÞ�ij ¼ 1 only if fvi; vjg 2 E,

otherwise ½AðGÞ�ij ¼ 0, with ½��ij denoting the ijth entry of its ma-

trix argument. The degree of a given vertex, denoted by dðviÞ, is

Fig. 1. Illustration of topological domains represented in different senses: (a) physical structures of topological domains (locally compact regions). (b)

Topological domains are characterized by diagonal blocks in a Hi-C map. (c) Graph model of the contact architectures. Identifying topological domains is

then cast as the problem to segment a graph at weak connections. (d) Nodal domains of Fiedler vector of the graph forms the basis of the proposed

algorithm
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the cardinality of the neighborhood set in G of vi, equivalently ex-

pressed as

dðviÞ ¼
X
j2N i

½AðGÞ�ij; (1)

with N i denoting the neighboring vertices of vi. The degree matrix,

DðGÞ, is defined as a diagonal matrix with the ith diagonal entry

given by dðviÞ, namely,

½DðG�ij ¼
dðviÞ i ¼ j

0 i 6¼ j:

(
(2)

The Laplacian of graph G is defined by

LðGÞ ¼ DðGÞ � AðGÞ; (3)

and the normalized Laplacian is given by

LNðGÞ ¼ DðGÞ�
1
2 ðDðGÞ � AðGÞÞDðGÞ�

1
2: (4)

For a graph, let the ordered eigenvalues of LðGÞ (or LNðGÞ) be

denoted by k1; k2; . . . ; kN, where the following relation holds

0 ¼ k1 � k2 � � � � � kN : (5)

The second smallest eigenvalue k2 is known as the Fiedler number,

or algebraic connectivity, which characterizes the connectivity and

stability of the graph (Mesbahi and Egerstedt, 2010). When the

graph is connected the Fiedler number is strictly positive. Intuitively,

a more highly connected graph possesses a larger Fiedler number.

For example, a complete graph is a graph for which every vertex has

degree N – 1 and it has maximum Fiedler number among all graphs

over N vertices. Therefore, the Fiedler number is an appropriate

measure for associating the Hi-C data with the connectivity proper-

ties of the chromatin structures. The eigenvector associated with k2

is called the Fiedler vector. For a graph having several connected

components the Fiedler number is zero and the adjacency matrix is

permutation-equivalent to a block diagonal adjacency matrix A. In

this case the components can be uniquely identified from the signs of

the corresponding entries of the Fiedler vector (Shi and Malik,

2000). The positive and negative pattern defined by the Fiedler vec-

tor is called the nodal domain (Fig. 1(d)).

More generally, instead of considering binary connections be-

tween pairs, weights can be assigned to each edge such that ½AðGÞ�ij
¼ wij only if fvi; vjg 2 E (otherwise ½AðGÞ�ij ¼ 0Þ to characterize the

connection strengths. The associated degree matrix, DðGÞ, and

Laplacian, LðGÞ (or LNðGÞ), are defined in the same way as in (2)–

(4). See (Chung, 1997; Mesbahi and Egerstedt, 2010) for more de-

tails on spectral matrix theory for weighted matrices.

2.3 Characterizing the TAD graph with the normalized

Laplacian
The Hi-C matrix can be interpreted as a weighted adjacency ma-

trix for TAD graph. The normalized Laplacian (4) has several ad-

vantages over the unnormalized Laplacian (3). The spectrum of the

unnormalized Laplacian is influenced by the nodes having the

highest vertex degree. This can lead to the high degree nodes mask-

ing the nodes with lower vertex degrees, and consequently leads to

loss of sensitivity to complex structure. An extreme example of

this is the case where there is one very highly connected component

and other smaller connected components in the graph. In this case,

the connectivity structure of the highly connected component will

have dominating influence on the graph spectrum, masking the

spectral imprint of the of the other components. The normalized

Laplacian levels the playing field for both highly connected compo-

nents with nodes of high average vertex degree and components

with nodes of lower average vertex degree. This reduces the mask-

ing effect and leads to higher sensitivity to hidden structure. Using

the Fiedler number from the normalized Laplacian leads to captur-

ing the local structure patterns without being affected by

other regions on the same chromosome with high vertex degree,

which is consistent with our biological objective of finding the lo-

cally organized regions having co-regulated genes. Furthermore,

unlike the unnormalized Laplacian (3), the normalized Laplacian

(4) has a Fiedler number that is upper bounded, specifically

k2 � N
N�1 � 2.

3 Topological domain identification with graph
segmentation

As presented, the Fiedler vector of the Hi-C matrix can thus be used

to segment the chromosome into domains, and the Fielder value of

each domain indicates whether the obtained domain is sufficiently

compact, or needs to be further divided. We firstly present some

relevant notation and pre-processing, then the proposed strategy.

3.1 Notation and pre-processing
3.1.1 Dynamic range reduction

Let H be the observed Hi-C matrix of a given chromosome of length

L (with unmappable regions and diagonal entries removed), and let
�H be a transformed Hi-C matrix with reduced dynamic range

½ �H�ij ¼
0 for i ¼ j

f ð½H�ijÞ for i 6¼ j;

(
(6)

where the function f ð�Þ is introduced to alleviate the large dispersion

of the raw Hi-C matrix data. Functions such as the power transform

f ðxÞ ¼ xa, with a typically in ½14 ; 1
2�, or the logarithmic transform f ðxÞ

¼ logðxÞ can be used. Besides reducing data variability, since the Hi-C

matrix is a matrix of counts that can be modeled as Poisson, power

transform can be designed with an exponent that depends on the pos-

ition of the entry in the matrix (Chen et al., 2015a; Hu et al., 2012).

The power transform with a ¼ 1
2 (Anscombe, 1948, 1953) normalizes

the variance of the Poisson entries. Alternatively, the logarithmic

transform make entries approximately normal. The function f can

also be selected as a canonical link between Poisson variables and ex-

planatory variables for Hi-C matrices in a generalized linear model

(GLM) framework (Hu et al., 2012).

3.1.2 Toeplitz normalization

If two loci lie on the same chromosome of DNA, maximal separ-

ation between two loci is the length of DNA lying between them. As

a result closely spaced loci are likely to have large Hi-C read counts,

regardless of their specific conformation. To remove the distance ef-

fect, we employ a Toeplitz normalization. The Toeplitz normaliza-

tion divides the (i, j)th entry in the Hi-C matrix by the mean of all

matrix entries at the same distance ji� jj from the diagonal.

Mathematically, this step is described by:

HN ¼ H�E; (7)

where � corresponds to elementwise division of entries of H and E,

and the entries of E are given by

½E�k‘ ¼
1

cardðIk‘Þ
X

m;n2Ik‘

½H�mn; (8)
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with the set Ik‘ ¼ fm; n jm� n ¼ k� ‘; 0 < k; ‘ < Lg, cardðIÞ de-

notes the cardinality of the finite set I . The Toeplitz matrix E repre-

sents the expected contact frequency as a function of the genome

distance. Note that read depth normalization (the read depth nor-

malization is defined as HD ¼ c D�1HD�1 where D is a diagonal

matrix with ½D�ii ¼
PL

j¼1 ½H�ij, and the scalar c is the total number of

reads) can be performed beforehand, but we found this does not

lead to significant difference in the results (see Supplemental

Material (SM)).

3.1.3 Fiedler number and vector calculation operator

For an adjacency matrix A, we use the operator notation

k2; v FvðAÞ (9)

to denote the extraction of the Fiedler number k2 and the Fiedler

vector v, by computing the eigen-decomposition of the normalized

Laplacian of A defined in (4). When we want to emphasize the ex-

traction of the Fiedler vector, we abuse notation by omitting k2 from

the notation (9), i.e. we write v FvðAÞ.

3.2 Topological domain extraction via recursive

partitioning
In this subsection, a topological domain extraction strategy is pro-

posed based on the normalized graph Laplacian. The algorithm con-

siders both local interactions and long-range interactions embedded

in the Hi-C matrix. The algorithm first extracts initial domains via

the sign of the Fiedler vector, then it splits each domain recursively

until the Fiedler number of a newly obtained domain is higher than

some threshold and the size of the domain is sufficiently small. As

the Fielder number is proportional to the algebraic connectivity, this

threshold ensures discovery of sufficiently disconnected domains.

At the first step, we consider the weighted graph with edge

weights defined by the Toeplitz normalized matrix HN. The Fiedler

vector, denoted by vð1Þ, of this graph is computed and the graph is

segmented into two clusters that are differentiated by the signs of

the Fiedler vector entries. A number of locally compact structures

are then given by the sets of vertices with the same sign on the larg-

est range of continuous indices from i to j. This results in the region

Di�j defined by v
ð1Þ
i ; v

ð1Þ
iþ1; . . . ; v

ð1Þ
j having the same sign.

Experimentally we have observed that the sizes of these domains

vary from 100 kb to several megabases. They can naturally be

defined as the initial topological domains. We can identify over

3000 TADs determined by the Fiedler vector derived from HN. We

will see that compared with the gene expression represented by

RNA-seq counts, regions within each domain approximately behave

in a binary manner, all active, or all inactive. Further, all domains

with the same sign behave binary manner, active or inactive. From

spectral graph theory, we known that domains with the same sign

are in the same cluster, and have fewer connections to other clusters

than connections within their own cluster. This result obtained from

HN considers the overall contact organization of the chromatin.

This step results in segmentations that are similar to the compart-

ments A and B obtained from (Lieberman-Aiden et al., 2009). A

further comparison can be found in supplementary materials

(Section 4).

Topological domains are likely to exhibit hierarchical structures

(Filippova et al., 2014). After determining the initial domains via the

Fiedler vector of HN, we therefore further divide these domains to

sub-domains having smaller sizes. For an obtained domain Di�j, we

calculate the Fiedler vector of the graph whose adjacency matrix is

given by the sub-matrix of �H indexed by Di�j, followed by splitting

Di�j into sub-domains based on the signs of its Fiedler vector entries.

In this step matrix �H is used, since the determining these smaller

sub-domains relies on diagonal block structures in �H, instead of the

long-range interactions exhibited in HN. The Fiedler number of the

obtained domains are calculated and compared with a predefined

threshold kthr to determine whether they are sufficiently compact, or

can further be split. The full algorithm is summarized in Algorithm

1. An example of the algorithm processing is illustrated in supple-

mental data file (Supplementary Fig. S1). A discussion of this two-

step strategy and alternative strategies is included in the SM.

3.3 Computational complexity
The complexity of the proposed algorithm is dominated by the

eigen-decomposition of the normalized Laplacian matrices. Step 1

requires the eigen-decomposition on a moderate size matrix (e.g.

�2300� 2300 for chromosome 1 at 100 kb resolution, �350� 350

for Chromosome 22 at 100 kb resolution). The resultant recursions

will process matrices of much smaller sizes, and the computational

time for eigen-decomposition is reduced significantly. In the next

section, we will provide more details on computational require-

ments. For higher resolutions with larger matrices, this computation

can be performed more efficiently by only computing a few of the

first smallest eigenvalues and the associated eigenvectors, using, for

example, power iterations (Saad, 1992), or by distributed means

(Kang et al., 2011). These particular strategies will be investigated

in future work.

4 Results

In this section, we illustrate the proposed algorithm and compare it

with previously proposed algorithms. The algorithms were first

applied to Hi-C data obtained from human foreskin fibroblasts

from a normal karyotyped male individual. Fragment contacts were

binned to generate Hi-C matrices at 100 kb resolution. The Hi-C li-

brary, RNA-seq library, data collection, and raw data processing

Algorithm 1. Identification of TADs via graph Laplacian

Parameters: Fiedler number threshold kthr, and user-supplied

lower bound L on domain size.

Pre-processing: For a given chromosome, compute the matrix
�H using (6) and the normalized matrix HN

using (7).

Algorithm:

Step 1: Calculate the Fiedler vector of the matrix HN:

vð1Þ  FvðHNÞ (10)

Initial TADs are given by the contiguous regions in vð1Þ with

the same sign.

Step 2: For each obtained domain, compute its Fiedler number

and vector for each associated sub-matrix in �H:

k2; v Fvð �HDi�j
Þ (11)

If the Fiedler number is smaller than the threshold k2 � kthr,

segment the current domain again via v.

Recursion: Repeat step 2 until the obtained sub-domain has a

Fiedler number larger than the threshold, or its size reaches

the lower bound L.
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were all performed by our laboratory, see SM and Chen et al.

(2015b) for the protocols, the detailed cell culture and data collec-

tion methods. The algorithm was then applied to Hi-C data from

IMR90 cells at a higher 5 kb resolution. Details of the toolbox can

be found in Section 1 of SM.

For comparison, we considered the topological domains extrac-

tion methods presented in Dixon et al. (2012) and Filippova

et al.(2014). In Dixon et al. (2012), the authors defined the direc-

tionality index (DI) at each bin by

IDI ¼
Ndown �Nup

jNdown �Nupj
ðNup �NavÞ2

Nav
þ ðNdown �NavÞ2

Nav

" #
; (12)

where Nup denotes the reads from the current bin to 2 Mb upstream,

Ndown denotes the reads from the current bin to 2 Mb downstream,

and Nav ¼ 1
2 ðNup þNdownÞ. Then the directionality index was mod-

eled as the observation of a hidden Markov model (HMM) under a

Gaussian mixture model, endowed with three hidden states associ-

ated with the start, end and middle of a domain. In Filippova et al.

(2014), the authors formulated the topological domain identifica-

tion problem via the following optimization:

max
ai ;bi

X
1� ai < bi �N

qðai;bi; cÞ: (13)

The function q is defined by qðk; l; cÞ ¼ sðk; l; cÞ � lsðk� lÞ,
where sðk; l; cÞ ¼ Nkl

ðk�lÞc with c a scale parameter and Nkl is total reads

between loci k and l, and lsðk� lÞ is mean value of sðk; l; cÞ over all

sub-matrices of length l – k. The optimization (13) was solved via

dynamic programming (DP).

For brevity, in this paper we illustrate the identified topological

domains for one of the smaller chromosomes of the fibroblasts: chr-

22. Results on all the other chromosomes can be found in Figure

S2–S23 in the supplemental file. The logarithmic transform f ð�Þ was

used in (6) to reduce the dynamic range of data and for variance nor-

malization. The proposed algorithm and the two comparative algo-

rithms were then applied to the transformed Hi-C matrix of

Chromosome 22. For the HMM method, we took reads from cur-

rent bin to 1 Mb upstream and downstream for Nup and Ndown in-

stead of the 2 Mb in the original presentation upstream/downstream

distance in order to investigate its effect on the domain size distribu-

tion in the HMM segmentation. However, the upstream/down-

stream distance did not appear to have an effect on the size

distribution. For the DP algorithm, the parameter c was set to c
¼ 0:2 and 0.25, respectively. For the proposed algorithm, Algorithm

1 was implemented with kthr ¼ 0:8 and 0.9, respectively.

The identified topological domains are illustrated in Figure 2

with diagonal blocks marked by blue squares. It can be observed

that the proposed algorithm provides results that are most consistent

with the observations, and finer domains can be obtained hierarchic-

ally by increasing the threshold kthr. Compared with the proposed

algorithm, the HMM methods have difficulty controlling the do-

main resolution to user specifications. Furthermore, the HMM algo-

rithm suffers from the problem of convergence to local maxima of

the likelihood function and is over-sensitive to the initialization. The

DP method has very high computational complexity, especially for

large chromosomes. A comparison among these algorithms and

quantitive computational time are reported in Table 1 and 2 respect-

ively. The advantage of the proposed algorithm in computational ef-

ficiency for Hi-C data at 100 kb resolution is obvious. Detailed

information on the boundary coordinates identified by the three al-

gorithms are provided in the SM.

We use Chromosome 22 to illustrate the capability of the pro-

posed algorithm to identify meaningful domains. The size distribu-

tion of identified TADs using the proposed algorithm with

kthr ¼ 0:8 and kthr ¼ 0:9 are shown in Figure 3(a).Their boundary

coordinates are reported in Table S3. While varying the Fiedler

Fig. 2. Illustration of estimated topological domains on Chromosome 22 obtained by previous algorithms and the proposed algorithm
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number threshold kthr, we then count the number of domains identi-

fied by the proposed algorithm and compute the mean size of the do-

mains. In the top part of Figure 3(b), as expected the number of

domains found in Chromosome 22 increases with increasing kthr.

Not shown are the results of decreasing the threshold below 0.8,

where there is little change in segmentation. This is due to the fact

that the segmentation on HN in Step 1 results in small size domains.

Finally, when the threshold reaches kthr ¼ 2, the domains are com-

posed of single bins and the number of domains equals the size of

the Hi-C matrix. We compare the identified TADs with those identi-

fied by the HMM method. First, the proposed methods identified

more TADs than the HMM method (Supplementary Table S2 and

Table S3). Second, note that the proposed method and HMM give

very different TAD segmentations. Even the first splitting step

results in a larger number of domains than that identified by the

HMM method. We show below that the TADs produced by the pro-

posed spectral method with have significantly higher correlation to

the transcriptional gene expression as determined by RNAseq (see

Fig. 4). Therefore we conclude that the proposed method captures

more meaningful structures. Furthermore the domain boundaries

captured from these two methods often do not line up (See

Supplementary Table S3) making further comparisons between the

proposed spectral methods and the HMM method difficult.

Figure3(b) shows the total number of domains identified for

Chromosome 22. Correspondingly, the bottom part of Figure 3(b)

shows the mean TAD size, which is expected to decrease with in-

creases in the Fiedler number threshold. The results for the rest of

the chromosomes are reported in the supplementary materials. Our

proposed method also reveals that although they have the same alge-

braic connectivity (Fielder number), the topological domains of Chr

17 and 19 are larger than those of Chr 18. This may be related to

the fact that Chr 17 and 19 are rich in protein coding genes while

Chr 18 has fewer such genes.

We next illustrate the relationship between the chromosome

structure and gene expression via the identified topological domains.

Table 2. Computation time comparison of the three algorithms (in

s on iMac with 2.6 GHz intel Core i7 and 4 GB RAM)

Chr 1 Chr 4 Chr 9 Chr 14 Chr 22

HMM 124.5 102.9 67.3 45.5 21.1

DP >1 h >1 h 2399.8 609.1 10.2

Laplacian 2.8 1.8 0.8 0.5 0.1

Table 1. Comparison of the three algorithms

HMM DP Laplacian

Measure Directionality index Reads (normalized) Fiedler number (normalized)

Key methods State estimation with Hidden

Markov chain

Optimization with dynamic

programming

Spectral clustering with graph

Laplacian

Characteristics Method in original paper Optimal in region total reads Good physical interpretation

Resolution Partially related with the length for DI Related with c Related with kthr

Hierarchical

identification

No Multiscale Yes

Robustness Sensitive to initial conditions Unique solution Unique solution

Complexity Moderate High Low

Fig. 3. (a,b) Domain size distribution of the identified TADs on all chromo-

somes (a) and Chr-22 (b) with kthr ¼ 0:8 (top) and kthr ¼ 0:9 (bottom) respect-

ively. (c,d) The number of identified TADs (top) and mean TAD size (bottom)

on all chromosomes (c) and on Chr-22 (d) versus the Fiedler number

threshold

Fig. 4. Comparison between Fiedler vector obtained in Step 1 of Algorithm 1

and transcription described by RNA-seq counts
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Gene expression is represented by RNA-seq counts. RNA-seq was

performed simultaneously with Hi-C in our laboratory. In order to

be consistent with Hi-C matrix resolution, we summarized the gene

RNA-seq counts into bins of 100 kb resolution, according to their

locations. In Figure 4(a), we show the Fiedler vector of

Chromosome 22 obtained in Step 1 of Algorithm 1 and its RNA-seq

counts. It can be observed that the sign pattern of the Fiedler vector

has high correlation with the expression levels of the RNA-seq data.

Note that each locally consistent sign region is a topological domain

obtained at Step 1 of Algorithm 1. To show this in a quantitive man-

ner, we took the sign of the Fiedler vector and thresholded the

RNA-seq count vector (where the threshold was selected for each

chromosome to maximize the correlation), and then computed the

correlation coefficient between these two vectors for all chromo-

somes. The correlation values are shown in Figure 4(b). Significant

correlation is observed according to this result (with p < 10�6 by

permutation test. This shows that initial TADs are generally consist-

ent with the two chromosome compartments in the genome, hetero-

chromatin or euchromatin. We also show the decreasing trend of

the relation between the averaged variance of log-scaled RNA-Seq

reads within TADs versus the Fiedler number threshold

(Supplementary Fig. S33). These results confirm the relationship be-

tween the identified topological domains and the functional expres-

sion (Dixon et al., 2012; Lieberman-Aiden et al., 2009), and also

reveals the quality of the identified topological domain.

As compared to DP and HMM methods, the proposed method

identifies TAD boundaries that are more consistent with the loca-

tions of known CTCF enrichment peaks. We plot the CTCF ChIP-

seq enrichment at bins of 100 kb resolution with the locations of

identified TAD boundaries for the three compared algorithms in

Figure 5, with CTCF enrichment extracted from (Ziebarth et al.,

2013). It has been proposed that TAD boundaries coincide with in-

sulators such as CTCF binding sites. However, 85% of CTCF bind-

ing sites localize within TADs rather than at their borders,

suggesting that most CTCF sites are unlikely to aide in identifying

the borders that separate TADs. Meanwhile, multiple studies sug-

gest that some insulator elements are not capable of enhancer-block-

ing or chromatin barrier activity (Schuettengruber and Cavalli,

2013; Schwartz et al., 2012; Van Bortle et al., 2012). Compared

with the other two algorithms, the boundaries identified by the

proposed algorithm are more consistent with CTCF enrichment

peaks. A particularly visible example can be found for the large

TAD between 300 and 350 bins.

Finally, we illustrate the scalability of the proposed spectral algo-

rithm to Hi-C data at higher resolution (5 kb) by applying it to the

Hi-C IMR90 cell data of Rao et al. (2014). Results of the last 2000

bins with kthr ¼ 0:4 and kthr ¼ 0:6 are shown in Figure 6 for

Chromosome 22.

5 Conclusion

In this paper, we presented a method for identifying topological do-

mains based on the spectral decomposition of the graph Laplacian

of the Hi-C matrix. The proposed algorithm has clear mathematical

interpretation and is more computationally efficient than previous

methods, allowing it to be applied to higher resolution Hi-C data.

Its favorable comparison with other algorithms and its higher correl-

ation with gene transcription dataillustrate the advantages of the

proposed spectral method. Future work may include investigating

fast iterative algorithms or parallel computation algorithms for im-

proving the efficiency at higher resolutions.
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