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Great articles often begin with an intriguing paradox,
describe an elegant experimental approach, provide

lasting and important data, and change the course of their
discipline. Sturtevant and Beadle (1936) meets all of those
criteria and stands as a paradigm for the genetic analysis of
chromosome behavior in Drosophila. It began with two para-
doxes, both ofwhichwere vexing but not obviously connected.
First, females heterozygous for paracentric inversions, which
do not include the centromere, failed to produce progeny bear-
ing single crossovers within the inversion but did produce prog-
eny bearing double crossovers. There was no change in the
number of eggs hatched, ruling out inviability of eggs con-
taining single crossover chromosomes as an explanation. Sec-
ond, although such females only rarely produced progeny
bearing two maternal X chromosomes, they frequently pro-
duced progeny with no maternal X chromosomes (patrocli-
nous males). How was inversion heterozygosity producing
such an odd set of meiotic anomalies?

Sturtevant and Beadle demonstrated that single crossovers
did indeedoccurwithin the inverted segmentsby characterizing
crossing over in attached-X chromosomes, where both the nor-
mal X and its inversion-bearing homolog were attached to a
single centromere. The arms of attached-X chromosomes (be-
ing homologs) undergo pairing and crossing over. These au-
thors found that the occurrence of single crossovers within
the inverted region in such chromosomes generated ring-X

chromosomes at expected frequencies for the larger inver-
sions and substantial frequencies for the smaller ones.

These observations led Sturtevant and Beadle to conclude
that in the inversion heterozygotes, “. . .single crossover chro-
matids are selectively eliminated during themeiotic process.”
But how? And is that “selective elimination” tied to the pro-
duction of those patroclinous exceptions? Sturtevant and
Beadle proposed that themechanism for selective elimination
lay in the fact that meiosis in Drosophila involves only nuclear
division within the oocyte—no cell division occurs (Huettner
1924). The four meiotic nuclei are arranged in a row perpen-
dicular to the egg cortex. Only the innermost nucleus partic-
ipates in fertilization; the other three are eliminated.

A single crossover within a paracentric inversion generates
two (noncrossover) parental types and two recombinant
products: one acentric fragment lacking a centromere and a
complementary dicentric chromosome with a chromatin
bridge connecting twohomologous centromeres. The acentric
fragment cannot attach to the meiotic spindle and is lost, but
what becomes of the dicentric chromosome and the two
nonrecombinant chromatids that compose themeiotic tetrad?
Sturtevant and Beadle proposed that

A single chromatid tie at the first meiotic division results in
orientation of the spindle attachments in such amanner that
only chromatidswitha single spindle attachmentget into the
terminal nuclei, one of which will become the egg nucleus.

This hypothesis explains both the selective elimination of
single crossover chromosomes and the failure of that loss to
cause egg mortality because the dicentric chromatids are
relegated to the inner two nuclei that never participate in
fertilization anyway (Figure 1).
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Four-strand double crossovers, which involve all four chro-
matids, generate a double dicentric chromosome in which
both pairs of sister centromeres are connected to their homo-
log by chromatid bridges. These dicentric chromatids are
unable to segregate at meiosis II and both remain stuck in
the central nuclei. Sturtevant and Beadle thus proposed that

A double chromatid tie results in the formation of end
nuclei with no X chromosome, and a no-X egg will result.

Such a no-X egg will, if fertilized by an X-bearing sperm,
produce a patroclinous male. But not all double crossovers
within the inversion involve four-strand doubles: two-strand
and three-strand doubles also occur at predicted frequencies.
By considering the outcome of all possible double crossover
events, Sturtevant and Beadle predicted that the ratio of vi-
able double crossover progeny to patroclinous males should
be 3:2. The fit of this hypothesis to their experimental data
was astounding. Not only did Sturtevant and Beadle beauti-
fully explain both paradoxes, but their analysis also served as
a paradigm for subsequent examination of other complex
meiotic chromosome mechanisms by many investigators.

Sturtevant and Beadle (1936) stands as a classic in the ex-
acting analytical process known as “doing genetics.” Few papers
exemplify the beauty of genetic analysis as well as this gem.
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Figure 1 Outcomes of crossing over in Drosophila females heterozygous
for a paracentric inversion. In each panel, only the innermost nucleus
following meiosis II will become an oocyte nucleus and participate in
fertilization. Without crossing over, homologs and sister chromatids seg-
regate normally at the first and second meiotic divisions, respectively.
Depending on initial orientation, either homolog has an equal probability
of segregating to the oocyte. A single crossover within the inversion
produces two noncrossover chromatids, an acentric fragment that is lost,
and a dicentric bridge that is relegated to the two central nuclei at meiosis
II; only a noncrossover chromatid can segregate to the oocyte. Thus,
single-crossover progeny are not recovered from inversion heterozygotes
and there is no increase in egg mortality. A double crossover involving the
same two nonsister chromatids (two-strand double) results in two double
recombinant and two noncrossover chromatids. The double recombinant
chromatids can segregate normally to the oocyte nucleus. However, a
double crossover involving all four strands (four-strand double) produces
two acentric fragments and a double dicentric bridge. As shown,
both chromatids composing the dicentric remain stuck in the central
nuclei, resulting in an oocyte nucleus that is nullo-X and will produce a

patroclinous male when fertilized by an X-bearing sperm. The known
ratios of two-, three-, and four-strand double crossover bivalents allowed
Sturtevant and Beadle to make their famous prediction that the ratio of
double recombinant progeny to patroclinous males should be 3:2.
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