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Abstract

Motivation: By collecting multiple samples per subject, researchers can characterize intra-subject

variation using physiologically relevant measurements such as gene expression profiling. This can

yield important insights into fundamental biological questions ranging from cell type identity to tu-

mour development. For each subject, the data measurements can be written as a matrix with the

different subsamples (e.g. multiple tissues) indexing the columns and the genes indexing the rows.

In this context, neither the genes nor the tissues are expected to be independent and straightfor-

ward application of traditional statistical methods that ignore this two-way dependence might lead

to erroneous conclusions. Herein, we present a suite of tools embedded within the R/Bioconductor

package HDTD for robustly estimating and performing hypothesis tests about the mean relation-

ship and the covariance structure within the rows and columns. We illustrate the utility of HDTD by

applying it to analyze data generated by the Genotype-Tissue Expression consortium.

Availability and Implementation: The R package HDTD is part of Bioconductor. The source code

and a comprehensive user’s guide are available at http://bioconductor.org/packages/release/bioc/

html/HDTD.html.

Contact: A.Touloumis@brighton.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The term ‘transposable data’ refers to data that are naturally written

in a matrix whose dimensions correspond to two distinct features of

interest, while the term ‘high-dimensional’ reflects the fact that the

dimension of the subject-specific data matrix is larger than the num-

ber of subjects. High-dimensional transposable data can be found in

genetics, e.g. when, for each subject, gene expression levels are

measured in multiple tissues (Piccirillo et al., 2015), in different

fragments of the same tumour (Sottoriva et al., 2013) or in a well-

defined spatial order (Petretto et al., 2010), in yeast expression stud-

ies (Smith and Kruglyak, 2008), in protein-signaling networks

(Sachs et al., 2005), in eQTL analysis (Bhadra and Mallick, 2013)

and in other studies with EEG, fMRI and time-series data (cf.

Touloumis et al., 2014). To analyze robustly such datasets,

we developed the R package HDTD (High-Dimensional

Transposable Data).

In multiple-tissue gene expression studies, the rows correspond to

genes and the columns to tissues, and genes and tissues might to be

correlated with each other. Ignoring a potential tissue-wise correlation

could be misleading in determining the strength of the gene-wise cor-

relation (Touloumis et al., 2014) and it may hinder the discovery of

differentially expressed genes, since traditional ANOVA-type tests suf-

fer from extremely low power and/or false positive findings

(Touloumis et al., 2015). The unique feature of HDTD is the imple-

mentation of sound statistical methods that account for and estimate

both the tissue- and gene-wise correlation, thus facilitating reliable in-

ference about the form of the mean gene expression levels and the

functional relationship among genes and/or tissues.
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2 Statistical background

To introduce the notation, suppose that the gene expression levels

for subject i are recorded in an r� c matrix X i with rows the same

set of r genes and columns the same set of c tissues. We assume that

X1; . . . ;XN are independently and identically distributed. Inference

about the mean relationship of the genes across the tissues and about

the dependence structure relies on estimating and/or testing hypoth-

eses about the mean matrix M, the gene covariance matrix RR and

the tissue covariance matrix RC. In particular, the (a, b) element of

M determines the mean expression level for gene a in tissue b, the

(c, d) element of RR the covariance of genes c and d, and the (e, f)

element of RC the covariance of tissues e and f. The covariance struc-

ture between two elements of a typical X has a Kronecker product

form: CovðXij;XlmÞ ¼ RRil RCjm:

In practice it is often of interest to identify differentially ex-

pressed genes. For example, it is important to assess whether the

overall mean pattern of gene expression levels remains constant

across all or pre-specified tissue groups. To do this, HDTD imple-

ments the testing methods proposed by Touloumis et al. (2015).

To estimate RR and RC, shrinkage approaches are employed.

These have been found to be extremely useful in constructing reli-

able gene networks (see Sch€afer and Strimmer, 2005). The novel

shrinkage covariance estimators derived in the Supplementary

Material are statistically efficient and practical because they are in-

vertible and easy to calculate regardless the number of genes and tis-

sues. In addition, HDTD allows users to study correlation patterns

of the genes or tissues by testing against known covariance struc-

tures (Touloumis et al., 2014). The non-parametric nature of our

analysis provides some robustness against non-normality.

3 Multiple tissue example

Melé et al. (2015) investigated variability in the human transcrip-

tome across multiple tissues by analyzing RNA sequencing

(RNAseq) data from the Genotype-Tissue Expression project. This

project identified, among other things, genes whose expression sig-

nature characterized particular tissues. To accomplish this, Melé

et al. (2015) used essentially all available tissue-samples from each

of the 175 individuals by aggregating gene expression levels across

the tissue tested and the remaining tissues (see §3.5 in

Supplementary Material in Melé et al., 2015). This approach does

not acknowledge the tissue-wise correlation and consequently, this

can affect the discovery of tissue-specific gene lists (Touloumis et al.,

2015). Since HDTD requires measurements from the same set of tis-

sues across subjects, we considered a subset of this dataset including

only the subjects (N¼11) with available RNAseq samples across all

the most frequently collected tissues (skin, nerve, adipose, artery,

lung, skeletal muscle, heart, blood and thyroid). A 44781�9 data

matrix was created for each subject, with rows corresponding to

genes, columns corresponding to the samples from the nine tissues

and entries corresponding to the RPKM values. We use RPKM val-

ues for consistency with the original publication but we excluded

genes where the sum of the RPKM values across the tissues was less

than 0.1. To illustrate benefits when utilizing HDTD, we focused on

two important inferential aspects: (i) study of the dependence struc-

ture among the nine tissues and (ii) corroboration of the gene signa-

tures when the dependence between tissues is accounted for.

To study the tissue-specific variability, we estimated the corres-

ponding covariance matrix Rc (Table S1 in the Supplementary

Material). Blood was by far the most variable tissue (SE¼870.4),

with SE at least four times that of the other tissues. To study the

tissue-wise correlation, we calculated the correlation matrix from Rc

(Table S2 in the Supplementary Material). We observed that lung,

skeletal muscle, heart and thyroid were mildly correlated with each

other (correlations � 0.1), while the remaining tissues showed

weaker strength of correlation. To investigate the statistical signifi-

cance of our observation, we employed the sphericity test

(Touloumis et al., 2014) to all possible tissue pairs so as to identify

correlated pairs of tissues. After applying an FDR correction, we

failed to reject the sphericity hypothesis for the tissue pairs listed in

Table S3 in the Supplementary Material. To summarize these re-

sults, there seems to exist a weak but statistically significant tissue-

wise correlation pattern that needs to be considered when analyzing

the gene expression pattern across tissues.

Melé et al. (2015) generated lists of genes that showed tissue-spe-

cific expression (Table S5 in Melé et al., 2015). For a given tissue,

we tested the hypotheses of conservation of the overall mean gene-

expression levels of the corresponding genes-list between this tissue

and any of the other eight, leading to a total of eight P-values, to

which we applied an FDR correction. Failure to reject all hypotheses

means that we do not have enough evidence that these genes are tis-

sue-specific in their expression. After performing this analysis, we

confirmed the validity of the tissue-specific gene-lists for skin, nerve,

lung, skeletal muscle, heart and blood tissue. However, we

failed to confirm that the overall mean gene-expression levels of

the thyroid-specific gene-list is different in skeletal muscle

(P-value¼0.782); that of the adipose-specific gene-list different in

the skin (P-value¼0.105), and that of the artery-specific gene-list

different in skin (P-value¼0.668), in adipose (P-value¼0.716), and

in blood (P-value¼0.145). We also failed to reject the hypothesis

that the mean gene-expression pattern for the artery-specific genes is

simultaneously preserved across artery, skin, adipose and blood tis-

sues (P-value¼0.412), which is in accordance with the pairwise tis-

sue analysis. The difference in our conclusions compared to those in

Melé et al. (2015) presumably arises because the methods in HDTD

account for the presence of the tissue-wise correlation, regardless of

its strength, a key inferential property that is not discussed by Melé

et al. (2015).

4 Summary

Although HDTD was motivated by and illustrated using multi-

tissue gene expression data, we emphasize that HDTD is suitable

for analyzing other types of high-dimensional transposable data

including single-cell transcriptomics data (see Lee et al., 2014;

Lovatt et al., 2014) sampled from different tissues. In these studies,

HDTD should lead to more robust inference since it accounts for

both the gene- and tissue-wise correlation and is reliable for large

numbers of cells without a dramatic increase in the computational

cost.
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