
1Scientific Reports | 6:29499 | DOI: 10.1038/srep29499

www.nature.com/scientificreports

Dcsbis (PA2771) from Pseudomonas 
aeruginosa is a highly active 
diguanylate cyclase with unique 
activity regulation
Ying Chen1,*,†, Shiheng Liu1,*, Cuilan Liu2,*, Yan Huang1,*, Kaikai Chi1, Tiantian Su1, Deyu Zhu1, 
Jin Peng1, Zhijie Xia3, Jing He1, Sujuan Xu1, Wei Hu1 & Lichuan Gu1

C-di-GMP (3’,5’ -Cyclic diguanylic acid) is an important second messenger in bacteria that influences 
virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by 
diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions 
and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a 
self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an 
N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates 
cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic 
activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop 
(protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby 
largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF 
domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, 
moving the protecting loop from the I-site and thereby turning off the enzymatic activity.

C-di-GMP is a ubiquitous second messenger in bacteria. It was first reported as an activator regulating cellulose 
synthesis1,2. C-di-GMP modulates diverse cellular functions, such as motility, biofilm formation, virulence and 
cell division, by influencing gene transcription, signal transduction, protein secretion and stability, and enzymatic 
activity3–5. The level of c-di-GMP is controlled by the coordination of two classes of enzymes, diguanyl cyclases 
(DGCs) and phosphodiesterases (PDEs)6. The DGCs catalyze the synthesis of c-di-GMP from GTPs and contain 
the conserved amino acid sequence motif “GGDEF” (or “GGEEF”). PDEs hydrolyze c-di-GMP to linear pGpG 
and GMP and normally contain an EAL domain or an HD-GYP domain7–13. As the synthesizer of c-di-GMP, 
DGCs play important roles in regulating the biological behaviors of bacteria. Therefore, revealing the biochemical 
mechanism of DGCs might provide an avenue for controlling infections and the toxicity of pathogenic bacteria.

The GGDEF domain is responsible for the catalytic activity of DGCs. Previous studies on GGDEF 
domain-containing proteins (PleD, WspR and XCC4471) have proposed that the activity of DGCs requires the 
cooperative action of two GGDEF domains that individually bind one molecule of GTP14. The dimerization of 
GGDEF domains enables catalysis by bringing two GTP-bound active sites together. Most GGDEF domains 
are linked to other accessory domains that are located in the N-terminus and act as signaling domains14,15. For 
example, the PleD protein contains an N-terminal CheY-like domain, and the phosphorylation of the CheY-like 
domain alters the surface of the protein and promotes dimerization, which subsequently activates the GGDEF 
activity16,17. Similar activation exists in the catalytic mechanism of WspR18. In XCC4471 from Xanthomonas 
campestris, the HAMP and TM domains are essential for the dimerization of DGC domains19.

In addition to activation by oligomerization, the activity of GGDEF domains can also be regulated by 
product inhibition. More than 60% of GGDEF domains contain a conserved RxxD motif that is bound to the 
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product c-di-GMP and that facilitates product feedback inhibition14. The RxxD motif has been suggested to 
be the allosteric product inhibition site (I-site). The DGC activities of both PleD and WspR are regulated by 
non-competitive product inhibition via the binding of c-di-GMP to the allosteric I-site20,21. XCC4471 lacks the 
typical RxxD motif; the complex formed by XCC4471 and c-di-GMP indicates a competitive inhibition model 
blocking the DGC activity19. Product inhibition is critical for cellular c-di-GMP homeostasis.

Although the structures of the previously studied GGDEF domain-containing proteins have provided a gen-
eral model for the mechanism of oligomerized activation and product inhibition, exceptions do exist in some 
proteins, especially in those with various additional signaling domains. Our study was focused on the protein 
product of the PA2771 gene from the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is a major 
drug-resistant secondary infection source in hospitals. The observation that PA2771 shows the same distribution 
as the type III-delivered cytotoxin-encoding exoS22, as well as its involvement in drug response23, makes it an 
interesting target.

The PA2771 gene is located on the genomic island of strain PAO1, which has not been reported in strain PA14 
and six other P. aeruginosa strains22. According to the domain prediction from the amino acid sequence, the 
protein contains an N-terminal GAF (cGMP-specific phosphodiesterase, adenylyl cyclases and FhlA) domain, 
which is a common signaling domain, and a C-terminal GGDEF domain. This domain organization indicates 
that PA2771 synthesizes c-di-GMP. However, little is known regarding its enzymatic activity and the regulation 
of its activity. In addition, there is little known about its effect on bacterial behaviors, such as biofilm formation 
and motility.

Here, we show that PA2771 controls cell motility without substantially affecting biofilm formation. In vitro 
activity assays show that PA2771 is a highly active diguanyl cyclase, a result consistent with its possession of a 
GGDEF domain. To study the mechanism of PA2771 catalysis and regulation, we also crystallized full-length 
PA2771 and the GGDEF domain of PA2771 in complex with c-di-GMP. The crystal structure of full-length 
PA2771 revealed the active site and product inhibition site of the enzyme. In the full-length structure, PA2771 
forms dimers via the GAF domain. Intriguingly, the two monomers in the dimer block the I-site of each other 
with a loop (protecting loop) extending from the GAF domain. However, in the GGDEF domain/c-di-GMP 
complex structure, the GGDEF domain dimerizes via the two c-di-GMPs from the inhibition sites. Because I-site 
product inhibition self blockage is a special feature of PA2771, we named the protein Dcsbis (diguanylate cyclase 
with a self-blocked I-site). From the structural and biochemical data, we propose a potential regulatory model for 
the regulation of the DGC activity of Dcsbis.

Results
PA2771 controls bacterial motility without affecting biofilm formation in PAO1.  To study the 
biological function of PA2771 in PAO1, we constructed a PA2771 deletion mutant (ΔPA2771) of PAO1 and 
compared its behavior with that of the wild type strain (WT). According to previous studies, GGEDF-domain 
containing proteins, such as SadC24, influence the mobility and biofilm formation ability of bacteria. Here, we 
tested the two phenotypes in both the WT and Δ​PA2771 strains.

Compared with the WT strain, the Δ​PA2771 mutant showed a significantly increased ability to swim (Fig. 1a). 
Therefore, we hypothesized that the overexpression of Dcsbis would cause a deficiency in swimming motility. As 
expected, introducing a multi-copy plasmid carrying the PA2771 gene into the WT and Δ​PA2771 strains sig-
nificantly decreased the swimming motility (Fig. 1a). The Δ​PA2771 mutant also displayed an altered swarming 
motility (Fig. 1b). Unexpectedly, the ability of the Δ​PA2771 mutant to form a biofilm, compared with that of the 
WT strain, was not significantly different (Fig. 1c). This finding indicates that PA2771 has no detectable influence 
on biofilm formation.

Dcsbis is a highly active diguanylate cyclase in vitro.  According to sequence analysis, Dcsbis contains 
an N-terminal GAF domain and a C-terminal GGDEF domain. This analysis suggests that Dcsbis may possess 
DGC activity. Thus, we performed a DGC activity assay with full-length Dcsbis by using the pyrophosphate 
method25. The result showed that Dcsbis converts two GTPs into c-di-GMP and releases one molecule of pyroph-
osphate (PPi). To test whether the GGDEF domain is fully responsible for the DGC activity, we assayed the 
activity of the GGDEF domain (Residues 173 to 341). Interestingly, we found that the GGDEF domain of Dcsbis, 
compared with the full-length Dcsbis, exhibited only residual DGC activity (Fig. 1d). These results indicated that 
Dcsbis contains an active GGDEF domain but that the GAF domain is required to achieve full DGC activity.

To further assess the catalytic activity of Dcsbis, we compared its activity with the activity of the known DGCs 
WspR and SadC. DGC activity assays were performed for the three proteins at the same molar concentration, by 
following the previously mentioned procedure. Interestingly, Dcsbis showed a much higher DGC activity than 
WspR and SadC (Fig. 1d). This result raises an open question: how is the higher activity occurred in Dcsbis?

A sequence analysis indicated that the conventional product inhibition site (I site) of the RxxD motif also 
exists in Dcsbis, and it is located upstream of the GGEEF active site. The sequence is RPED (Arg-Pro-Glu-Asp). 
To investigate whether the I-site facilitates product inhibition by binding to c-di-GMP in Dcsbis, we explored 
the DGC activity of full-length Dcsbis in the presence of 5 μ​M c-di-GMP. The release of PPi was reduced in the 
presence of additional c-di-GMP, a result indicating that the production of new c-di-GMP was hindered (Fig. 1e). 
These results implied that the DGC activity of Dcsbis is also regulated by product inhibition. However, the prod-
uct inhibition effect seems much weaker for Dcsbis compared with other studied DGCs.

Crystal structures of Dcsbis.  To investigate the molecular mechanism underlying the high activity of 
Dcsbis and the regulation mechanism of DGC activity by the N-terminal GAF domain, we determined the crys-
tal structure of full-length Dcsbis. We first crystallized selenomethionine-incorporated Dcsbis. The structure 
was solved at a resolution of 2.9 Å by using the single-wavelength anomalous dispersion (SAD) technique. The 
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higher resolution native structure (2.5 Å) was solved by molecular replacement, using one molecule from the 
selenomethionine structure as the search model. The details of the refinement data are shown in Table 1. Dcsbis 
was crystallized in the space group P21 and contained four molecules in the asymmetric unit.

The overall structure showed that the protein contains an N-terminal GAF domain and a C-terminal GGDEF 
domain, as predicted. The crystal packing analysis revealed the presence of a tightly associated homodimer, which 
was verified by gel filtration analysis (data not shown). The dimerization is mediated by helices α​2 and α​5 from 
the GAF domain of the two monomers (Fig. 2a,b).

A DALI server search26 against the Protein Data Bank failed to detect any known structures with signifi-
cant similarities to full-length Dcsbis. This result suggested a novel arrangement between the GAF and GGDEF 
domains in Dcsbis. A DALI search with the GAF domain identified the most similar structure to be the GAF 
domain from Acinetobacter sp. phosphoenolpyruvate-protein phosphotransferase (PDB: 3CI6, RMSD 2.0 Å over 
126 Cα​ atoms). However, the sequence identity was only 15%, which may imply differences in the function of the 
GAF domain in these two proteins, despite the similarity in their three dimensional folding.

Following the GAF domain, the GGDEF domain has a typical DGC structure. It superposes well with the 
GGDEF domain of the known DGC, PleD (with an RMSD of 2.3 Å for 162 Cα​ atoms) and WspR (with an RMSD 
of 2.3 Å for 162 Cα​ atoms). Similarly, Dcsbis contains a conserved active site in the GGEEF motif (A-site) and a 
conserved product inhibition site in the RxxD motif (I-site) located antipodal to the A-site. Interestingly, in the 
closely packed Dcsbis dimer, the A-sites of the two monomers face away from each other, and the I-site is buried 
in the structure (Fig. 2a). This result indicates that the native structure is a non-active mode of the protein.

To investigate how the GAF domain affects enzymatic function, we crystallized the GGDEF domain and 
solved the structure at 2.5 Å resolution in the C2 space group. The structure was determined using molecular 

Figure 1.  Motility/biofilm assay on the PA2771 deletion strain and the activity measurement of Dcsbis. 
 (a) Swimming motility of WT PAO1 and PA2771 deletion strains (Δ​PA2771). (b) Swarming motility of WT 
PAO1 and Δ​PA2771 strains. (c) Biofilm assay of WT PAO1 and Δ​PA2771 strains. (d) The DGC activity of full-
length Dcsbis, Dcsbis-GGDEF, WspR, and SadC. (e) The DGC activity of full-length Dcsbis in the presence of 
5 μ​M c-di-GMP.
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replacement with the GGDEF domain from the full-length protein structure as the search model. There were two 
molecules in the asymmetric unit. The two monomers face each other, with the I-sites from both molecules in 
proximity. After molecular replacement, differences in electron density appeared between the I-sites of the two 
monomers. This extra density may be explained by building in two mutually intercalated c-di-GMP molecules 
(Fig. 3a). The final model of the Dcsbis-GGDEF structure was refined to an Rwork of 20.14% and an Rfree of 24.77%. 
The c-di-GMP dimer mediates the dimerization of the isolated GGDEF domains. A model of full-length Dcsbis 
in its inhibition state was generated by superposing the apo full-length structure onto the GGDEF dimer. The 
conformation accommodated the full-length protein without any clashes (Fig. 3b). Thus, dimerization via the 
c-di-GMP dimer may represent Dcsbis in its inhibited state.

Compared with the full-length structure, the structure of the GGDEF domain has no gross structural rear-
rangement, with an RMSD of 1.3 Å over 180 Cα​ atoms (Fig. 3b). Within the binding regions, Arg251, Asp254, 
Arg271 and Arg282 account for the main interactions with the dimeric c-di-GMPs (Fig. 3b). Importantly, Arg251 
and Asp254 belong to the conserved product inhibition motif (RxxD).

GAF domain of Dcsbis.  GAF domains are one of the most widespread domains, and they exhibit diverse 
functions, including mediating the binding of small molecules (such as cAMP and cGMP) and protein dimer-
ization27. To date, most ligands that recognize the GAF domain have not been discovered. The GAF domain 
of Dcsbis contains a six-stranded antiparallel β​-sheet sandwiched by five α​-helices (Fig. 2b). It is structurally 
similar to the GAF domains of cAMP- or cGMP-specific phosphodiesterases (PDE), including PDE10A28 and 
PDE2A29,30, with an RMSD of 2.5 Å over 130 Cα​ atoms and an RMSD 2.6 Å over 134 Cα​ atoms, respectively.

The Dcsbis molecules in the crystal are tightly dimerized by a four-helix bundle (α​2, α​5 of each protomer). 
In this structure, the α​1 helix does not contribute to the dimerization (Fig. 2a), unlike the α​1 helix of the GAF 
domain of PDE10A, which interacts with the α​5 helix of the opposite molecule and plays a role in dimerization28. 
Hydrogen bonds and hydrophobic interactions are responsible for the majority of the interactions at the interface 
(Fig. 2c,d).

SeMet-Dcsbis Dcsbis Dcsbis 173-341

Data collection

Space group P21 P21 C2

  Cell dimensions

    a, b, c (Å) 74.428, 109.062, 112.765 73.609, 109.083, 111.850 93.275, 42.707, 106.372

    α​, β​, γ​ (°) 90.00 95.450 90.00 90.00 95.88 90.00 90.00 106.75 90.00

  Resolution (Å) 50.00–2.90 50.00–2.50 50.00–2.50

  Measured reflections 297464 216967 46858

  Unique reflections 40493 58687 13825

  Completeness (%) 99.9 (99.8)*​ 96.6 (77.8) 98.2 (99.4)

  Redundancy 7.3 (6.3) 3.7 (3.0) 3.4 (3.6)

  Rsym(%)† 8.7 (46.3) 6.9 (43.5) 4.7 (9.5)

  I/​(I) 21.69 (3.58) 19.86 (1.81) 46.34 (25.68)

Refinement

Resolution (Å) 50.00–2.50 50.00–2.50

Rwork/Rfree (%) 19.74/25.46 20.14/24.77

  No. atoms

    Protein 10633 2513

    Water 137 69

    Ligand – 92

  B-factors

    Protein 55.57 44.91

    Water 45.35 42.66

    Ligand – 31.46

  RMSD

    Bond lengths (Å) 0.009 0.008

    Bond angles (°) 1.246 1.317

  Ramachandran plot (%)

    Favored region 95.5 97.2

    Allowed region 4.5 2.8

    Outlier region 0.1 0

Table 1.   X-Ray Data Collection and Refinement Statistics. *​Values in parentheses are for reflections in 
the highest resolution shell. †Rsym =​ Σ​hklΣ​i|I(hkl)i −​ <​I(hkl)>​|/ Σ​hklΣ​i<​I(hkl)i>​, where <​I(hkl)>​ is the mean 
intensity of multiply recorded reflections.
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There is a large pocket located between the six-stranded β​ sheet floor and the roof made of α​-helices α​3 and 
α​4 in the GAF domain (Fig. 4a–c). To investigate whether the GAF domain of Dcsbis can bind nucleotides, we 
performed an ITC analysis with cAMP and cGMP. A calorimetric analysis showed that Dcsbis did not bind cAMP 
or cGMP with any substantial affinity (Fig. S1). A sequence alignment of the Dcsbis GAF domain with the PDE 
GAF domains, the cyaB2 GAF domains and the PelD GAF domain is shown in Supplementary Fig. S2. Compared 
with some other GAF domains that bind nucleotides, the NKFDE motif, which is essential for nucleotide binding 
and the formation of the binding pocket31,32, is degenerate in the GAF domain of Dcsbis (Supplementary Fig. S2).  
This degeneracy may be the major reason that Dcsbis does not bind cAMP or cGMP. Thus, the GAF domain 
contains a large pocket that potentially binds to an unknown ligand.

Given the higher activity of full-length Dcsbis compared with that of the GGDEF domain alone (Fig. 1d)  
in vitro, it was speculated that the GAF domain promotes the DGC activity of the GGDEF domain. This increased 
activity may result from the dimerization via the GAF domain. The unknown ligand might play a role in the 
regulation in vivo.

A self blocked I-site of Dcsbis.  As shown in Fig. 1, Dcsbis exhibited much higher activity than the GGDEF 
domain alone, as well as the other well-studied DGCs. In addition, c-di-GMP affected the diguanylate cyclase 
activity of full-length Dcsbis. However, the effect of c-di-GMP on the catalytic activity of Dcsbis is significantly 
weaker than that on PleD and WspR20,21,33.

One hypothesis to explain this observation is that the product, c-di-GMP, does not bind as efficiently to 
full-length Dcsbis as it does to other proteins, reducing the product inhibition effects. To test this hypothesis, we 
measured the binding of c-di-GMP to Dcsbis with ITC, and no apparent interaction was detected (Supplementary 
Fig. S1), thus indicating that c-di-GMP does not readily bind to the I-site of full-length Dcsbis.

Further analysis of the crystal structures provided the molecular basis of the special property of the Dcsbis 
protein. Although the overall folding between the apo GGDEF domain in the full-length protein is very similar to 
that in the c-di-GMP bound state, the environment around the I-sites is very different. The superposition of the 

Figure 2.  The structure of full-length Dcsbis. (a) The tightly associated homodimer of Dcsbis. The A-site and 
I-site of Dcsbis are colored in blue and red, respectively. (b) The overall structure of the Dcsbis monomer. The 
N-terminal GAF domain is colored in red, while the C-terminal GGDEF domain is colored in yellow. (c,d) The 
hydrogen bonds and hydrophobic interactions contributing to homodimerization.
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GGDEF domain/c-di-GMP complex onto the monomers of the Dcsbis full-length dimer revealed intermolecular 
interactions in the I-site. A protecting loop (Residue 120–125, between β​5 and β​6) from the GAF of one monomer 
(MonoA) inserts into the I-site of MonoB and clashes with the docked c-di-GMP molecule (Fig. 3c,d). Given that 
Dcsbis also exists as a dimer in solution, in the context of full-length Dcsbis, the I-site was mostly occupied by the 
neighboring molecule, which is buried inside the structure and is not accessible to c-di-GMPs. However, in the 

Figure 3.  The structure of the GGDEF domain of Dcsbis in complex with c-di-GMP and the inhibition 
loop. (a) The dimer of the Dcsbis-GGDEF/c-di-GMP complex. The I-site and A-site of Dcsbis are in red and 
blue, respectively. (b) The superposition of the full-length Dcsbis monomer onto the Dcsbis-GGDEF/c-di-
GMP complex dimer. The full-length protein is in lighter colors. (c) The peptide loop (protecting loop, residues 
120–125) extending from the GAF domain blocks the inhibition site of Dcsbis. The protecting loop is colored in 
purple, whereas the I-site is red and the active site is blue. (d) The superposition of GGDEF/c-di-GMP complex 
onto the full-length structure of Dcsbis to model the position of c-di-GMP into the full-length Dcsbis structure. 
GGDEF/c-di-GMP are highlighted in gray. A close view of the c-di-GMP modeled into the Dcsbis structure.
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GGDEF domain alone, there is no protection from the GAF domain. The I-site is exposed to product as soon as 
the reaction starts. This finding may also explain the much lower activity of the GGDEF domain alone.

Thus, we propose that the protecting loop in the GAF domain prevents c-di-GMP from binding to the I-site 
(self-blocking I-site) of Dcsbis until c-di-GMP reaches a very high level in the reaction solution. This hypothesis 
is supported by the observation that the catalytic reaction turned off earlier when c-di-GMP was present, whereas 
the initial rate of the reaction was almost not affected (Fig. 1e). This hypothesis also fits with the observation that 
c-di-GMP only mildly inhibited DGC activity. The relief of product feedback inhibition by self-blocking of the 
I-site to maintain higher activity is a novel mode of DGC activity regulation.

Enzymatic kinetics shows that c-di-GMP is not a noncompetitive inhibitor.  Previous studies on 
DGCs have proposed a widely accepted mechanism that c-di-GMP functions as an noncompetitive inhibitor 
that binds to the I-site of the canonical DGC domain, thus shutting down catalysis through an allosteric effect. 
Our structures and preliminary biochemical data, however, suggest a new mechanism for Dcsbis. Dicsbis has an 
intact I-site but is not inhibited by c-di-GMP as intensely as other canonical DGCs with an intact I-site. To clarify 
the inhibition mechanism of Dcsbic, we performed a kinetic study of catalysis with or without c-di-GMP in the 
reaction solutions. We hypothesized that if c-di-GMP is still a noncompetitive inhibitor for Dcsbis, the enzyme 
would show a much lower Vmax and an unchanged Km in the presence of c-di-GMP when the reaction begins. 
If this is true, then we would be able to conclude that c-di-GMP truly is a noncompetitive inhibitor of Dcsbis. 
Figure 5 shows the result of the kinetic study for Dcsbis. The enzyme had a Km of 88 μ​M and a Vmax of 2.1 μ​M/m 
without c-di-GMP. The enzyme had a much higher Km of 300 μ​M and a slightly lower Vmax of 1.6 μ​M/m when 
50 μ​M of c-di-GMP was added prior to GTP. This result fundamentally deviates from the widely accepted theory 
of noncompetitive inhibition for c-di-GMP. The kinetics can be explained by a self-blocked I-site, which may be 
partially occupied at high c-di-GMP concentrations. The greatly increased Km suggests that c-di-GMP mainly 
binds to the active site as a competitive inhibitor, as in the case of XCC4471. Although our ITC data showed that 
c-di-GMP did not tightly bind to Dcsbis, the kinetic data suggest that c-di-GMP outcompetes GTP for the active 
site at comparable concentrations.

Figure 4.  The putative ligand-binding pocket of the Dcsbis GAF domain. (a,b) Surface analysis of Dcsbis. 
The Dcsbis-GAF cartoon is colored in rainbow. (c) The stereo view of the residues that contribute to the 
formation of the putative ligand-binding pocket.
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Discussion
C-di-GMP is a ubiquitous signaling molecule in bacteria. The DGC and PDE proteins involved in the metabo-
lism of c-di-GMP are redundant. A total of 39 proteins related to c-di-GMP homeostasis have been identified in 
P. aeruginosa PAO1 and PA1422. However, the biochemical characteristics and regulatory mechanisms of only a 
few of these proteins have been characterized. SadC, a GGDEF protein, has been reported to co-regulate biofilm 
formation and swarming motility24. PleD is a response regulator with two REC domains as well as a GGDEF 
domain that controls pole morphogenesis during cell differentiation34. WspR, which has a REC and a GGDEF 
domain, is the response regulator of a chemosensory system controlling biofilm formation35. Dcsbis is a diguany-
late cyclase located on a genomic island22 that includes an N-terminal GAF domain fused in tandem to a GGDEF 
domain. Here, we report the function of the PA2771 protein. A Δ​PA2771 mutant exhibited a phenotype different 
from those of well-studied GGDEF-containing proteins. It showed an increased swimming and swarming phe-
notype (Fig. 1a,B), indicating that the PA2771 gene should be related to pathways that regulate flagella function. 
However, the Δ​PA2771 mutant had no apparent influence on biofilm formation (Fig. 1c). This result might be due 
to subcellular distribution of c-di-GMP36,37. 

Our studies showed that full-length Dcsbis possesses a high level of DGC activity, whereas its GGDEF domain 
has residual diguanylate cyclase activity. This result is similar to that of DgcA from Rhodobacter sphaeroides38 
and MSDGC-1 from Mycobacterium smegmatis39. In both proteins, the DGC activity has been shown to largely 
decrease after the removal of the GAF domain. This finding suggests that the DGC activity of Dcsbis is modulated 
by the GAF domain. Although the GAF domain of Dcsbis is topologically similar to canonical GAF domains 
that bind to cNMP molecules, our calorimetric studies showed that Dcsbis binds neither cAMP nor cGMP with 
a meaningful affinity. However, a large pocket that might accommodate a ligand exists in the GAF domain. Thus, 
we suspect that an unknown ligand may bind to the GAF domain and somehow regulate the DGC activity.

From the crystal structure of full-length Dcsbis, we found that the GAF domain acts as a bridge in the dimer-
ization of Dcsbis. This dimerization brings the GAF domain of one monomer close to the GGDEF domain of the 
other monomer. Furthermore, the I-site of the GGDEF domain from one monomer is blocked by the protecting 
loop between β​5 and β​6 of the neighboring GAF domain. The observation that c-di-GMP is not a noncompet-
itive inhibitor of full-length Dcsbis is supported by the crystal structure. The blockage of the I-site might be the 
primary cause of the high catalytic activity of Dcsbis and the loss of product inhibition. With this novel charac-
teristic, Dcsbis is a highly efficient diguanylate cyclase that may be used in industrial applications to produce large 
amounts of c-di-GMP at a low cost.

From our structural and functional analyses, we propose a model for the activation and inhibition of Dcsbis 
(Fig. 6). The crystal structure of full-length Dcsbis showed that the inhibition site is buried inside and that the 
active site is exposed. This state might be one of the transition states during catalysis. We propose that when 
Dcsbis is active, as we assayed in vitro, GTP binds to the active site and induces a conformation change in the 
active dimer, thus leading to the proximity of the two active sites in both monomers. Two GTPs are then brought 
close to each other and form c-di-GMP. When the environment changes, bacteria favor a highly motive life style, 
and some unknown small molecules may bind to the GAF domain as a chemical signal. The binding of the signal 
molecule to the GAF domain would, in turn, trigger a significant conformation change and cause the protecting 
loop to leave the I-site. C-di-GMP in the cell would then bind to the exposed I-site, which would shut down 
the synthesis of c-di-GMP through an allosteric mechanism. Over time, the environment may change to favor 
lower motility, and the concentration of the signal molecule may drop, thus resulting in the release of a signal 
molecule from the GAF domain. The protecting loop would then block the I-site again and prevent the binding 
of c-di-GMP, which would turns on the high enzymatic activity once again. Because the peptide segment of the 
protecting loop also occurs in many Dcsbis homologues of Pseudomonas species, this mechanism may occur in 
many other bacteria (Fig. S3).

Figure 5.  Double reciprocal plots of the kinetic study of Dcsbis protein in absent and present of c-di-GMP. 
This analysis was done by measuring three independent sets of experiments with 5 substrate concentrations 
(128 μ​M, 150 μ​M, 190 μ​M, 333 μ​M, 512 μ​M). The plots are generated by plotting 1/V as a function 1/[S]. The 
intercept on the vertical axis is 1/Vmax, and the intercept on the horizontal axis is −​1/KM.
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We demonstrated that Dcsbis is a functional diguanylate cyclase that tightly coordinates cell motility. 
However, the entire signaling pathway is largely unknown. Our results suggest that there should be an upstream 
signal molecule capable of binding to the GAF domain. The relevant downstream c-di-GMP receptor of the path-
way is also unclear. We showed that the PA2771 gene is related to cell motility. Whether this gene is relevant to 
other cellular functions, such as drug resistance, virulence and cell division, remains an open question. All these 
issues are expected to be addressed through further research.

Methods
Bacterial strains and growth conditions.  All relevant strains, plasmids and primers are listed in 
Supplementary Table S1. P. aeruginosa and E. coli strains were cultured in LB broth, except that the selective 
medium for P. aeruginosa was VBMM with citrate as a carbon source40. Antibiotic selection was performed with 
100 μ​g/ml ampicillin and 10 μ​g/ml gentamicin for E. coli and with 300 μ​g/ml carbenicillin and 100 μ​g/ml gen-
tamicin for P. aeruginosa.

Mutant construction.  An unmarked nonpolar deletion strategy was used to construct the Δ​PA2771 
mutant41,42. A 1.2-kb fragment was obtained by overlapping PCR and the ligation of a 0.6-kb upstream and a 
0.6-kb downstream fragment relative to PA2771. The 1.2-kb fragment was subsequently cloned into the EcoRI 
and HindIII sites of pEX18Gm, thus generating the plasmid pKO2771. The plasmid pKO2771 was transferred to 
PAO1 through mating with E. coli DH5α​ cells containing the plasmid pRK2013 and E. coli DH5α​ cells containing 
PKO2771, thus generating a double-crossover recombinant. The Δ​PA2771 mutant was isolated for gentamicin 
resistance and sucrose sensitivity.

The PA2771 gene was cloned into pUCP18 to generate the plasmid pPA2771, which was electroporated into 
WT PAO1 and the Δ​PA2771 mutant, respectively.

Motility and biofilm assays.  LB medium with 0.3% (wt/vol) agar was used for the swimming motility 
assay. The bacteria from an overnight culture in LB agar (1.5%, wt/vol) were placed into swim plates with a ster-
ile toothpick and incubated at 37 °C for 12 h. Swarming motility assays were performed in LB broth with 0.5%  
(wt/vol) agar.

Static biofilm assays were performed with 96-well microtiter plates43. Overnight cultures were diluted 1:100 
into LBNS-medium. Then, 150 μ​l of each diluted culture were dispensed into wells and incubated for 24 h at 37 °C. 
The planktonic bacteria of each well were removed and washed. The biofilms were stained with a 1% crystal violet 
solution and measured spectrophotometrically at 560 nm.

Figure 6.  The proposed model for the activation and inhibition of Dcsbis. The model demonstrates the 
potential regulation mechanism of Dcsbis activity. In the absence of the regulatory ligand, substrate GTP, and 
product c-di-GMP, the Dcisbis protein dimerizes via the GAF domain, with the I-site blocked by the protecting 
loop (represented by the full-length Dcsbis structure), and thus is highly active; Upon binding to GTP, the active 
sites of Dcsbis dimer get close to each other and catalyze the formation of c-di-GMP; c-di-GMP induces slight 
product inhibition. Binding of the potential regulatory ligand to the GAF domain may induce conformational 
change in the GAF domain, and thus break the GAF dimerization and lead to the release of the blockage of 
the I-site. At this condition, the product c-di-GMP could bind to the I-sites of GGDEF domain and bridge the 
formation of a new dimer (represented by the structure of GGDEF domain/c-di-GMP complex).
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Protein expression and purification.  The full-length and the GGDEF domain (residues 173-341) of 
the PA2771 gene were amplified from the genome of P. aeruginosa PAO1 and cloned into the pGL01 vector.  
E. coli BL21 (DE3) was used to express proteins. The transformed cells were grown at 37 °C until the absorb-
ance (OD600) reached approximately 0.8, and this was followed by overnight induction with 0.2 mM 
isopropyl-β​-D-thiogalactopyranoside (IPTG). Cells were harvested by centrifugation (4,200 rpm for 15 min at 
4 °C); resuspended in lysis buffer (25 mM Tris-HCl pH 8.0, 200 mM NaCl), and lysed by sonication on ice. The 
soluble fraction containing Dcsbis was isolated from cell debris by ultra-centrifugation (14,000 rpm for 45 min at 
4 °C) and subsequently purified to homogeneity by combining nickel affinity (Chelating Sepharose Fast Flow, GE 
Healthcare), ion exchange (Source 15Q HR 16/10, GE Healthcare), and size-exclusion chromatography (Superdex 
200 10/300 GL, GE Healthcare) in 10 mM Tris-HCl pH 8.0, 100 mM NaCl, and 3 mM dithiothreitol.

The selenomethionine substituted protein was expressed in M9 medium with L-selenomethionine, and the 
purification procedure was the same as that of the native proteins. The pH of the medium was adjusted to 7.0 with 
1 M Tris-HCl pH 8.0 (approximately 10 ml/L medium) before induction with IPTG.

Crystallization, data collection and structure determination.  Native Dcsbis crystals were grown in 
sitting drops at 20 °C by mixture of equal volumes of protein (7 mg/ml) with reservoir solution (10% PEG 8000, 
0.1 M HEPES pH 7.5, 8% ethylene glycol). The selenomethionine-substituted protein was crystallized using a res-
ervoir solution containing 10% PEG 10,000, 0.1 M HEPES pH 7.5 and 5% MPD. The crystals of Dcsbis (173-341) 
were obtained in a reservoir solution containing 0.5 M sodium citrate tribasic dehydrate and 0.1 M Tris-HCl pH 
8.5. All diffraction data were collected at the Shanghai Synchrotron Radiation Facility (SSRF) beamline BL17U1 
and processed with the software package HKL200044. The selenium positions were identified using SHELXD45. 
Phase determination, density modification, and automated model building were performed using the program 
SOLVE/RESOLVE46,47. The atomic model was built using COOT48 and refined using PHENIX49. Then, the phase 
of the native full-length Dcsbis was obtained from molecular replacement with the Se-Dcsbis as a search model. 
The structure of Dcsbis (173-341) was determined by molecular replacement using the full-length Dcsbis struc-
ture as the search model. Refinement was performed in the same manner as that of the native full-length Dcsbis 
structure. The atomic coordinates and structure factors have been deposited in the Protein Data Bank under PDB 
ID codes 4ZMU (the full-length Dcsbis) and 4ZMM (the GGDEF domain of Dcsbis in complex with c-di-GMP).

Diguanylate cyclase assays.  A coupled spectrophotometric assay was performed to monitor the pro-
duction of inorganic pyrophosphate (PPi) released from the cyclization reaction by using the EnzCheck 
Pyrophosphate Assay Kit (Invitrogen, E-6645)46. This kit includes the enzyme inorganic pyrophosphatase, which 
catalyzes the conversion of PPi present into two equivalents of Pi. In the presence of Pi and purine nucleoside 
phosphorylase (PNP), 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) is converted into ribose 
1-phosphate and 2-amino-6-mercapto-7-methyl-purine, thus resulting a shift in the absorbance maximum from 
330 nm for the substrate to 355 nm. A kinetic analysis was performed by measuring three independent sets of 
experiments with 5 substrate concentrations. The double reciprocal plots were drawn using the Lineweaver–Burk 
equation by using the Origin software. The protein concentration was determined according to light absorption 
at 280 nm using a NanoDrop spectrophotometer.
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