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ABSTRACT In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against
partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral
locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations,
selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection).
We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of
loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated
from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the
product of twice the effective population size and the selection coefficient, is of order 1. With S .. 1, background selection always
causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when
mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected
locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in
laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability.
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THERE has recently been much interest in the effects of
selection at one locus on patterns of evolution and variation

at linked neutral or nearly neutral loci, with mounting evi-
dence for such effects from surveys of genome-wide patterns
of molecular variability and evolution (Cutter and Payseur
2013; Neher 2013; Charlesworth and Campos 2014). Atten-
tion has especially been directed at the possibility of enhanced
neutral variability at nucleotide sites that are closely linked to
sites under long-termbalancing selection (Charlesworth 2006;
Gao et al. 2015) and at the reduction in variability caused by
the hitchhiking effects of directional selection, involving either
positive selection (selective sweeps) (Maynard Smith and
Haigh 1974) or negative selection (background selection)

(Charlesworth et al. 1993). There seems little doubt that such
linkage effects play an important role in shaping patterns of
variability across the genome (Cutter and Payseur 2013;
Charlesworth and Campos 2014).

Recent studies have, however, made little or no reference to
classical work on associative overdominance (AOD), dating
back to .40 years ago. Following a proposal by Frydenberg
(1963), who coined the term, it was shown by Sved (1968,
1971, 1972) and by Ohta and Kimura (1970; Ohta 1971,
1973) that linkagedisequilibrium(LD)between apolymorphic
neutral locus and a locus subject either to selection in favor of
heterozygotes or to selection against recessive or partially re-
cessive mutant deleterious alleles could result in apparent het-
erozygote advantage at the neutral locus. This is because such
LD, generated by genetic drift in a randomly mating finite
population, leads to an association between the homozygosi-
ties of the two loci (Haldane 1949). If homozygosity at the
selected locus results in reduced fitness, homozygotes at the
neutral locus will appear to be at a selective disadvantage. A
heuristic treatment of this effect is given by Charlesworth and
Charlesworth (2010, pp. 396–397 and 403–404).
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This effect of LD in a randomly mating population
should be distinguished from the effect of identity dis-
equilibrium (ID) in a population with a mixture of random
mating and matings between close relatives (Haldane
1949; Cockerham and Weir 1968), as exemplified by spe-
cies that reproduce by a mixture of outcrossing and self-
fertilization. Here, AOD can arise because of variation
among individuals in their inbreeding coefficients, which
causes correlations among loci in their levels of homo-
zygosity even if they are unlinked (Haldane 1949;
Cockerham and Weir 1968). Theoretical models show
that this type of AOD does not require either finite popula-
tion size or LD (Ohta and Cockerham 1974; Charlesworth
1991).

Associations between heterozygosities at putatively
neutral molecular marker loci and higher values of fitness
components have frequently been found in natural popu-
lations, leading to a debate as to whether AOD due to LD
with random mating or to ID caused by variation in in-
breeding levels is the main cause of these associations
(David 1998; Hansson and Westerberg 2002). Current ev-
idence appears to favor the latter model (Szulkin et al.
2010; Hoffman et al. 2014), especially because the LD
model seems to require a relatively small effective popula-
tion size to produce substantial effects, unless linkage is
very tight (Ohta 1971, 1973).

It has also been reported that the level of variability in
both quantitative traits and marker loci in laboratory pop-
ulations can sometimes decline less rapidly over time than is
expected under the standard neutral model (e.g., Rumball
et al. 1994; Latter 1998; Gilligan et al. 2005). In addition,
laboratory populations and populations of domesticated
animals and plants often have levels of quantitative trait
variability that are surprisingly high, given their low effec-
tive population sizes (Johnson and Barton 2005; Hill
2010). Sved (1968) and Ohta (1971) proposed that AOD
caused by randomly generated LD leads to a retardation in
the loss of variability at neutral loci linked to loci under
selection. Ohta suggested that this effect could be substan-
tial when the effects of partially recessive mutations dis-
tributed over a whole chromosome are considered, provided
that the population size is sufficiently small (Ohta 1971,
1973). Computer simulations of multilocus systems have
indeed shown that a retardation of the rate of loss of neu-
tral variability can occur in small populations (Latter
1998; Pamilo and Palsson 1998; Palsson and Pamilo
1999; Wang and Hill 1999; Wang et al. 1999). However,
an accelerated rate of loss is observed when the level of
dominance of deleterious mutations is sufficiently high
and/or selection is sufficiently strong. This effect reflects
background selection (BGS), whereby the effective popu-
lation size experienced by a neutral locus is reduced by the
presence of linked, deleterious mutations (Charlesworth
et al. 1993).

AOD due to LD is an attractive potential explanation for
the maintenance of unexpectedly high levels of variability

in small populations. However, we lack a quantitative the-
ory concerning the conditions under which AOD produces
noticeable effects on levels of variability, other than for the
cases of selfing and sib-mating lines studied by Wang and
Hill (1999). It is also unclear when retardation vs. acceler-
ation of the rate of loss of variability is likely to prevail in
randomly mating populations, especially with multiple loci
subject to mutation and selection. As a first step toward
such a theory, we present some analytical, numerical, and
simulation results on the simplest possible model: a neutral
locus linked to another locus subject to selection. We also
present simulation results for a neutral locus surrounded
by a pair of selected loci. Selection can involve either par-
tially recessive deleterious mutations or heterozygote
advantage.

Our main focus is on a small, randomly mating popu-
lation, founded from a large initial equilibrium popula-
tion, mimicking experiments on the rates of loss of neutral
variability in laboratory populations. We derive approxi-
mate expressions for the apparent selection coefficients
against homozygotes at the neutral locus, as well for the
rate of loss of neutral variability. We show that, contrary to
what seems to have been widely assumed, these apparent
selection coefficients have nothing to do with the rate of
loss of variability, assuming that selection is sufficiently
weak that second-order terms in the selection coefficients
can be neglected. In particular, with selection against
partially recessive deleterious mutations there is a wide
range of parameter space in which BGS increases the rate
of loss of variability, but there is always an apparent
selective advantage to heterozygotes at the neutral locus.
When selection is very weak, however, AOD always causes
a retardation of the loss of neutral variability, unless
mutations are close to being semidominant in their fitness
effects.

Theory

Apparent selection coefficients against homozygotes at
a neutral locus caused by a linked locus subject to
mutation to deleterious alleles

We assume that the neutral locus is segregating for two alleles,
A1 and A2, with frequencies x and y = 1 – x, respectively, in
a given generation. The selected locus has wild-type and
deleterious mutant alleles, B1 and B2, respectively, with fre-
quencies p and q= 1 – p. The selection and dominance coef-
ficients at this locus are h and s, such that the relative
fitnesses of B1B1, B1B2, and B2B2 are 1, 1 – hs, and 1 – s.
The mutation rates for B1 to B2 and B2 to B1 are u and v,
respectively. Let the haplotype frequencies of A1B1, A1B2,
A2B1, and A2B2 be y1, y2, y3, and y4. We have x = y1 + y2,
q= y2 + y4. The frequency of recombination between the two
loci is c.

With random mating, the apparent fitnesses (denoted by
tildes) of the three genotypes A1A1, A1A2, and A2A2 at the
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neutral locus, conditional on these haplotype frequencies, are
as follows (Sved 1968, 1972; Ohta 1971):

~w11 ¼ 12
ð2y1hþ y2Þy2s

x2
(1a)

~w12 ¼ 12
½ðy1y4 þ y2y3Þhþ y2 y4�s

xð12 xÞ (1b)

~w22 � 12
ð2y3 1 y4Þy4s

ð12xÞ2    (1c)

The extent of apparent selection at a neutral locus, induced by
LD in a randomlymating finite population, can be assessed by
determining the expectations of these apparent fitnesses over
the distribution of haplotype frequencies induced by drift,
conditioning on segregation at the A locus (Ohta and Kimura
1970; Ohta 1971). In the present case, the starting point is
assumed to be a population of infinite size, at equilibrium
under mutation and selection at the B locus and with no LD
between the two loci. It is thereafter maintained at a popula-
tion size of N breeding individuals each generation. For sim-
plicity, a Wright–Fisher population model is assumed, so that
N is also the effective population size.

The expectations for a given generation t after the foun-
dation of the population are most simply found by expressing
the haplotype frequencies in terms of the products of the
relevant allele frequencies and the coefficient of linkage dis-
equilibrium, D = y1 y4 – y2 y3. The expectation of D, E{D},
remains at zero, since selection, mutation, and drift do not
affect the direction of association between the two loci; this
applies generally to E{Dqi}, where i is an arbitrary nonnega-
tive integer (a proof is given in section S4 of Supplemental
Material, File S1). This does not, however, imply that quan-
tities involving the expectation of products of D and other
functions of the allele frequencies at the two loci can be ig-
nored, which complicates the analyses.

Simple algebra (Ohta 1971) yields expressions for the
expected apparent selection coefficients against A1A1 and
A2A2 homozygotes (neglecting second-order terms in s) over
a set of replicate populations that are segregating at the A
locus. For simplicity, we simply refer to these as the apparent
selection coefficients and use tildes to distinguish them from
the selection coefficients at the selected locus. We have

~s11�E
�
~w12 2 ~w11

�¼ 2 sE
�
D½hþ qð12 2hÞ�

xð12 xÞ 2
D2ð12 2hÞ
x2ð12 xÞ

�
(2a)

~s22�E
�
~w12 2 ~w22

�¼ sE

(
D½hþ qð12 2hÞ�

xð12 xÞ þ D2ð12 2hÞ
xð12xÞ2

)
:

(2b)

It has previously been assumed that the terms in D in Equa-
tions 2 can be neglected, so that the extent of apparent

overdominance at the neutral locus is given by the terms
in D2 alone. This allows approximations for the apparent
selection coefficients to be derived; two different approaches
have been used, as described by Sved (1968, 1972), Ohta
and Kimura (1970), and Ohta (1971) and by Bierne et al.
(2000), respectively. We also neglect the terms in D, which
are numerically small. We use an approach that takes into
account the initial allele frequency at the neutral locus in
the founding generation, as well as the subsequent effects
of drift in creating a probability distribution around this
frequency.

The measures of apparent overdominance in Equations 2
can be conveniently be written as

~s � sð12 2hÞE�pqx21r2
�

(3a)

~t � sð12 2hÞE
n
pqð12xÞ21r2

o
; (3b)

where r2 = D2/[x(1 2 x)pq] is the squared correlation co-
efficient in allelic state between the two loci (Hill andRobertson
1968). The difference between Equations 2 and 3 in the no-
tation for the apparent selection coefficients is intended to
emphasize the absence of terms in D from Equations 3.

To obtain useful approximate expressions for these ap-
parent selection coefficients at an arbitrary time t, we as-
sume that the probability distributions of x, q, and r are
independent of each other, which is of course not exact (the
effects of departures from independence are considered in
the Results section on the apparent selection coefficients).
We can then write

~s � sð12 2hÞEfpqgE�x21�E�r2� (4a)

~t � sð12 2hÞEfpqgEfð12xÞg21E
�
r2
�
: (4b)

To first order in s, the quantity s(1 – 2h)E{pq} is equal to the
expectation of the inbred load, B, i.e., the expected difference
in fitness between the logarithms of the mean fitness of a ran-
domly mating population and of a completely homozygous
population with the same allele frequencies (Greenberg and
Crow 1960). Because of the loss of variability due to drift,
E{B} will in general be smaller than the inbred load for an
infinite population, B* = p*q*s(1 – 2h), where q* is the equi-
librium frequency of B2 under mutation and selection in an
infinite population (Glémin et al. 2003). If v ,, u, as as-
sumed here, q* is given by the following expression (Crow
and Kimura 1970, p. 260):

q* ¼ 2hsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2s2 þ 4usð12 2hÞ

p
2ð12 2hÞs (5a)

With hs .. u, this reduces to the familiar result of Haldane
(1927):

q* � u
ðhsÞ: (5b)
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This yields the widely used formula for the inbred load in an
infinite population:

B* � 2u
�

1
2h

2 1
�
: (6)

Weakly selected loci may contribute substantially to the in-
bred load in the initial population, so that q* could be sub-
stantially greater than zero. Themore general expressions for
q* and B* described above are, therefore, used here.

An exact analytic treatment of howE{B} changes over time
in a finite population is difficult. Since the expected change in
allele frequency due to selection is a third-degree function of
qwhen h 6¼ 0.5, the third and higher moments of q enter into
the expected change per generation in B under drift, muta-
tion, and selection, so that closed expressions cannot be
obtained without using a full solution to the relevant diffu-
sion equation under selection (e.g., Balick et al. 2015). The
simplest way to obtain tractable analytical results is to make
the assumption that departures caused by drift from q* are
sufficiently small that the change in allele frequency due to
selection per generation, (Dsq), can be linearized around q*
and hence equated to (Dsq)q* + (q – q*)(dDsq/dq)q* (e.g.,
Charlesworth and Charlesworth 2010, p. 355). If the muta-
tional contributions to the change in allele frequency are in-
cluded, the net change in q is equal to (q – q*)(dDsq/dq)q* –
(u + v). The expected change in q in a finite population is
then zero, and a recursion equation for the variance of q, Vq,
can easily be obtained, yielding a simple expression for the
approximate value of E{pq} in a given generation (see
Appendix).

An approximate linear recursion equation for the expecta-
tion of r2 can be obtained in a similar way, following the
approach of Sved (1971) (see Appendix). The quantity s2

d =
E{D2}/E{xypq} is also frequently used as a descriptor of LD
in finite populations, since it can be calculated using diffusion
equations (Ohta 1971; Ohta and Kimura 1971), as discussed
below. While a simple recursion for s2

d does not exist, a heu-
ristic approach is to assume that it has a similar form to that for
r2, replacing the equilibrium value of r2 given by Sved’s ap-
proach by the (smaller) equilibrium value of s2

d (see Ap-
pendix). We can then substitute the expected value of s2

d for
the corresponding expectation of r2 in Equations 3. Both of
these approaches ignore any effects of selection on LD.

We also need to obtain the expectations of x–1 and (1 – x)–1

for a given generation, conditioned on segregation at the
neutral locus. This can be done by means of the diffusion
equation solution for the probability distribution at a biallelic
locus under pure drift (Kimura 1955), using the terms in-
volving the first few eigenfunctions of the power series rep-
resentation of the probability distribution, conditioning on an
initial allele frequency x0 (see Appendix). The approximate
expectations of x–1 and (1 – x)–1 can then easily be deter-
mined (see Appendix). As was shown by Fisher (1930), this
distribution is asymptotically close to a uniform distribution,
with some slight deviations in the terminal classes and with

a mean allele frequency of 0.5 regardless of the value of x0.
The asymptotic values of x–1 and (1 – x)–1 can then be calcu-
lated, which both approach the same value asymptotically
(Equation A11). This implies that the apparent selection coef-
ficients against each homozygote should approach the same
asymptotic value, provided that any effects of mutation at the
neutral locus can be ignored over the timescale under
consideration.

Apparent selection coefficients induced by linkage to
a locus with heterozygote advantage

The same machinery can be used when the selected locus is
segregating for a pair of alleles where the B1B1 and B2B2
homozygotes have fitnesses 1 – s and 1 – t relative to a fitness
of 1 for B1B2 . We have

~w11 ¼ 12

	
y21sþ y22t



x2

(7a)

~w12 ¼ 12
ðy1y3sþ y2y4tÞ

xð12 xÞ (7b)

~w22 ¼ 12

	
y23sþ y24t



ð12xÞ2 (7c)

(Sved 1968; Ohta and Kimura 1970).
The approximate apparent selection coefficients are then

given by

~s11 � E
�
~w12 2 ~w11

� ¼ E
�
D½sp2 qt�
xð12 xÞ þ D2ðsþ tÞ

x2ð12 xÞ
�

(8a)

~s22 � E
�
~w12 2 ~w22

� ¼ E

(
D½tq2 sq�
xð12 xÞ þ D2ðsþ tÞ

xð12xÞ2
)
: (8b)

Using the same argument that led to Equations 4, these
apparent selection coefficients can be further approximated
by

~s � ðsþ tÞEfpqgE�x21�E�r2� (9a)

~t � ðsþ tÞEfpqgE
n
ð12xÞ21

o
E
�
r2
�
: (9b)

The expectation of the inbred load B in a finite population is
now equal to (s + t) E{pq}, so that Equations 4 and 9 both
involve the same function of E{B}. An approximation for
E{pq} can again be found by linearizing the recursion relation
for q around the deterministic equilibrium, q* = s/(s + t).
The coefficient k that measures the rate of approach to equilib-
rium is nowequal to –st/(s+ t) (Charlesworth andCharlesworth
2010, p. 355). In this case, no mutation is allowed at the
locus under selection; this is because we are considering
a single nucleotide site instead of a whole gene sequence,
and mutations to new variants are unlikely to occur over
the timescale with which we are concerned.
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The effect of selection at a linked locus on the amount
of neutral variability

Lack of relevance of the apparent selection coefficients to
the rate of loss of variability: It was assumed in previous
theoretical studies that the apparent selection coefficients
obtained by ignoring terms in D in Equations 2 and 8
provide a measure of the extent to which the loss of variabil-
ity at a neutral locus, caused by drift, is retarded by linkage to
a selected locus (Sved 1968; Ohta and Kimura 1970; Ohta
1971). But this assumption is mistaken, as can be shown as
follows.

This can be seen for the case of deleteriousmutations at the
B locus; a similar argument holds for the case of heterozygote
advantage. The expected change in x can be obtained from
Equations 2, yielding

EfDxg � E
�
xð12 xÞ�ð12 xÞ~s22 2 x~s11

��
¼ sE

�
xð12 xÞD½hþ qð12 2hÞ�

�
1
x
þ 1
ð12 xÞ

��
:

This gives

EfDxg � sEfD½hþ qð12 2hÞ�g: (10)

In other words, the terms in D2 contribute nothing to the
change in the frequency of allele B1 at the neutral locus,
which is determined entirely by the expected product of D
and the additive effect of B1 on fitness, a(q) = s[h + q(1 –

2h)], provided that terms in s2 are neglected. An equivalent
result is used in models of the effects of selective sweeps on
neutral allele frequencies at linked sites (Charlesworth and
Charlesworth 2010, p. 410). It is an example of the Price
equation (Price 1970), since Da is the covariance between
fitness and the allelic state with respect to A1 at the neutral
locus (Santiago and Caballero 1995).

Since the change in the heterozygosity, 2x(1 – x), at the
neutral locus caused by the change in allele frequency due to
selection at the B locus is �2(1 – 2x)Dx, the accompanying
change in the expected heterozygosity, H = 2E{xy}, is given
by

DHsel � 2s  EfDð12 2xÞ½hþ qð12 2hÞ�g: (11)

Similar results apply to the case of heterozygote advantage.
Here, a(q) = qt – ps = q(s+t) – s, so that

EfDxg � sEfD½qðsþ tÞ2 s�g (12)

DHsel � 2EfDð12 2xÞ½qðsþ tÞ2 s�g: (13)

We cannot, therefore, use the apparent selection coefficients
to assess the extent to which loss of variability at the neutral
locus is affected by selection at a linked locus.

How to calculate the rate of loss of variability: To solve this
problem, we employ the linear diffusion operator method
to obtain a closed system of recursion equations for the

expectations of the quantities of interest (Ohta and Kimura
1971; Ohta 1971); this is closely related to the generation
matrix approach of Hill and Robertson (1968) and Hill
(1977). These methods provide recursion equations for the
expectations of functions of the allele frequencies at the two
loci and the linkage disequilibrium coefficient.

We have extended this method to include the effects of
selection, mutation, and drift on the allele frequency q at the
selected locus, reducing the dimensionality of the set of re-
cursion equations by ignoring third- and higher-order
moments of q around q*. The complexity of the relations
between the different variables means that a closed system
can be obtained only by use of a nine-dimensional vector, Y,
of the expectations of functions of allele frequencies and D,
with a corresponding 9 3 9 recursion matrix, R (see section
S1 of File S1 for details).

The elements of Y are as follows: Y1 = E{xy}, Y2 = E{xyq},
Y3 = E{xyq2}, Y4 = E{D(x – y)}, Y5 =E{D(x – y)q}, Y6 = E{D
(x – y)q2}, Y7 = E{D2}, Y8 = E{D2q}, and Y9 = E{D2q2}.
Iteration of the R matrix provides an approximation for s2

d

in an arbitrary generation (which can be used instead of
E{r2} in Equations 3) as well as for H, since s2

d = Y7/(Y2 –
Y3) and H = 2Y1.

Computer simulations

One neutral and one selected locus: The theoretical predic-
tions described above were compared with Monte Carlo sim-
ulation results for a population started in mutation–selection
balance at the selected locus, whichwas in linkage equilibrium
with a neutral locus. This was then run for a chosen number of
generations at a fixed population size. In each generation, the
new haplotype frequencies were calculated using the standard
deterministic equations, and 2N uniform random numbers
were generated to sample each new haplotype from the cu-
mulative distribution of haplotype frequencies.

Since the effects of a single selected locus on a linked
neutral locus are very small, it was necessary to run a large
number of replicate simulations (usually 107) to obtain tight
confidence intervals on the mean heterozygosity at the neu-
tral locus.

Multiple loci with selection and mutation: To simulate
multiple loci subject to mutation and selection, we assumed
additive fitness interactions across the relevant loci. For weak
selection, this should yield very similar results to those of
a multiplicative fitness model. The state of the population in
a given generation is represented by the haplotype frequencies
with respect to n loci subject to mutation and selection,
following the same rules as in the single-locus case, with
a neutral locus in the center of the chromosome. The recom-
bination frequency between the loci under selection is c; the
frequency of recombination between the neutral locus and
each of the adjacent selected loci is c/2. Complete interfer-
ence is assumed, so that only single crossovers are allowed,
generating a frequency of recombination between the two
terminal loci of (n – 1)c.
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The frequencies of diploid genotypes at the start of
a given generation are assumed to be given by random
combinations of the frequencies of the haplotypes deter-
mined in the previous generation, thus tacitly assuming an
infinite number of new zygotes. The frequencies of haplo-
types after recombinationwere calculateddeterministically,
using an extension of the three-locus algorithm described by
Crow and Kimura (1970, p. 51). The haplotype frequencies
after mutation and selection were then calculated determin-
istically. The haplotype frequencies after drift were obtained
by choosing 2N haplotypes from a pool with the new haplo-
type frequencies, in the same way as above.

FORTRAN programs for all the cases mentioned here are
available on request from B. Charlesworth.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

A single selected locus with mutation and selection

Togeneralize the results describedbelowas far as possible,we
have used the principle from diffusion equation theory that the
outcome of the evolutionary process is determined by the
products of the effective population size, Ne, and the deter-
ministic parameters, measuring time in units of 2Ne genera-
tions (Ewens 2004, p. 157). In the present case, where Ne =
N, the simulation results for a given N and a set of mutation,
selection, and recombination parameters can be applied to
a system with a population size of KN and deterministic
parameters that are a factor of K–1 times those used here.
For this reason, the selection and mutation parameters in
most of the material described below are scaled by a factor
of 2N, thereby avoiding reference to a specific population

size. We use S = 2Ns, C = 2Nc, U = 2Nu, and V = 2Nv to
denote these scaled parameters.

An additional point to note is that the assumption that
the initial state of the population hasD=0 implies that only
the first three elements of the initial Y vector are nonzero.
Without loss of generality, the elements of Y can be divided
by the product of the initial frequencies of A1 and A2, x0y0,
and the resulting vector, Y9, can then be iterated using the
Rmatrix. The ratio of the first element of Y9 in generation t
to (1 – 1/2N)t measures the ratio of the mean heterozygos-
ity at the neutral locus to its value in the absence of selec-
tion at the B locus, Hrel. This means that the matrix
predictions for Hrel and s2

d are independent of the initial
allele frequencies at the neutral locus, since the initial
value of Y9 is independent of these frequencies. If, how-
ever, D were nonzero in the initial generation, only the
asymptotic behavior of the system would be independent
of the initial allele frequencies.

Accuracy of the matrix approximation: We first consider
the accuracy of the 9 3 9 matrix approximation. Figure 1
shows the values of Hrel and 2DE{xy} = DHsel from Equa-
tion 11 over 2N generations, for two different dominance
coefficients and C = 0.1. We are assuming that selection
and mutation at the B locus relate to deleterious mutations
affecting the gene as a whole rather than individual nucle-
otide sites, whereas the alleles at the A locus represent
a pair of variants chosen by an experimenter as neutral
markers and are not affected by mutation over the time
course of the experiment. The selection and mutation
parameters were chosen such that the equilibrium fre-
quency of the deleterious mutation at the B locus was
�0.3. This may seem to be very high, but is consistent with
the typical frequency per gene of putatively deleterious
nonsynonymousmutations inDrosophila populations (Haddrill
et al. 2010), although the selection coefficient and mutation
rates used in Figure 1 are probably much higher than is
realistic.

Figure 1 A comparison of the simulation results
(red solid circles, with 95% confidence interval er-
ror bars) with the matrix approximation (black open
circles) for the case of mutation and selection. The
scaled selection coefficient and recombination
rates are S = 1 and C = 0.1. The population size
is N = 50; the initial frequency of the neutral allele
A1 is x0 = 0.5; h = 0.1 for A and B and h = 0.45 for
C and D. The mutation rates are such that the
equilibrium frequency of the deleterious allele B2,
q*, is �0.3, with v = 0.1u. A and C show the
heterozygosity relative to neutral expectation at
the A locus, Hrel; B and D show the change in
heterozygosity per generation at the A locus due
to selection at the B locus, DHsel. h = 0.1 and h =
0.45 are on opposite sides of the critical h value
(�0.37 at 2N generations), so that A and B show
a retardation of loss of neutral variability, whereas
C and D show an acceleration.
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Agreement between the simulation and matrix results
is remarkably good for this parameter set. A value of h =
0.1 is associated with Hrel . 1 in later generations (re-
tardation of loss of neutral variability), whereas h = 0.45
is associated with Hrel , 1 (acceleration of loss of neutral
variability). This illustrates the conflict between AOD and
BGS, noted previously in simulation results (Pamilo and
Palsson 1998; Wang and Hill 1999); for sufficiently low
h, AOD is the dominant force as far as the level of neutral
variability is concerned, whereas BGS dominates when h
is sufficiently close to 1/2. We provide some insights
into the reasons for this behavior in the next but one
section.

Approximation for the rate of loss of variability with weak
selection: This conflict implies the existence of a critical
value of h, hc, where the two effects exactly cancel each
other; the properties of hc are examined in more detail
below. Unfortunately, there is no exact fixed value of hc,
since the extent to which Hrel is greater or less than one
depends on the generation in question, as shown in Fig-
ure 2, which uses the matrix results. As h increases from
0 to 0.5, Hrel declines, at both generations N and 2N. The
inset in Figure 2 shows that hc is larger for the earlier
generations. However, hc is close to 0.37 for all genera-
tions for the selection and mutation parameters used in
Figure 2.

When q* is small and S is of order 1, agreement with the
simulations is good only in earlier generations of the pro-
cess, reflecting a high level of dispersion of q around q*, so
that our neglect of higher-order terms in q – q* is inaccu-
rate. In general, however, the matrix gives reasonably good
approximations up to 2N generations, although the extent
of retardation of the rate of loss of variability tends to be
underestimated (or the rate of acceleration overestimated)
by the matrix approximation with small q* (see Figure B
in File S1, section S10). We will often use results for this

generation as a standard, since it is similar to the duration
of the Drosophila experiments on AOD described in the
Discussion.

Apparent selection coefficients and their relation to the
rate of loss of variability:

These conclusions are confirmed by the results displayed in
Table 1 for an initial frequency of A1 of 0.1, over a range
of recombination rates. Table 1 also shows the simulation
results for an additional measure of variability, the proportion
of segregating neutral loci, Ps, at 0.5N and 2N generations. In
addition, the exact and approximate apparent selection coef-
ficients are displayed, together with the matrix and simula-
tion values for Hrel. More detailed results are shown in Table
A of File S1, section S9.

It can be seen that the approximate apparent selection
coefficients are similar in magnitude to the exact ones, but
tend to exceed them, especially with very close linkage and
for the neutral allele with the lower initial frequency. This is
mainly because of the inaccuracy of the assumption of in-
dependence between the probability distributions of allele
frequencies at the neutral and selected loci used in deriving
the equations for the apparent selection coefficients. The
correlation coefficient r is a property of the genealogies at
the two loci and so should be relatively independent of the
allele frequencies. The simulations show, however, that the
levels of variability at the two loci are positively correlated,
so that the expectation of pqx–1 in Equation 3a is smaller
than E{pq}E{x–1} in Equation 4a. If the exact simulation
results for the apparent selection coefficients are compared
with those using the simulated values for the expectations of
r2, pq, and x–1 or (1 – x)–1 in Equations 4, as opposed to the
approximations for these quantities used to obtain the val-
ues in Table 1, it is found that there is still a substantial
discrepancy when linkage is tight, which can arise only from
the inaccuracy of the independence assumption used to ob-
tain Equations 4.

Figure 2 The heterozygosity at the A
locus relative to neutral expectation,
Hrel, as a function of the dominance co-
efficient, h, at generations N and 2N, for
the case of mutation and selection. S =
1, C = 0.1, N = 50, and q* = 0.3. The
results were obtained using the matrix
approximation.

Associative Overdominance 1321

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf


With an initial frequency of A1 of 0.5, the apparent
selection coefficients for A1A1 and A2A2 are always equal,
as expected from Equations 3 and 4. In contrast, for an
initial frequency of 0.1 there is initially a stronger appar-
ent selection coefficient against A1A1, again as expected,
but the selection coefficients converge on equality as the
mean neutral allele frequency at segregating sites
approaches 0.5; these are also similar to the selection
coefficients for the case of an initial frequency of 0.5.
The apparent selection coefficients at generation 2N are
quite close to the asymptotic values given by Equations 4
when the B locus has reached mutation–selection–drift
equilibrium, when E{pq} is calculated using the linear
approximation described above. For example, with h =
0.1, C = 0.1, and the selection and mutation parameters
in Table 1, the asymptotic apparent selection coefficient
for populations segregating at the A locus is 0.0014 when
the equilibrium neutral value of sd

2 is used as the estimate
of E{r2} in Equations 4, whereas the observed value at
2N generations for the case with x0 = 0.5 is 0.0013. In
contrast, the asymptotic value predicted by Equation 7
of Ohta (1971) is 0.0024, a somewhat worse fit. This
probably reflects the fact that Ohta assumed a fixed

allele frequency at the neutral locus, as well as assuming
q* ,, 1.

As expected, the magnitudes of the apparent selection
coefficients decline sharply as the recombination rate
increases, but always indicate heterozygote advantage,
even with C= 10 and h= 0.45. But with h= 0.45, there is
an acceleration of the loss of variability at the neutral
locus when linkage is tight, despite the apparent selective
advantage to heterozygotes. This confirms the above
conclusion that the apparent selection coefficients are
not relevant to the extent to which mutation and selec-
tion at one locus affect the rate of loss of variability at
a linked neutral locus; they show apparent heterozy-
gote advantage even when BGS causes an accelerated
loss of variability. With C = 10, little effect of selec-
tion on the rate of loss of variability can be detected
(Table 1).

Conflict between AOD and BGS with respect to the rate
of loss of variability:

The existence of a conflict between AOD and BGS, and its
evident dependence on the dominance coefficient, raises the
question of how to make generalizations about the regions of

Table 1 Simulation and theoretical results for a neutral locus linked to a locus subject to mutations to deleterious alleles (2Ns = 1,
2Nu = 0.1, 2Nv = 0.01, q* = 0.296, N = 50, x0 = 0.1)

Generation 0.5N Generation 2N

2N~s 2N~t Hrel Ps 2N~s 2N~t Hrel Ps

h = 0.1

C = 0
0.150 (0.00007) 0.030 (0.00002) 1.0007 (0.0004) 0.5534 (0.0002) 0.157 (0.00015) 0.113 (0.00013) 1.0090 (0.0007) 0.1967 (0.0001)
0.404a 0.075a 1.0004a 0.5536 (0.0002)b 0.374a 0.192a 1.0083a 0.1956 (0.0001)b

C = 0.1
0.147 (0.00008) 0.030 (0.00002) 1.0008 (0.0004) 0.5531 (0.0002) 0.145 (0.00015) 0.105 (0.00012) 1.0072 (0.0007) 0.1964 (0.0001)
0.394a 0.071a 1.0004a 0.348a 0.178a 1.0078a

C = 1
0.127 (0.00007) 0.025 (0.00002) 0.9999 (0.0004) 0.5531 (0.0002) 0.085 (0.00011) 0.058 (0.00008) 1.0052 (0.0007) 0.1958 (0.0001)
0.322a 0.058a 1.0003a 0.199a 0.100a 1.0048a

C = 10
0.053 (0.00004) 0.008 (0.00001) 1.0000 (0.0004) 0.5532 (0.0002) 0.018 (0.00004) 0.011 (0.00002) 1.0001 (0.0007) 0.1956 (0.0001)
0.087a 0.015a 1.0001a 0.032a 0.016a 1.0005b

h = 0.45

C = 0
0.019 (0.00001) 0.004 (0.00002) 1.0005 (0.0004) 0.5531 (0.0002) 0.019 (0.00002) 0.013 (0.00002) 0.9999 (0.0007) 0.1953 (0.0001)
0.05a 0.009a 0.9999a 0.5536 (0.0002)b 0.046a 0.023a 0.9974a 0.1956 (0.0001)b

C = 0.1
0.015 (0.00001) 0.003 (0.00002) 0.9995 (0.0004) 0.5534 (0.0002) 0.015 (0.00002) 0.010 (0.00002) 0.9975 (0.0007) 0.1951 (0.0001)
0.049a 0.009a 0.9999a 0.043a 0.022a 0.9976a

C = 1
0.016 (0.00001) 0.003 (0.00002) 0.9998 (0.0004) 0.5528 (0.0002) 0.010 (0.00001) 0.007 (0.00001) 0.9988 (0.0007) 0.1954 (0.0001)
0.041a 0.007a 0.9999a 0.025a 0.010a 0.9985a

C = 10
0.007 (0.00001) 0.001 (0.00001) 0.9997 (0.0004) 0.5531 (0.0002) 0.002 (0.00001) 0.001 (0.00001) 0.9990 (0.0007) 0.1952 (0.0001)
0.012a 0.002a 1.0000a 0.004a 0.002a 0.9999a

Standard errors for 107 simulations are in parentheses, after the corresponding means.
a Approximate values of r2 were obtained from the matrix recursions; neutral values were used for the expectations of x–1 and (1 – x) –1 (Equation A11 and following text); the
linear approximation was used for heterozygosity at locus B (Equation A3).

b Values from neutral simulations.
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parameter space in which one or the other force is dominant.
One way of approaching this problem is to study the properties
of the leading eigenvalue of the Rmatrix, l0, as a function of
the relevant variables. If we equate l0 to 1 – 1/(2Ne), where
Ne is the effective population size in the presence of selection
at the B locus, 1/(1 – l0) provides a measure of 2Ne. Consider
first the limiting case when S = 2Ns .. 1 and u ,, hs, so
that the expected frequency of A2 is close to u/(hs) (Equation
5b). The approximation for l0 – 1 for this case (Equations S17
and S18 of section S2 of File S1) shows thatNe is given by the
standard equation for BGS at a single locus (Charlesworth
and Charlesworth 2010, p. 402), which assumes these
conditions.

As argued byWhitlock and Barton (1997), the value of 2Ne

obtained from 1/(1 – l0) gives the asymptotic value of the
mean coalescent time, T2, for a pair of alleles at the neutral
locus. Under the infinite-sites model, the nucleotide diver-
sity at mutation–drift equilibrium is equal to the product of
the neutral mutation rate and 2Ne (Charlesworth and
Charlesworth 2010, p. 211), so that we can use these
results to predict the effect of selection at the B locus on
the equilibrium level of variability at the neutral locus.
(See section S2 of File S1, Equation S16, for a more rig-
orous derivation of this result.)

However, since the matrix approximation is inaccurate for
later generations with S , 1 and small q*, this use of the
leading eigenvalue to estimate Ne is limited in scope and is
not necessarily accurate for general q* and small S. The ap-
proximate approach described in the next section deals with
the case when S is of order #1.

Approximation for the rate of loss of variability with
weak selection:

The starting point for this analysis is Equation 11, which
shows that the change in expected heterozygosity due to
selection, DHsel, is the sum of two terms, D1 = – 2shY4 and
D2 = – 2s(1 – 2h)Y5, where Y4 = E{D(x – y)} and Y5 = E{D(x
– y)q}. We know from previous work on BGS that an accel-
eration of loss of neutral variability under drift always
occurs in haploid models with linked deleterious muta-
tions. These are equivalent to diploid models with h =
0.5, for which D2 = 0, so that the process is entirely driven
by D1; a necessary and sufficient condition for acceleration
in this case is thus D1 , 0. This implies that, with h , 0.5,
there is a conflict between the two terms when D1 , 0 and
D2 . 0. Larger h gives more weight to D1 relative to D2, so
that selection is more likely to reduce variability when h is
large, in agreement with the numerical results just de-
scribed. It is, however, unclear from this argument why
small S should favor AOD over BGS, which we now proceed
to investigate.

The complexity of the recursion relations means that it is
impossible to obtain simple, exact expressions for Y4 and Y5,
but useful approximations for weak selection (S , 1) can be
obtained as follows. Using expressions (S4d) and (S4e) from
the matrix approximation derived in section S1 of File S1, the

changes per generation in these moments in the absence of
selection are

DY4 � 2 Y4½cþ uþ vþ 3=ð2NÞ� (14a)

DY5 � 1
2N

Y4 2 Y5½cþ uþ vþ 5=ð2NÞ� 2
1
N
Y7: (14b)

In the absence of selection, Y4 thus tends to zero, and Y5 tends
to – 2Y7/[ (C + U + V) + 5], which is ,0 and ,Y7 in mag-
nitude. This suggests that the magnitude of D1 will be much
smaller than that of D2 when selection is weak, which is
confirmed by the following argument.

Approximate recursions for Y4 and Y5 with selection are
given by Equations S4 in File S1, section S1. We make the
simplification of dropping terms involving u, v, and products
of s orD2 with q and q2, on the assumption that these are small
relative to similar terms involving s or D2 alone. [These
assumptions will be violated when selection is strong in re-
lation to drift (S . 1) or when q* is .. 0.] In addition, for
the neutral case, it is possible to show that Y6 and Y5 approach
equality and Y8 approaches Y7/2 if q* is set to 0.5 (we neglect
Y9, since it is considerably smaller than Y8): see Equations S27
of File S1, section S6. Our numerical results show that these
relations are approximately true under much wider conditions,
so thatwe can replace Y6withY5 and Y8 withY7/2 in Equations
S4 in File S1, section S1, allowing us to obtain a pair of coupled
difference equations for Y4 and Y5, given the value of Y7.

It is also convenient to rescale all terms by multiplying by
2N. We can then write

2NDY4 � a11Y4 þ a12Y5 þ b1 (15a)

2NDY5 � a21Y4 þ a22Y5 þ b2; (15b)

where

a11 ¼ 2 ð3þ C þ ShÞ; a12 ¼ S (16a)

a21 ¼ 1; a22 ¼ 2 ½5ð12 ShÞ þ C þ 2S� (16b)

b1 ¼ SY7; b2 ¼ 2 ð22 ShÞY7: (16c)

If the changes in Y4, etc., are sufficiently slow, we can set DY4
and DY5 to zero and solve the resulting linear equations to
obtain approximations for Y4 and Y5 as functions of Y7:

Y4 � Y7S½3þ 2Sð12 2hÞ þ C�
det

(17a)

Y5 � Y7½S2 ð22 ShÞð3þ C þ ShÞ�
det

(17b)

det ¼ a11a22 2 a12a21

¼ ð3þ C þ ShÞ½ð5ð12 ShÞ þ C þ 2SÞ�2 S: (17c)

This shows that Y4 is O(S), whereas Y5 is of order 1, so that
DHsel is dominated by D2 when S is small, provided that h ,

Associative Overdominance 1323

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf


1/2. The determinant (det) is always positive for S# 60; this
condition is not very restrictive given our assumption of rel-
atively small S, and we assume positivity from now on. Given
that X7. 0, it can easily be shown that Y4. 0 when h, 1/2;
S, 2 is sufficient for Y5, 0when h= 0.5. For small values of
h these conditions are less stringent; with h = 0, Y4 . 0 in-
dependently of S, and Y5 , 0 when S , 6. Furthermore,
neither Y4 nor Y5 depends on q*, except through their com-
mon factor of Y7. Our numerical results show that these con-
clusions are correct, provided that S is of order 1.

FromEquation 11, the sign of the change in heterozygosity
at the neutral locus due to selection, DHsel, is the same as the
sign of –[h Y4 + (1 – 2h) Y5]. Variability will be increased by
selection if DHsel . 0 and reduced if DHsel , 0, so that this
implies that the critical upper value of h, hc, required for an
increase in neutral variability due to AOD, is independent of
q* under the assumed conditions. The value of hc can be
found by setting DHsel = 0. Using Equations 11 together with
the numerators of Equations 17a and 17b, we find that hc is
the value of h that satisfies the following cubic equation:

f ðS; h;CÞ ¼ 2S2h3 þ Sð2þ 2C þ 3SÞh2 2 2½6þ 2C
þ Sð1þ C þ SÞ�hþ 62 Sþ 2C ¼ 0:

(18)

With S close to 0, Equation 18 reduces to 12h – 6 = 0, i.e., hc
= 1/2, suggesting that variability will always be increased for
realistic h values when selection is veryweak. For other cases,
some insights into the properties of hc can be obtained by
assuming C = 0, which approximates cases with low recom-
bination rates. With S = 1, the solution to the cubic is �hc =
0.36, slightly smaller than the value of 0.37 obtained from
the numerical results described earlier. Figure 3 shows a com-
parison of the values obtained by solving Equation 18 using
Matlab symbolic calculations with the values from the matrix
approximation for generation 2N with C = 0.1 (very similar
patterns are obtained for C values of up to 1). It will be seen
that they agree quite well when S, 1, regardless of the value
of q*, but Equation 18 mostly underestimates hc for S . 1,
except for values of q* much smaller than or ..0.1. For

S ,, 1, dominance coefficients close to 1/2 are compatible
with an enhanced level of neutral variability, but BGS always
prevails for values of S.. 3, even when h is very close to 0.

The quantity 2N DHsel/H is equivalent to e = Ne/N – 1,
where Ne is the effective population size experienced by the
neutral locus for the generation in question. For small S, we
can approximate e by a Taylor series around S = 0. We have

e � Y7S
Hð5þ CÞ

�
4ð12 2hÞ22S½52 2hð12 hÞð52CÞ�

ð5þ CÞ
�
:

(19)

The first term in this equation is derived entirely from the
contribution of Y5 to DHsel. It implies that selection will cause
increased variability if h is slightly ,1/2 when O(S2) terms
are negligible, consistent with the conclusions reached above.
With very weak selection, BGS is not effective unless mutations
are close to being semidominant. The second-order term is
always ,0 and increases in magnitude as S increases; under
the most favorable situation (h = 0), S , 4(5 + C)/10 is
necessary for e . 0, which is slightly more restrictive than
is indicated by the results in Figure 3. Figure 4 shows some
examples of the extent to which this approximation matches
the simulation results; in general, it tends to underestimate
the extent to which loss of variability is retarded by selection
when S is of order 1.

These approximations also imply that the magnitude of
DHsel is proportional to Y7 = E{D2}. If we approximate E{D2}
by E{xy}E{pq}s2

d=HE{pq}s2
d/2, as was donewhen obtain-

ing Equations 4 for the apparent selection coefficients, Equa-
tions 17 and 18 give

e � Efpqgs2
d f ðS; h;CÞ
det

: (20)

Because s2
dE{pq}# 0.25, the quadratic dependence of the

denominator on C, and the inverse relation between s2
d and

C, implies that there will be only a very small effect of selec-
tion on neutral variability when C .. 1, unless S .. C. In

Figure 3 The critical dominance coefficient, hc, as
a function of the scaled selection coefficient, S, for
the case of mutation and selection with C = 0.1 and
N = 50. The initial frequency of A1 was 0.5. The blue
line is the value of hc given by Equation 18. The dashed
lines represent the values obtained from the matrix
approximation at generation 2N, for several different
values of the equilibrium frequency, q*, of the delete-
rious allele at the B locus.
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addition, the size of the effect is strongly determined by S and
by E{pq}, since s2

d takes a value between 0 and 1.
Overall, these results suggest that retardation of loss of

neutral variability caused by a single selected locus is unlikely
to be important except for S values of the order of #1. In such
cases, if linkage is sufficiently tight, there can be a significant
retardation of loss of neutral variability and an enhancement of
the equilibrium level of variability evenwhen h approaches 1/2.

Two selected loci with mutation and selection

From simulation studies of the effect of multiple, linked se-
lected loci on the behavior of neutral loci located among them,
we would expect to see larger values of both the apparent
selection coefficients and the level of neutral heterozygosity
than with a single selected locus (Ohta 1971; Latter 1998;
Pamilo and Palsson 1998; Palsson and Pamilo 1999; Wang
and Hill 1999; Bierne et al. 2000). However, it is unclear
whether the effects of multiple selected loci are approximately
additive or whether there is some degree of synergism.

With small population size, very close linkage, strong
selection, and a sufficiently high level of recessivity of dele-
terious mutations, simulations have shown that “crystalliza-
tion” of the population into two predominant and
complementary haplotypes (+ – + – . . . and – + – +. . .,
where + denotes wild type and – mutant) with respect to
the selected loci can occur, such that the behavior of the
system is very similar to that of a single locus with strong
heterozygote advantage (Charlesworth and Charlesworth
1997; Palsson and Pamilo 1999; Palsson 2001). This can re-
sult in long-term maintenance of variability at the selected
loci. This is strongly suggestive of a synergistic effect of mul-
tiple selected loci.

No analytical treatment of more than one selected locus has
yet been done, so we have investigated this problem, using
simulations of a small number of selected loci. The results of
simulationswith two selected loci surrounding a neutral locus
are shown in Table 2, using the same set of recombination
frequencies between the neutral and nearest selected locus as

in Table 1. As far as the apparent selection coefficients are
concerned, with h = 0.1 and the lower two recombination
rates, there is clear evidence that the apparent selection coef-
ficients in generation 2N (but not necessarily in generation
0.5N) are somewhat larger than twice the apparent selection
coefficients in the single-locus case, indicating a degree of
synergism. A similar pattern is found with four selected loci
(results not shown).

It is more difficult to quantify the effect on Hrel, since this is
strongly dependent on the generation in question. With close
linkage and h= 0.1, the values of Hrel – 1 in generation 2N in
Table 2 are slightly larger than twice the corresponding values
in Table 2. Conversely, with h = 0.45 and close linkage, for
whichHrel, 1, the absolute values ofHrel – 1 in generation 2N
are less than twice the corresponding values in Table 1, al-
though the apparent selection coefficients are slightly larger
than twice the values with a single selected locus. A more
rigorous test for additivity is described in section S5 of File
S1; it suggests that the effects of two loci on Ne/N – 1, as
estimated from DHsel, are somewhat greater than additive
when there is a retardation of loss of variability and less than
additive when there is an acceleration.

A single selected locus with heterozygote advantage

Themethodsused for the case ofmutation and selection canbe
used tomodel the case of linkage to a single selected locuswith
heterozygote advantage, by making appropriate modifications
to the terms in the R matrix and to the expressions for the
changes in haplotype frequencies in the computer simulations
(see Equations 9 and section S3 of File S1). Figure 5 and Table
3 compare some examples of matrix and simulation results;
these again suggest that the matrix predictions are accurate
for this parameter range (further details are shown in Table B,
section S9 of File S1). Once again, the ratio of the rate of
recombination to the strength of selection has to be sufficiently
small for a substantial effect.

Approximate results can be obtained for the case when
S = 2Ns and T = 2Nt are both ,1, on the same lines as for

Figure 4 A comparison of the values of 2N DHsel

obtained from the simulations and from Equation
19 (using values of Y7 = E{D2} obtained from the
simulations), with C = 0.1, q* = 0.3, and N = 50.
The initial frequency of A1 was 0.5. The panels
display the approximate results from Equation 19
(blue solid circles) and the simulation results (red
solid circles), for different values of S. The confi-
dence intervals are too small to be easily seen.

Associative Overdominance 1325

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188912/-/DC1/FileS1.pdf


Equations 15–20 for the mutation–selection balance case.
The coefficients for the approximate recursion relations for
Y4 and Y5 are now as follows:

a11 ¼ 2 ð3þ C2 SÞ; a12 ¼ T2 S (21a)

a21 ¼ 1þ 3S2

ðSþ TÞ;

a22 ¼ 2 ð5þ CÞ2 2ðSþ TÞ þ S

82

9S
ðSþ TÞ

�
(21b)

b1 ¼ ðT2 SÞY7; b2 ¼ 2 ð2þ SÞY7: (21c)

The equivalents of Equations 17 and 18 are given in section S3
of File S1 and can be used to calculate DHsel in the same way
as for the mutation–selection case. The first-order term in S
and T in DHsel gives

e � 4Y7ðSþ TÞ
Hð5þ CÞ : (22)

The inbred load in this case is (s+ t)E{pq} (see Equations 9),
so that this is identical in form to the first-order approximation

for the mutation–selection balance case (see Equation 19).
For sufficiently weak selection, therefore, heterozygote ad-
vantage should always lead to an enhancement of neutral
variability at a linked locus.

It is known, however, that the asymptotic rate of loss of
variability at a locus with heterozygote advantage has
a complex dependence on the deterministic equilibrium
allele frequency and the population size, with extreme
allele frequencies (outside the range 0.2–0.8) leading to
an acceleration of loss of variability when S + T is suffi-
ciently large (Robertson 1962). This suggests that a simi-
larly complex pattern should be found for the dependence
of the measure of retardation/acceleration based on the
leading eigenvalue of the recursion matrix. Figure C of File
S1 (section S10) shows that this is indeed the case, al-
though there is only a small region of parameter space
where acceleration rather than retardation of loss of vari-
ability occurs.

Under most circumstances, some retardation of the loss of
variability at a neutral locus is, therefore, likely to be observed
as a result of linkage to a selected locus, although itsmagnitude
is small unless linkage is tight and S+T..1. ForC.. S+T

Table 2 Simulation results for a neutral locus surrounded by two loci subject to mutation to deleterious alleles (2Ns = 1, 2Nu = 0.1, 2Nv =
0.01, q* = 0.296, N = 50, x0 = 0.5)

Generation 0.5N Generation 2N

2N~s 2N~t Hrel Ps 2N~s 2N~t Hrel Ps

h = 0.1

C = 0
0.142 (0.00001) 0.142 (0.00001) 1.0008 (0.0001) 0.9842 (0.00006) 0.294 (0.00003) 0.297 (0.00003) 1.0180 (0.0004) 0.5444 (0.0002)
0.136a 0.136a 0.9841 (0.00004)b 0.268a 0.268a 0.5375 (0.0002)b

C = 0.1
0.139 (0.00001) 0.139 (0.00001) 1.0001 (0.0001) 0.9843 (0.00006) 0.272 (0.00003) 0.272 (0.00003) 1.0159 (0.0005) 0.5433 (0.0002)
0.134a 0.134a 0.248a 0.248a

C = 1
0.115 (0.00001) 0.115 (0.00001) 1.0007 (0.0001) 0.9843 (0.0006) 0.151 (0.00002) 0.151 (0.00002) 1.0010 (0.0005) 0.5412 (0.0002)
0.110a 0.110a 0.142a 0.142a

C = 10
0.037 (0.00001) 0.037 (0.00001) 1.0002 (0.0001) 0.9841 (0.0006) 0.028 (0.00001) 0.028 (0.00001) 1.0000 (0.0005) 0.5372 (0.0002)
0.036a 0.036a 0.028a 0.028a

h = 0.45

C = 0
0.018 (0.0001) 0.018 (0.0001) 0.9999 (0.0001) 0.9842 (0.00006) 0.036 (0.00003) 0.036 (0.00003) 0.9952 (0.0005) 0.5352 (0.0002)
0.016a 0.016a 0.9841 (0.00004)b 0.032a 0.032a 0.5375 (0.0002)b

C = 0.1
0.018 (0.0001) 0.018 (0.0001) 0.9999 (0.0001) 0.9841 (0.00006) 0.034 (0.00003) 0.034 (0.00003) 0.9961 (0.0005) 0.5356 (0.0002)
0.016a 0.016a 0.030a 0.030a

C = 1
0.015 (0.0001) 0.015 (0.0001) 0.9996 (0.0001) 0.9841 (0.0006) 0.019 (0.00002) 0.019 (0.00002) 0.9975 (0.0005) 0.5360 (0.0002)
0.014a 0.014a 0.018a 0.018a

C = 10
0.005 (0.0001) 0.005 (0.0001) 0.9999 (0.0001) 0.9842 (0.0006) 0.004 (0.0001) 0.004 (0.0001) 0.9998 (0.0005) 0.5337 (0.0002)
0.004a 0.004a 0.004a 0.004a

C is the scaled recombination rate between the neutral locus and each selected locus. The selection and mutation parameters are the same for each selected locus. Standard
errors for 5 3 106 simulations with two selected loci are in parentheses, following the corresponding means.
a Single-locus simulation values multiplied by two.
b Values from neutral simulations.
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it is unlikely that any experimentally detectable effects could
be observed. The same applies to the apparent selection coef-
ficients against homozygotes at the neutral locus.

Discussion

Some general considerations

Our results shed some new light on the old question of the
properties of AOD at a neutral locus in a randomly mating
population of finite size, resulting from randomly generated
LD with respect to loci subject to selection. The pioneering
work of Sved (1968, 1972), Ohta and Kimura (1970), and
Ohta (1971) gave expressions for the apparent selection coef-
ficients against homozygotes at a neutral locus, using the
equivalents of our Equations 3 and 8. Our approximate esti-
mates of the apparent selection coefficients for the case of
a finite population founded from an infinite population at
equilibrium with no LD between the selected and neutral loci
(Equations 4 and 9) followed their approach in using only the
terms involving D2 in these equations, which are the domi-
nant terms.

However, as was noted by Sved (1968, p. 552) for the
case of heterozygote advantage and by Latter (1998) for the

case of selection against deleterious mutations, these selec-
tion coefficients do not result in any change in allele fre-
quency at the neutral locus. As mentioned above (Equation
10), this is a completely general conclusion: application
of the Price equation (Price 1970) shows that the change
Dx per generation in the frequency of allele A1 at the neu-
tral locus is equal to aD, where a is the average effect of A1

on fitness (see also Santiago and Caballero 1995, p. 1016),
to the order of the approximations used here (neglect of
second-order terms in s and 1/N). Neither the change in
allele frequency nor the change in heterozygosity at the
neutral locus is influenced by the D2 terms under these
conditions.

There is thus no connection between apparent overdom-
inance caused by linkage disequilibrium and any retardation
of loss of variability by drift at a neutral locus. Such a connec-
tion seems to have been widely assumed (e.g., Latter 1998),
although it was pointed out by Charlesworth (1991) that
AOD caused by identity disequilibrium has no effect on allele
frequencies at the neutral loci concerned. As was noted by
Bierne et al. (2000), for this case it is necessary to treat ap-
parent overdominance at the neutral locus as a phenomenon
that is distinct from any retardation of loss of variability. This

Table 3 Simulation and theoretical results for a single locus with heterozygote advantage

Generation 0.5N Generation 2N

2N~s 2N~t Hrel Ps 2N~s 2N~t Hrel Ps

2Ns = 0.2, 2Nt = 0.2, q* = 0.5, N = 50, x0 = 0.1

C = 0
0.094 (0.00004) 0.019 (0.00001) 1.0002 (0.0004) 0.5533 (0.0002) 0.105 (0.00009) 0.077 (0.00008) 1.0082 (0.0007) 0.1966 (0.0001)
0.258a 0.046a 1.0003a 0.5536 (0.0002)b 0.212a 0.108a 1.0083a 0.1956 (0.0001)b

C = 0.1
0.092 (0.00004) 0.020 (0.00001) 1.0005 (0.0004) 0.5535 (0.0002) 0.096 (0.00008) 0.070 (0.00007) 1.0311 (0.0007) 0.1964 (0.0001)
0.251a 0.043a 1.0003a 0.179a 0.092a 1.0078a

C = 1
0.079 (0.00004) 0.016 (0.00001) 1.0008 (0.0004) 0.5533 (0.0002) 0.071 (0.00006) 0.035 (0.00005) 1.0053 (0.0007) 0.1962 (0.0001)
0.210a 0.037a 1.0003a 0.103a 0.061a 1.0046a

C = 10
0.032 (0.00002) 0.005 (0.00001) 1.0004 (0.0004) 0.5532 (0.0002) 0.008 (0.00002) 0.005 (0.00001) 1.0004 (0.0007) 0.1956 (0.0001)
0.056a 0.011a 1.0001a 0.016a 0.008a 1.0004a

2Ns = 0.2, 2Nt = 0.1, q* = 0.667, N = 50, x0 = 0.1

C = 0
0.062 (0.00003) 0.013 (0.00001) 1.0023 (0.0004) 0.5534 (0.0002) 0.069 (0.00006) 0.051 (0.00006) 1.0056 (0.0007) 0.1962 (0.0001)
0.171a 0.031a 1.0002a 0.5536 (0.0002)b 0.137a 0.070a 1.0054a 0.1956 (0.0001)b

C = 0.1
0.061 (0.00003) 0.013 (0.00001) 1.0024 (0.0004) 0.5531 (0.0002) 0.063 (0.00006) 0.046 (0.00005) 1.0198 (0.0007) 0.1961 (0.0001)
0.171a 0.032a 1.0002a 0.178a 0.091a 1.0051a

C = 1
0.053 (0.00003) 0.010 (0.00001) 1.0010 (0.0004) 0.5532 (0.0002) 0.033 (0.00004) 0.023 (0.00003) 1.0021 (0.0007) 0.1959 (0.0001)
0.137a 0.025a 1.0002c 0.070a 0.035a 1.0030a

C = 10
0.021 (0.00001) 0.003 (0.00001) 1.0000 (0.0004) 0.5531 (0.0002) 0.006 (0.00001) 0.003 (0.00001) 0.9997 (0.0007) 0.1953 (0.0001)
0.035a 0.006a 1.0001c 0.010a 0.005a 1.0002a

Standard errors for 107 simulations are in parentheses, following the corresponding means.
a Approximate values of r2 were obtained from the matrix recursions; neutral values were used for the expectations of x–1 and (1 – x) –1 (Equation A11 and following text); the
linear approximation was used for the heterozygosity at locus B (Equation A3).

b Values from neutral simulations.
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point is reinforced by the results in Table 1 and Table 2 for the
case of selection against recurrent deleterious mutations,
which show that apparent overdominance can accompany
an acceleration of loss of neutral variability when the domi-
nance coefficient h is sufficiently large (see the entries with
h = 0.45). Of course, h , 1/2 is a necessary condition for
both retardation of loss of variability and apparent overdom-
inance. This is not restrictive, given the evidence that the
dominance coefficients for slightly deleterious mutations
are generally ,1/2 (Crow 1993; Manna et al. 2011).

Selection against deleterious mutations

General conclusions: Computer simulations of systems with
many loci subject to mutation to deleterious alleles have
shown that a noticeable retardation of loss of neutral variation
at linked loci can occur (Latter 1998; Pamilo and Palsson
1998; Palsson and Pamilo 1999; Wang and Hill 1999; Wang
et al. 1999), for certain ranges of values of selection and
dominance coefficients. As pointed out by Pamilo and Palsson
(1998), Palsson and Pamilo (1999), Wang and Hill (1999),
and Wang et al. (1999), there is a conflict between the effect
of AOD on neutral variability and the effect of BGS; the latter
involves a reduction in the effective population size experi-
enced by a neutral locus caused by its linkage to deleterious
mutations (Charlesworth et al. 1993). Their multilocus sim-
ulations, as well as the matrix-based investigation by Wang
and Hill (1999) of a model of a single selected locus linked
to a neutral locus in a sib-mating and selfing population,
showed that retardation vs. acceleration of the rate of loss
of neutral variability is favored by relatively weak selection
(2Ns values of order #4) and low dominance coefficients;
see, for example, figure 1 of Wang and Hill (1999).

Our analytical and numerical methods, employing a 93 9
matrix of “moments” of functions of the allele frequencies at
the two loci and D, as well as weak selection approximations
for the change in heterozygosity, have allowed us to investi-
gate in detail the regimes in which retardation vs. accelera-
tion of loss of neutral variability occurs.

The main conclusions are as follows:

1. Retardation rather than acceleration of loss of variability is
favored by sufficiently low values of the dominance co-
efficient, h, when S = 2Ns is in the range 0.5–4.5 (Figure
3). The commonly used estimate of h = 0.25 for slightly
deleterious mutations (Manna et al. 2011; Charlesworth
2015) is consistent with retardation when S# 2.5, except
when q* is close to 0.5.

2. S , 0.5 allows retardation of loss even for h values
approaching 1/2; this domain of S values can be thought
of as the AOD limit.

3. In contrast, there is always an acceleration of loss of var-
iability when S . 4.5, even with very low h values; this
constitutes the BGS limit. Despite this acceleration, appar-
ent heterozygote advantage at the neutral locus is always
observed, provided that h , 1/2.

4. For q*,, 1 and for S.. 1, the asymptotic behavior of the
expected heterozygosity at the neutral locus iswell predicted
by the Ne value given by the standard equation for BGS.

5. Themagnitude of the extent of retardation or acceleration
of loss of variability is an increasing function of C/S, for
a given h value. Equation 19 also shows that, when S,,
1, the effect is proportional to the inbred load scaled by
2N, for a given value of C.

Implications for empirical results: Populationgenomic anal-
yses of levels of nonsynonymous site variability in a variety of
organisms have consistently shown that there is a wide dis-
tribution of selection coefficients against new deleterious
mutations and suggest a mean S for natural populations that
is..1 (reviewed by Charlesworth 2015). The large effective
population sizes of most populations that have been studied
in this way imply, however, that the mean selection coeffi-
cient against a new deleterious mutation is likely to be very
small. For example, the current estimate of mean hs for new
nonsynonymous mutations in Drosophila melanogaster is

Figure 5 A comparison of the simulation results
(red symbols, with 95% confidence interval error
bars) with the matrix approximation (black open
circles) for the case of heterozygote advantage. A
and B plot Hrel and DHsel against time for scaled
selection coefficients S = 0.2 and T = 0.1; C and D
give the values of these variables when S = 0.2 and
T = 0.2. N = 50, C = 0.1, and the initial frequency of
A1 was 0.5.
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�0.001; with h = 0.25, the corresponding mean s is 0.004
(Charlesworth 2015). With N = 50, as used in the experi-
mental and simulation studies discussed below, the mean S
is 0.4. If there were no variation in s for new mutations, this
would suggest that they fall well within the range where
Equations 18 and 19 predict retardation of loss of variability.
However, we also have to take into account the fact that there is
a wide distribution of s, as we discuss below. A coefficient of
variation of s for new mutations of �2 is suggested by the Dro-
sophila polymorphism data (Kousathanas and Keightley 2013).

Effects of multiple loci subject to mutation and selection

We now consider how multiple loci subject to deleterious
mutation affect a linked neutral locus; this question can be
asked about both the apparent selection coefficients and the
extent of retardation or acceleration of loss of variability.

Apparent selection coefficients:With respect to the apparent
selection coefficients, previous workers (Ohta 1971, 1973;
Ohta and Cockerham 1974; Bierne et al. 2000) assumed that
multiple loci combine approximately additively. Table 2,
which describes results for a pair of selected loci, suggests
that this assumption may be somewhat conservative; in most
of the examples shown there, the selection coefficients are
somewhat larger than twice the corresponding single-locus
values, especially with a low initial frequency of the A1 allele.

The procedure of summing contributions over all sites
when there are many selected loci, as used by Ohta (1971,
1973), may thus underestimate the apparent selection coef-
ficients, although the departure from additivity is likely to be
small for the very weak selection that is probably most com-
mon. An alternative to Equation 13 of Ohta (1973), based on
Equations 3, is derived in section S6 of File S1 (Equations
S31). We assume that the population is being studied at
a sufficiently long time after establishment that its LD is close
to equilibrium. We also assume a single chromosome with
a uniform rate of recombination along the chromosome, as
well as a linear genetic mapping function (this somewhat
overestimates the amount of recombination, compared with
the true situation with partial crossover interference). For
a randomly placed marker, we have the asymptotic result

~s ¼ ~t � 5Btot½ð1þ C*Þlnð1þ C*Þ2C*�
C*2

; (23)

where Btot is the inbred load associated with homozygosity
for the whole chromosome, and C* = 2NM, withM denoting
the map length of the chromosome (taking into account any
sex differences in recombination rates, by averaging over the
values for each sex).

It is useful to compare this formula with the multilocus
simulation results of Latter (1998), who modeled a D. mela-
nogaster autosome evolving in a population maintained at
a size of 50 for 200 generations after its foundation from
an equilibrium population. The chromosome was 100 cM in
length; the absence of crossing over in males means that

the effective value of M is 0.5 M, so that C* = 50 with N =
50. For a randomly placed marker, Equation 23 gives an ap-
proximate apparent selection coefficient of 0.312Btot.

Btot can be estimated as follows. The initial value of the net
fitness (relative to a balancer chromosome) for homozygous
D. melanogaster second chromosomes was 0.4, after purging
them of major-effect mutations by extraction from a popula-
tion maintained for many generations at an approximate size
of 50 (Latter et al. 1995; Latter 1998). This can be equated to
the fitness of a homozygous chromosome relative to that of
an outbred genotype in the initial population; the value of
Btot for the initial population is then –ln(0.4), �0.90, assum-
ing multiplicative fitness effects. This assumption is consis-
tent with the log-linear decline in fitness with inbreeding
coefficient F in the small laboratory populations of D. mela-
nogaster described by Latter et al. (1995).

The simulations of Latter (1998) adjusted the number of
mutable loci to produce an initial Btot of 0.90. However, we
need to take into account the reduction in Btot as variability is
lost at the selected loci. A minimum estimate of Btot at gen-
eration t is provided by assuming that the ratio of E{pq} to its
initial value follows the standard neutral result, 1 – Ft = exp
(–t/2N). For N= 50 and t= 200, this procedure yields Btot =
0.90 3 (1 – F200) = 0.122 and a value of 0.038 for the
apparent selection coefficient on a random marker, some-
what lower than the value of 0.05 given in figure 6 of Latter
(1998). The discrepancy probably reflects an overestimate of
the loss of variability by use of the standard neutral value of
Ft. Latter’s figure 4 shows F200= 0.7 for the selected loci in his
simulations, giving Btot = 0.270 and an apparent selection
coefficient of 0.084. The single-locus approximations for the
apparent selection coefficients often overestimate the true
values (see Table 1), so that it is not surprising that Equation
23 overestimates the apparent selection coefficient.

Since the numerator of Equation 23 involves a product of
C* and a logarithmic function of C*, the apparent selection
coefficients are roughly inversely proportional to popula-
tion size. Species with larger numbers of chromosomes
than Drosophila, and with crossing over in both sexes, will
have much smaller apparent selection coefficients for the
same value of N. Detectable apparent selection coefficients
arising from AOD in randomly mating populations are
likely to be found only in very small populations, especially
in organisms with large numbers of chromosomes such as
most vertebrates. This suggests that AOD arising from
identity disequilibrium (Szulkin et al. 2010) is a more
likely explanation of heterozygosity/fitness relations in
natural populations than LD due to drift in a randomly
mating population (Hansson and Westerberg 2002), un-
less the population has been reduced to a very small num-
ber of breeding individuals.

Rate of loss of variability: This approach can also be applied
to the rate of loss of neutral variability, using the weak
selection approximation of Equation 19, which includes
only the first- and second-order terms in S in the expression
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for e = Ne/N – 1 = 2N DHsel, again assuming that LD is close
to neutral equilibrium. The derivation of the approximate
expected value of e for a neutral marker placed randomly
on a chromosome, using the same assumptions as before, is
given in section S7 of File S1 (Equations S32–S35). The final
result is

e ¼ 4Btot
9MC*

f2ð11C*Þlnð11C*Þ2 ð111 2C*Þ½lnð111 2C*Þ

2 lnð11Þ�g2BtotS
	
11CV2

s



9ð12 2hÞMC*
f½52 12hð12 hÞ�

3 ð11C*Þlnð11C*Þ1 45½4hð12 hÞ21�ð51C*Þ
3 ½lnð51C*Þ2 lnð5Þ�1 4½52 21hð12hÞ�ð111 2C*Þ
3 ½lnð111 2C*Þ2 lnð11Þ�g            

(24)

where CVs is the coefficient of variation of the distribution of s
for newmutations.With an exponential distribution, CVs=1.

We can compare the predictions of this equation with the
simulation results for a mean S of 0.5 in Latter’s (1998) table
6, which is similar to the value suggested by the population
genomic analyses for a population size of 50 and meets the
weak selection requirement. Latter used a measure (DF)
derived from the net change in F for neutral loci over t gen-
erations, relative to the corresponding value without selec-
tion; this is approximately equivalent to the ratio of N to the
harmonic mean of Ne, i.e., to 1/(1 + e). For the case of an
exponential distribution of s, he estimatedDF as�0.6 for t=
200, for three different dominance coefficients, 0, 0.1, and
0.2. With h = 0.2, the estimate of e for a random marker
with a population size of 50 is 1.35Btot; with the above
estimate of Btot = 0.270 for generation 200, this gives e =
0.365 and DF = 0.73, which is somewhat higher than Lat-
ter’s (1998) value. But the comparisons of the single-locus
simulation results with Equation 19 suggested that the ap-
proximation underestimates e by �30% (Figure 4); increas-
ing e by this amount to 0.474 gives DF = 0.68. If the effects
of different loci on Ne combine multiplicatively rather than
additively, as is known to be the case for BGS (Charlesworth
and Charlesworth 2010, p. 402), e should be replaced by exp
(e) – 1 = 0.606, and DF = 0.62, which is very close to the
simulation value. The value of h has only a small effect on
the results; for example, with h = 0, the uncorrected e =
0.454 and DF = 0.69.

We can also use Equation 24 to determine the expectations
with the population genomics estimates of a mean s of 0.004
and CVs = 2, with h = 0.25. Substituting these values into
Equation 24 with the same N and recombination parameters
as before, Equation 24 gives a negative value of e= –0.0663,
andDF=1.07. This implies that BGSwould cause a reduction
in Ne, to �93% of the neutral value. This conclusion should
be treated with caution, since the very wide distribution of
selection coefficients in this case means that there will be
a substantial range of values that violate the assumption of
S , 1 required for the validity of Equation 19.

Relation to the data on loss of variability in
small populations

Most of the data that are relevant to the question of whether
AODgenerated by linkage to deleteriousmutations can retard
the loss of neutral variability in small randomly mating pop-
ulations come from a few studies of the behavior of putatively
neutral markers and quantitative traits in small laboratory
populations of D. melanogaster. To avoid the complications of
interpretation associated with high levels of inbreeding, we
do not discuss results from studies of sib-mating or first-
cousin mating, although these suggest a significant retarda-
tion of loss of variability (Rumball et al. 1994), consistent
with the conclusion that retardation is favored when S is
small. Latter (1998) analyzed the results of Latter et al.
(1995) for two allozyme markers and found a DF value of
0.52 over 200 generations in populationsmaintained at a size
of �50 (see Latter’s table 6), consistent with his multilocus
simulation results based on an exponential distribution of s.

Experiments using seven allozymemarkers and two bristle
traits in pedigreed populations ranging in size from sib-mating
to 500, and maintained for 50 generations, showed that the
regression coefficients of heterozygosity and genetic variance
on pedigree inbreeding coefficient were significantly lower
than the value of 1 expected with neutrality, suggesting a re-
tardation of loss of variability (Gilligan et al. 2005). The facts
that the results from populations with different sizes were
pooled, and that there is a nonlinear relation between het-
erozygosity and inbreeding coefficient when AOD is acting,
mean that a quantitative analysis of these results in terms of
our model is impossible. In addition, a later analysis of eight
microsatellite loci over 48 generations for the same set of
populations showed an acceleration of loss of variability by
this criterion (Montgomery et al. 2010), which the authors
interpreted as evidence for selective sweeps related to adap-
tation to the laboratory environment.

Different experiments have, therefore, given very different
patterns,and it is certainlypossible thatanyretardationof lossof
variability due to AOD may be obscured by selective sweeps,
even ifN is of a size thatwould otherwise lead to a retardation
of loss of variability. However, a basic problem with experi-
ments of this type is that the heterozygosity for a single neu-
tral locus has a very high stochastic variance, even if allele
frequencies are estimatedwith complete accuracy (Avery and
Hill 1977); see Equation S39 of File S1, section S8. This yields
the asymptotic expression for large t:

VH
H2

� 2
5H

: (25)

This equation implies that the relative error increases asmean
heterozygosity decreases. For example, at generation 100, if
the initial heterozygosity was at the maximal value of 0.5 for
a biallelic locus, the mean neutral H for N = 50 is 0.184,
yielding an expected coefficient of variation for a single
locus in a single population of 1.47. To obtain a coefficient
of variation of 0.1, (1.47/0.1)2 = 188 independent
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heterozygosities would need to be measured, from either in-
dependent loci or populations or from a combination of the
two. Given that figure 6 of Latter (1998) shows a difference
of �0.2 between the expected neutral F value and the value
from simulations with AOD due to deleterious mutations,
which corresponds to the difference in scaled H values, it is
clear that many more replications than this would be neces-
sary to obtain statistically significant results, especially as the
distribution of H is far from normal. The differences between
the different experiments could thus be purely stochastic,
especially as the autocorrelations between H values in differ-
ent generations mean that the regression tests used by
Gilligan et al. (2005) and Montgomery et al. (2010) are
problematic.

It is possible that tight linkage of neutral markers to sets of
very strongly and highly recessive deleterious variants that are
in repulsion LD with each other could maintain variation as
a result of the pseudo-overdominance that can arise in this
circumstance: see the sectiononeffects ofmultiple loci subject
tomutationand selection, andCharlesworth andCharlesworth
(1997), Palsson and Pamilo (1999), and Palsson (2001). This
is most likely to occur in very small populations; major-effect
mutations are relatively sparsely distributed, so that their
effects on neutral variability are likely to be restricted to spe-
cific genomic regions, rather than evenly spread across the
genome. Recent genomic investigations of the well-known
Chillingham population of cattle, which have beenmaintained
at a very small population size for 350 years, are consistent
with this interpretation. Genome-wide diversity is very low,
and residual variability is localized to a number of specific
genomic locations (Williams et al. 2016).

A full assessment of the possibility that a realistic distribu-
tionofmutational effects onfitness (DFE),whichare currently
becoming available from genome-wide polymorphism data
(Charlesworth 2015), can cause significant retardation of the
loss of neutral variability will require simulations that use
realistic DFEs, coupled with experiments on the effects of
reduced population size that exploit the high levels of repli-
cation that can be achieved using modern genomic technol-
ogy for generating large numbers of markers. It would also be
desirable to use populations that have been maintained for
a long period in the laboratory at a large size as the initial
population, to avoid possible confounding effects of selective
sweeps. Current theory and data cannot convincingly answer
the question of whether AOD due to deleterious mutations is
a credible explanation for the presence of more than expected
levels of variability in small populations.

Selection in favor of heterozygotes

Our main conclusion is that retardation of loss of variability is
nearly always observed when there is heterozygote advan-
tage, except when the allele frequency at the selected locus is
close to the boundaries 0 or 1, and there is relatively strong
selection,when it is known thatheterozygoteadvantage tends
to accelerate the loss of variability (Robertson 1962). As
shown in Figure 4 and Table 3, a substantial degree of

retardation can occur when c , , 10(s + t), especially with
intermediate equilibrium allele frequencies. As with muta-
tion and selection, with S + T , 1 and a fixed value of C
the magnitude of retardation is proportional to the inbred
load scaled by 2N (see Equation 22).

Genome scans for signatures of balancing selection suggest
that this is a relatively rare phenomenon compared with the
number of genes in the genome (Charlesworth 2006; Gao
et al. 2015), so that it is unlikely that a given neutral site will
be closely linked to a locus maintained by heterozygote ad-
vantage. The exception is inversion polymorphisms in organ-
isms such as Drosophila; these can cover relatively large
proportions of the genome and also suppress crossing over
to a considerable extent outside their breakpoints (Krimbas
and Powell 1992). They could thus have a substantial impact
on the behavior of neutral variants in small populations. Our
conclusions concerning heterozygote advantage are, there-
fore, relevant to experimental results on small populations
where inversions are segregating, as is often the case with D.
melanogaster.
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Appendix

Approximations for the Expected Frequency of B2 and Expected Heterozygosity at the Selected Locus

With weak selection, the deterministic change in the frequency q of allele B2 under selection andmutation (neglecting terms of
order s2) is given by

Dq ¼ 2 spq½ð12 2hÞqþ h� þ up2 vq: (A1)

Because Dq is third degree in q, it is impossible to obtain exact, closed equations for the changes in the expectations of q and q2,
E{q} and E{q2}, under drift, selection, and mutation. However, if it is assumed that second-order terms in the deviation of q
from its deterministic equilibrium value q*, given by Equation 5a, can be ignored, approximate recursion relations can be
obtained as follows. [The matrix calculations described in section S1 of File S1, which neglect third-order terms in (q – q*),
yield better approximations.]

Taking the first derivative of Equation A1with respect to q yields a linear deterministic recursion relation for the departure of
q in generation t from the equilibrium frequency q* under mutation and selection, which is given by Equations 5,

qt 2 q* � ð1þ kÞðqt21 2 q*Þ; (A2a)

where

k ¼ 2 ðuþ vÞ2 s½ð12 2hÞq*ð22 3q*Þ þ hð122q*Þ�: (A2b)

Since this is linear in q, the mean of q under drift, selection, and mutation remains at q*.
The equilibriumexpected heterozygosity at the selected locus is given byH2*=2q*(1 – q*)A/(1+A),whereA= –4Nek (e.g.,

Charlesworth and Charlesworth 2010, p. 355). The change in the expected heterozygosity at the selected locus at time t,H2t, is
approximately equal to the expectation of 2(1 – 2qt)Dq(qt); combining this with Equations A2 yields the following recursion
relation:

H2t � H*
2 2

�
H20 2H*

2

�
exp½2tð12 4NkÞ=ð2NÞ�: (A3)

Because H2 is twice the expectation of pq, Equation A3 was used in Equations 4 for determining the approximate apparent
selection coefficients.

Approximate Neutral Recursion Relations for the Expectation of r2

For the purely neutral case, Sved (1971) proposed the following approximation for the recursion relation for the expected
correlation coefficient in generation t, E{rt2},

E
�
r2t
� � 1

2N
þ
�
12 2c2

1
2N

�
E
�
r2t21

�
; (A4a)

where c is the frequency of recombination between the two loci, assumed to be,,0.5. Since mutation at the B locus reduces
the coefficient of linkage disequilibrium D with the A locus by u + v each generation, this equation should be modified as
follows:

E
�
r2t
� � 1

2N
þ

12

4Nðcþ uþ vÞ þ 1
2N

�
E
�
r2t21

�
: (A4b)

This yields the equilibrium solution

E*
�
r2
� � 1=

�
1þ 2C9

�
; (A4c)

where C9 = 2N(c + u + v) and E*{} indicates the expectation at statistical equilibrium.
If the initial population is in linkage equilibrium, Equations A4 yield the following homogeneous recursion relation:

E
�
r2t
� � E*

�
r2
�n

12 exp
h
t
�
1þ 2C9

�.
ð2NÞ

io
: (A5)

This suggests the following expression for sd
2 = E{D2}/E{xypq}:
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s2
d;t � s*2

d

n
12 exp

h
t
�
1þ 2C9

�.
ð2NÞ

io
: (A6a)

From Ohta and Kimura (1971), the equilibrium value of sd
2 is given by

s*2
d �

	
5þ C9



	
11þ C9


	
1þ C9


: (A6b)

The simulation results show that Equation A6a tends to overestimate E{r2} for t# 0.5N; it is quite accurate for later generations
up to t = N and tends to underestimate E{r2} thereafter. Equation A5 gives a better approximation for the earlier and later
generations, but a worse approximation for the intermediate generations.

Expectations of the Reciprocals of the Allele Frequencies at the Neutral Locus

The expectations of x–1 and y–1 = (1 – x) –1, conditioned on segregation at locus A, for use in Equations 3 and 9, can be derived
using the diffusion equation solution for the case of pure drift (Kimura 1955), under the assumption that departures from strict
neutrality can be neglected as a first-order approximation. For this purpose, it is convenient to rescale time in units of 2N
generations, such that T= t/(2N). Using the first three terms in the series expansion for the unconditional probability density
of the frequency x of A1 at time T, given an initial frequency x0, we have

fðx;TÞ � 6x0y0expð2TÞ þ 30x0y0ðy02 x0Þðy2 xÞexpð2 3TÞ þ 84x0y0ð125x0y0Þð12 5xyÞexpð2 6TÞ: (A7)

The expected frequency of heterozygotes at locus A at time T is

H1ðTÞ � 2x0y0expð2TÞ: (A8)

To determine the conditional probability of x for a segregating population, we need the probability that the population is still
segregating for A1 and A2 at time T, given by equation 8.4.9 of Crow and Kimura (1970):

PsðTÞ � 6x0y0expð2TÞ þ 14x0y0
	
12 5x0y0 þ 5x20



expð26TÞ: (A9)

The conditional probability density of x at time T is then given byf/Ps, which can be used to determine themean of x–1 at time T
for segregating populations,

EsT
�
x21

� ¼ PsðTÞ21R 121=ð2NÞ
1=ð2NÞ x21fðxtÞdx

� PsðTÞ21f6x0y0½lnð2NÞ þ g�½expð2TÞ þ 5x0ðy0 2 x0Þexpð23TÞ�260x0y0½ðy02 x0Þexpð23TÞ�
þ84x0y0½lnð2NÞ þ g2 2:5�ð125x0y0Þexpð26TÞ�g;

(A10)

where g is Euler’s constant (�0.5772), which is equal to the difference between the sum and integral of 1/x.
An equivalent expression for the expectation of y–1 can be obtained by interchanging x and y and x0 and y0 in these equations.
For sufficiently large T, it is well known that Equation A7 implies that the conditional probability distribution becomes

uniform (Fisher 1930), regardless of the initial allele frequency, so that its mean should be well approximated by

EsN
�
x21� ¼ EsN

n
ð12xÞ21

o
� lnð2NÞ þ g: (A11)

As was pointed out by Fisher (1930), there is a slight departure of the asymptotic distribution from a uniform distribution, due
to the inaccuracy of the diffusion approximation near the frequencies 0 and 1, with lower frequencies in the subterminal classes
close to either boundary, although the distribution is still symmetrical about 0.5. Using the table of exact values computed by
Fisher for the first 10 classes from 1/(2N) upward and from 1 – 1/(2N) downward, the asymptotic conditional means are
slightly greater than the above value, by 2.299 – [2.6556 3 2N/(2N – 1)]. Addition of this term to Equation A11 provides
a slightly more accurate approximation for the long-term expectation of the reciprocals of the allele frequencies, which was
used to calculate the asymptotic expected selection coefficients.
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Supplementary Information 

 

S1. Recursion relations derived from the linear diffusion operator 
 
Here we derive recursion equations that take into account the effects of selection on 

the allele frequencies at both loci, and on linkage disequilibrium. To obtain a closed 

set of equations, we assume that third- and higher-order terms involving the deviation 

of q from its deterministic equilibrium value q*, given by Equation 5a, can be ignored 

With this assumption, any differentiable function of q, fk(q) can be approximated by 

the first three terms in its Taylor series expansion around	  q*: ak + bk (q– q*) + ck (q – 

q*)2, with ak
 = fk(q*), bk

 = (dfk/dq)q* and ck = (d2fk/dq2)q*/2.  

 Collecting terms in q, this yields the second-degree approximation for fk(q):  

                                                            

                                                                )1S()( 2qqqf kkkk γβα ++≈  

 

where αk = ak – bk q*+ ck q*2, βk = bk q* – 2ck q*2 and γk = ck. Explicit formulae for 

these coefficients of the powers of q in the functions used here are listed at the end of 

this section. 
 The linear diffusion operator method of Kimura and Ohta (1969) then enables 

the change per generation in the expectation of fk to be found. In general, fk is a 

function of n variables, zi (i = 1, … , n). The change per generation in the expectation 

of fk,  ΔE{ fk}, requires knowledge of the deterministic change per generation in zi, Mi, 

the variance of zi induced by drift over one generation, Vi , and the corresponding drift 

covariance between zi and zj, Cij. We then have: 

 

    

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Equation S2 yields expression for the changes per generation in the 

expectations of a set of arbitrary functions fk of the allele frequencies at the two loci 

ΔE{ fk} = E{
i=1

n

∑ [Mi
∂fk
∂zi

+
1

2
Vi
∂2 fk
∂zi

2 ]+ Cij
∂2 fk
∂zi∂zji≠ j

∑ } (S2)
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and linkage disequilibrium between them, using the first and second partial 

derivatives of the fk with respect to the variables z1 = y, z2 = q and z3 = D. Ohta and 

Kimura (1971) provide expressions for the Vi and Cij for use in Equation S2. Since 

there is selection at the B locus, appropriate expressions for the Mi  need to be 

obtained in the present case. 

 Trial and error shows that 9 functions are adequate to describe the system, 

which are as follows: f1 = xy, f2 = xyq, f3 =xyq2, f4 = D(x – y), f5 = D(x – y)q, f6 = D(x – 

y)q2,  f7  = D2, f8 = D2q and f9 = D2q2. Among these 9 functions, f2 – f3 , f4 – 2f5 and f7 

are equal to xypq, D(x – y)(p – q) and D2, respectively, which correspond to the 

functions previously analysed for the neutral case (Ohta and Kimura 1971).  

 We now consider a vector Y, whose kth element is equal to E{fk}. In order to 

obtain closed expressions, it is necessary in many cases to use second-degree 

approximations for the products of the Mi and the first derivatives of the fk, and for the 

products of the Cij or Vi and the second derivatives of the fk, in Equation S2, as in 

Equation S1. In order to obtain expressions for the Mi, it is useful to note that the 

deterministic change in D caused by selection (ignoring second-order terms in s) is 

given by: 

            ΔsD ≈ (1− 2q)p−1q−1DΔsq = (2q−1)Da(q) (S3a)  

 

where the subscript s indicates the component of change due to selection and a(q) is 

the additive effect of allele B1 on fitness (c.f. Equation 10 of the main text): 

 

                             a(q) = s[(1− 2h)q+ h] (S3b)  
 

see, for example, Charlesworth and Charlesworth (2010, p.410).  

 The change in the frequency of A2 due to selection at the B locus is given to 

the same order of approximation by: 

 

                                             
Δsy ≈ −D a(q) (S3c)
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Αpplication of these results yields the following expressions for the non-zero 

elements of the 9 x 9 matrix R, such that Yt = RYt – 1: 
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Coefficients used for obtaining the recursion relation for Y 
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Application of these results yields the following expressions for the 26 polynomial 

functions of q used to obtain Equation S4, and whose coefficients do not involve 

terms in 1/N. However, some of them have same form; after simplification, there are 

11 polynomials in q whose coefficients are needed for calculating the 9 x 9 matrix R. 

These are as follows: 
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P1 is present in Equations S4a and S4d, and is generated by E{Δsy}. P1 is a linear 

function, so that we have: 

 

)a6S(,0),21(, 111 =−−=−= γβα hssh 	  

 



	  
	  
	  
	  
	  
	  

5	  

P2 is present in Equations S4b, S4e and S4h, and is generated by E{Δsq}. Because q* 

is the equilibrium point, we have: 
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P3 is present in Equations S4b and S4e, and is generated by terms like E{qΔsy}. We 

have: 

 

	  	  	   )c6S(,)21(,,0 333 hssh −−=−== γβα 	  
 

P4 is present in Equations S4c, S4f and S4i, and is generated by the terms E{qΔsq}. 

We have: 
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P5 is present in Equations S4c and S4f, and is generated by the terms like E{q2Δsq}. 

We have: 
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P6 is present in Equations S4d and S4g, and is generated by E{(1–2q)Δsy} or E{ΔsD}. 

Since it is a quadratic expression, it is unnecessary to use a Taylor’s series 

approximation, and we have: 
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P7 is present in Equations S4e and S4h, and is generated by terms like E{qΔsD}. We 

have: 
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P8 is present in Equations S4f and S4i, and is generated by terms like E{q2ΔsD}. We 

have: 
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P9 is present in Equation S4h, while P10 and P11 are present in Equation S4i. 

Compared with other polynomials, they are generated by drift rather than selection. P9 

comes from the term E{q δD2}; similarly to P10 and P11, it comes from the term 

E{q2 δD2}, where δ denotes changes due to drift. We thus have: 
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Equations S6i-k yield:	  
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S2. Equilibrium properties of the neutral locus with mutational flux 
  
The above results provide a description of the transient behaviour of the system. It is 

also of interest to examine its properties under statistical equilibrium at both the 

neutral and selected loci. This can be done by introducing reversible mutation at the 

neutral locus, A. The only difference from the transient model is that the neutral 

alleles mutate at rates µ (A1 to A2) and ν (A2 to A1), respectively.  

The derivation is greatly simplified by assuming the infinite sites model 

(Kimura 1971), under which the mutation rates are so low that new mutations arise 

only when the A locus is fixed for an allele. Let f1 and f2 be the probability that sites 

are fixed for A1 or A2, respectively, so that 2Nf1µ and 2Nf2ν are the mean numbers of 

mutants entering the population from sites fixed for A1 or A2, respectively. At 

statistical equilibrium under drift and mutation (Charlesworth and Charlesworth 2010, 

p.274), we have: 

    
 

  

Let fn be the proportion of non-segregating sites, which is close to 1 under the 

infinite sites assumption. We then have 

 
 

 

The expected changes per generation in xy and D due to new variability arising at 

non-segregating sites are then as follows: 
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Because of Equations S8a, S8b, and S8c, and because D = 0 when x = 0 and 1, only 

the expressions for changes in Y1, Y2 and Y3 involve mutational flux terms. These are 

as follows: 

 

 
 
 
Equations S9 imply that the change in Y with mutational flux at the neutral locus can 

represented by the matrix R that described the case with no neutral mutational flux, 

with the addition of a 9 x 1 column vector U: 

 

                                                                    
Yt =Yt−1 +Ut−1 (S10a)

 
where  
 

               Ut = µ(1, E{qt},E{qt
2}, 0, 0,... , 0)T (S10b)  

 
and the superscript T indicates transposition of a row vector into a column vector. 

 The recursion relations for E{q} and E{q2}are completely independent of that 

for Y, and can be written as follows: 

 

                                                        Qt = TQt−1 +V (S12a)  
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                                                   Qt = (E{q}, E{q
2})T (S12b)  

with 

        
T11 =1+β2, T12 = γ2, T21 = 2β4 +

1
2N

, T22 =1+ 2γ4 −
1
2N

(S12c)  

and 
     
                                  V = (α2, 2α4 ) (S12d)                                                       
   
 
The equilibrium value of Q, Qeq = (E{q}eq , E{q2}eq)T, is given by: 
 
 

                                                         
Qeq = −(T− I)

−1V (S13)
 

 
and the equilibrium value of Y with mutational flux at the neutral A locus, Yeq, is 

given by: 

                                               

                
Yeq = −W

−1Ueq = − µW
−1(1, E{q}eq, E{q

2}eq, 0, 0, .., 0)
T (S14)

 
 
where W = I – R. 

Now consider the process of change of Y in the absence of mutational flux, 

which can be written as ΔY = WY, so that W-1 ΔY = Y. Assume, without loss of 

generality for studying the relation of this process to Yeq with neutral mutational flux, 

that the distribution of q has reached its equilibrium value. We can thus write: 

   

)a14S(})E{,..},({E,}{E,}{E},E{( 2
eq

2
eq

11 TDyxDxyqxyqxy Δ−ΔΔΔΔ=Δ −− WYW
 

 

                                                              

)b14S()E{,..},({E,}{E,}{E},E{( 2
eq

2
eq

TDyxDxyqxyqxy −== Y

                                                                                                    

where the subscript eq denotes equilibrium with respect to the distribution of q. 

We can multiply both sides of Equation S13 by ΔΕ{xy}/ΔΕ{xy}, leaving the 

left-hand side unchanged, where the expectations can be taken at any arbitrary time in 

(S11b) 

(S11c) 

(S11d) 

(S12) 

(S13) 
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the process of change in Y in the absence of mutational flux at the neutral locus. This 

yields: 

 

Yeq = − µW
−1ΔE{xy}−1(ΔE{xy}, ΔE{xy}E{q}eq, ΔE{xy}E{q

2}eq, 0, 0, .. , 0)
T (S16a)  

 

  The first component of the vector on the right-hand side of this equation is 

identical to the first component of the vector on the right-hand side of Equation S14a. 

If the distributions of x and q are approximately independent, there is an approximate 

correspondence for the second two components of these vectors as well. Since the 

terms in Y involving E{D(x – y)}, E{D(x – y)q} and E{D(x – y)q2} are all likely to be 

small, there will be a similar relation for these components as well. Important 

inaccuracies will only arise for the last three terms in the vector, involving E{D2}, 

E{D2q} and E{D2q2}.   

Using Equation S14b, we can thus write: 

                 
)b15S(})E{,..,}{E,}{E},{E(}{E~ 22

eq
2

eq
1

eq
TqDxyqxyqxyxy −Δ−≈ µY  

Since ΔΕ{xy} involves the process without any neutral mutational flux, the 

asymptotic values of ΔY and ΔΕ{xy}/Ε{xy} for this process can be used in Equations 

S14 and S15, respectively. The second of these quantities is equal to the leading 

eigenvalue λ0 of the W matrix, so that: 

 

)c15S()}{E}E{,..,}{E}{E,}{E}{E,1(~ 1221
eq

21
eq

1
0eq

TxyqDxyxyqxyxyq −−−−−≈ λµY  
  

where the equality of the components of the left-hand and right-hand vectors is exact 

for the first component, E{xy}, and should be a good approximation for all but the last 

three components. E{xy} is the main quantity of interest, since it represents one-half 

of the expected heterozygosity, at the neutral locus 

The use of this asymptotic value implies that the right-hand vector in Equation 

S14b that corresponds (approximately) to the right-hand vector in Equation S15c is 

the leading right eigenvector of W.  

This establishes that H = 2E{xy} at equilibrium is given by:  

(S15a) 
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                                                         Heq = −2λ0
−1 µ (S17)  

 

so that the rate of decay of heterozygosity in the absence of neutral mutational flux is 

determined by the same parameter that controls its equilibrium value with mutational 

flux. It therefore reasonable to define the effective population size by Ne = – 1/(2λ0); 

in the absence of selection, this is equal to 2N, since λ0 is then equal to –1/(2N). 

 

Leading eigenvalue approximation 
Previous work on background selection showed that the effective population size that 

determines the equilibrium level of neutral variability under the infinite sites model 

can be approximated as follows when S = 2Ns >>1, hs << 1 and q* << 1 

(Charlesworth and Charlesworth 2010, p.402):  

 

     
           

 

From the argument given above, this suggests that the leading eigenvalue of the W 

matrix in this case should be given by 
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 In contrast, no analytic results seems to be available for the case when S =2Ns 

<< 1. 

 Here, we will try to calculate the rate of loss of heterozygosity for both 

limiting cases in the context of the 9 x 9 matrix W = R - I, by obtaining 

approximations for the leading eigenvalue of W. In particular, we will establish the 

result that when S >> 1, and h ≠ 0, background selection dominates the process and 
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(S17a) 

(S17b) 
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causes a faster rate of loss of heterozygosity; in contrast, when S < 1 and h ≤ 0.5, 

associative overdominance is dominant, causing a retardation in the rate of loss of 

heterozygosity. 

 The results generated here are based on the assumption that the ratio u/(hs) << 

1 when 2Ns becomes large, so that we can replace q* by u/(hs) in W. To facilitate the 

derivation, we divide the original W matrix by s. For simplicity, in what follows we 

still use W to denote the new matrix. We replace N by 1/(2sy) so that 2Ns 

approaching infinity is equivalent to y approaching 0. The determinant used in the 

characteristic equation, det(λI – W), can then be treated as a function of λ and y, 

namely, f(λ, y). It is easily seen that λ0 = 0 is the leading eigenvalue of W when y = 0, 

i.e., f(0, 0) = 0. By the implicit function theorem, the relationship between λ0 and y can 

be written as follows: 
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The result in Equation S18 was calculated by MATLAB’s symbolic calculation 

application (http://cn.mathworks.com/help/symbolic/performing-symbolic-

computations.html), using a Taylor’s series expansion that gave an expression that is 

accurate to the first order in u. It shows that, when Ns is sufficiently large, the leading 

eigenvalue of the original matrix W has the same form as in Equation S17b, which is 

equivalent to the standard equation for background selection. It also implies that, 

given the assumptions made above, if h takes any value between 0 and 0.5 other than 

0, the leading eigenvalue of R is always smaller than the neutral rate of loss of 

heterozygosity per generation, –1/(2N), reflecting the action of background selection. 

	  

S3. Parallel results for heterozygote advantage 
 
As mentioned in the main text, the matrix method presented above for the case of 

mutation and selection can also be applied to the case of heterozygote advantage. 

Here we give a brief sketch of the relevant results. We retain all the previous 

(S18) 
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assumptions except for the following. 1. The relative fitnesses of genotypes B1B1, 

B1B2 and B2B2 become 1– s, 1 and 1 – t, respectively. 2.There is no mutation between 

B1 and B2.  

 The change in frequency of B2 due to selection becomes:  

	  

	   	   	   	   	  	  Δselq = −pqa(q) (S20)  
 

with the additive effect of allele B1 on fitness that corresponding to Equation 10 of the 

main text being replaced with: 

 

                                a(q) = [(s + t)q – s]                      (S20) 

	   	   	   	   	  	  	  	  	  	  	  	    

The equilibrium frequency of B2 under selection in an infinite population is: 

 

                                        ( ) )12S(/* tssq +=  
 

Equations S4 and Equations S5, which define the 9 x 9 matrix R, are written in a 

general way. If we apply Equation S20 and S21 to these, we get a matrix R for the 

case of heterozygote advantage and the corresponding version of Equations S6 is then 

given by:	  	  
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(S22a) 
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Leading eigenvalue approximation 

With heterozygote advantage, we assume that 1 << C << S, T, where S and T are the 

scaled selection coefficients, where S = 2Ns, T = 2Nt (keeping the ratio S/T fixed); 

and C is the scaled recombination rate, C = 2Nc. This is useful for comparison with 

the standard results from coalescent theory, which are based on the assumption that 

selection is so strong that the allele frequencies at the B locus are permanently at their 

equilibrium values (Nordborg 1997). The leading eigenvalue of W can then be 

approximated in the similar way as for the directional selection case with 2Ns >> 1.  

 Since S/T is fixed, we replace t by (1-q*)s/q*, and then divide the matrix W	  by 

s. Using the implicit function theorem, we again calculate the Taylor’s series 

expansion for the leading eigenvalue of the new matrix, to the second order in 1/S. 

We revert to the original W by multiplying the eigenvalue by s, and obtain the 

expression: 
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Equation S23 indicates that if 1 << C << S, T, we have Ne ≈ N[1+1/(2C)], which 

agrees with the result from coalescent theory when C >> 1 (Nordborg 1997): 

	  
( ) )42S(

2
11

**21
****

2
**41

2

⎟
⎠

⎞
⎜
⎝

⎛ +≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

++=
C

N
Cqp
qpqp

C
qpNNe 	  

 

Approximate expressions for calculating ΔHsel 

We have: 
  
	  	  	  	  	  	  	  	  	  	  	  Y4 = (b2a12 − b1a22 ) / det Y5 = (b1a21 − b2 ) / det (S26a)  
	  	  	  	   	   	   	   	   	   	  	   	   	  	    
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  det = a22 − a12a21 (S26b)  
      
                                                                                                                               
where the a and b coefficients are given by Equations 21 of the main text (note that 
a11 =1). 
 

S4. Proof that E{Dqi} is zero if D is initially zero 
 

If D is initially zero, the terms in the series E{Dqi} for i = 0, 1, 2, … are also zero 

initially. Assume that E{Dqi} for i = 0, 1, 2, … is zero at an arbitrary generation t (t ≥ 

0), and consider the changes in E{Dqi} for this generation. Consider first the change 

in E{D}. Only the effect of selection needs to be taken into account in this case, since 

drift, mutation and recombination have no effect on E{D} when E{D} = 0. Using 

(S24) 

(S25a) 

(S25b) 
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Equation B8.7.1 of Charlesworth and Charlesworth (2010, p.410), we have D = pq(y2 

– y1), where yi is the frequency of A2 among the haplotypes carrying allele Bi at the 

selected locus. Selection has no effect on y2 – y1, so that the change in this expectation 

for the initial generation due to selection is: 

 

ΔselE D{ }= E Δsel pq y2 − y1( )#$ %&{ }= E y2 − y1( ) 1− 2q( )Δselq{ }= E Dg q( ){ } (S26)  

 

where g(q) is a quadratic in q, whose coefficients are functions of s and h.  

 Using the assumption that E{Dqi} = 0 in generation t, Δsel E{D} = 0, so that 

E{D} = 0 in generation t + 1.  

 This argument can be extended to arbitrary values of i in E{Dqi}, where 

changes due to drift need to be taken into account. Denoting changes due to drift by δ, 

noting that both Δsel E{qi} and E{δ(qi)} are the expectations of polynomials in q, and 

using the fact that E{(δD)δ(qi)} = E{iDqi –1 (1 – 2q)/(2N)} (neglecting second-order 

terms in 1/2N), a similar argument to the above shows that E{Dqi} = 0 for i = 0, 1, 2, 

… in generation t + 1. Thus, E{Dqi} is zero for all generations if D is initially zero. 

 We can similarly establish the relations between Y5 and Y7, and Y5 and Y7, used 

in the main text to obtain Equations 15. Assume neutrality of both loci and q* = 0.5. 

By symmetry of the distribution around q*, we have: 

 

	  	  	  	  	  	  	  

  

 

S5. Testing for additivity of effects of two selected loci on Ne/N 
	  

In order to check whether the effects of multiple selected loci have on AOD or BGS 

are additive or approximately multiplicative (given the fact that the effects are rather 

small), we introduce a parameter r, defined as follows: 

 

Y5 −Y6 = E D x − y( ) q− q2( ){ }= E D x − y( ) pq{ }= 0 (S28a)

Y7 − 2Y8 = E D2 1− 2q( ){ }= E D2 p− q( ){ }= −E D2 q− p( ){ }= 0 (S28b)

(S27a) 

(S27b) 
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	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   r = [Ne
(2) / N −1]

[Ne
(1) / N −1]

(S29) 	  

	  	  	  

where Ne with index 2 represents the estimated effective population size for the two 

selected loci case, while Ne with index 1 represents the effective population size for 

the corresponding single selected locus case. The effective population sizes for the 

two selected loci and for one selected locus are both estimated from simulation data 

(2 selected loci case) or matrix results (1 locus case), obtained over successive 

intervals of 5 generations. 

 If the estimated r is close to 2, then the effects are additive/multiplicative, 

while if the estimated r is significantly > 2 (< 2), the effects are super-additive (sub-

additive). 

 Figure A displays an example. 

  

 

 
Figure A Estimates of the r statistic every 5 generations from 
generation 50 to generation 100, for the case of mutation and 
selection. N = 50 and S = 1 for both selected loci in both 
panels, with q* = 0.3. Both panels show two r trajectories with 
the dominance coefficient h = 0.1 (AOD prevails over BGS) and 
h = 0.45 (BGS prevails over AOD). The 2 selected loci case in 

(S28) 
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Panel A has a crossover rate for adjacent selected loci, c2, of 
0.001; the crossover rate between the selected locus and the 
neutral locus in the single selected locus case is 0.5c2, namely 
c1 = 0.0005. In Panel B, we have c2 = 0.002 and c1 = 0.001. 

 

S6. Approximate apparent selection coefficients with multiple selected 
loci 
 

We assume that E{r2} in Equations 4 can be approximated by the neutral value of σ2
d. 

In addition, we assume that time is sufficiently advanced that σ2
d is approximately 

equal to its neutral equilibrium value (Ohta and Kimura 1971, Equation 9), which can 

be written as σ2
d =  (5 + C)/[(11 + 2C)(1 + C)], which in turn is approximated by σ2

d 

= 1/[2(1+C)]. This procedure is somewhat conservative, since the simulations suggest 

that σ2
d underestimates E{r2}. On the other hand, the correlation between the 

heterozygosities at the two loci means that E{pqx–1r2} in Equations 3 is overestimated 

by E{pq}E{x–1}E{r2}, so that the two sources of error work in opposite directions.  

 We further assume that there are n loci subject to mutation and selection, and 

denote the scaled recombination fraction between the ith selected locus and the 

neutral locus by Ci. If the inbred load for each locus is B, and if the effects of different 

loci on the apparent selection coefficients are approximately additive, we have: 
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where B = s(1 – 2h)E{pq} is the inbred load at each selected locus for the generation 

in question. If there is variation among sites in the s values for new mutation, as is 

suggested by population genomic analyses (Charlesworth 2015), but this is 

independent of map location, B can be replaced by the mean load per locus, assuming 

that E{spq} can be approximated by E{s}E{pq}.  
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 The rate of loss of variability at a selected locus will be faster with stronger 

selection (see the Appendix to the main text), by an amount of order s. There will thus 

be a negative correlation between s and pq, so that the results based on this 

assumption will overestimate the selection coefficients with a relative error of order 

s2. With weak selection, this error can be neglected. 

 Following Ohta (1971), we can replace summation by integration, provided 

that n is large, as is true for a typical eukaryote chromosome. Assume that a 

proportion P of the chromosome is to the left of the neutral locus, and a proportion Q 

= 1 – P is to the right, and that the map length of the chromosome in Morgans is M. 

The upper limit to C with a linear map (which overestimates the true value when there 

is crossover interference) is then C* = 2NM. With a uniform rate of recombination 

along the chromosome, the sum of a function of C is approximated by the product of 

n/(NM) and its integral with respect to C. Let Btot = nB be the total inbred load for the 

chromosome. Assuming a linear map, we obtain:  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
s ≈ Btot E{x

−1}
2C *

[ dC
(1+Ci )0

PC*

∫ +
dC

(1+Ci )0

QC*

∫ ]
=
Btot E{x

−1}ln[(1+PC*)(1+QC*)]
2C *

(S30a)
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

t ≈ Btot E{(1− x)
−1}

2C *
[ dC

(1+Ci )0

PC*

∫ +
dC

(1+Ci )0

QC*

∫ ]
=
Btot E{(1− x)

−1}ln[(1+PC*)(1+QC*)]
2C *

(S30b)
 

	  

 

	  	  	  
These equations can be integrated over P from 0 to 1, yielding the expressions: 
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S7. Approximate symptotic Ne with multiple loci 
 

We again assume that E{D2} can be approximated by E{xy}E{pq}σ2
d = H 

E{pq}σ2
d/2, and that σ2

d =  (5 + C)/[(11 + 2C)(1 + C)], for a given value of the scaled 

recombination rate C. Using the same assumptions as for the analysis of the apparent 

selection coefficients, and assuming that the effects of different loci on ε are 

approximately additive, Equation 19 implies that: 

 

)a32S(
)5(

})1(2)]1(21[5}{{E4
)1)(211(

1 }{ 2

1 i

i
n

i C
ChhhhpqSNB

iCiC +

−+−−
−

++
≈∑

=

ε  

 

If there is variation in s among loci, but this is independent of map location, B can be 

replaced by its mean value, and the expectation of pqS2 by the expectation of 2NBS/(1 

– 2h), provided that h ≠ ½. If h is has a fixed value, as is plausible for mutations with 

small effects on fitness, and if pq is independent of S (see previous section), we have: 

	  

)b32S(
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2 }{ 2
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iCiC
BN

+−

−+−−+
−

++
≈ ∑

=

ε

 

where CVs is the coefficient of variation of s for new mutations with small effects on 

fitness.  

 Using the same procedure as for the apparent selection coefficients, we can 

replace summation over loci by integration. The quantity 1/[(11 + 2Ci)(1+Ci)] can be 

written as: 
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9
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The integral that replaces the sum in the first part of the right-hand side of Equation 

S32b is thus: 
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which gives: 
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 The second part of the right-hand side of Equation S32b requires evaluation of 

the following indefinite integral: 
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Using standard formulae for integrals, the net contribution of this term to ε = Ne/N – 1 

is: 
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These expressions can be integrated from P = 0 to P = 1, to obtain the net effect for a 

randomly located neutral marker. Using the standard form for the integral of ln(x), we 

obtain the expressions: 

 



	  
	  
	  
	  
	  
	  

22	  

[ ]

)a35S(

)11ln(]11*2[*)211ln(*)211(*)1ln(*)1(2
*9

4

)11ln(*)211(d*)211ln(
*2
1*)1(d*)1ln(

*
1

9
8

)11ln(d*)211ln(d*)1ln(
9
8

d)11ln(2
*)211*)(211(

*)1*)(1(ln
9
4d

*211

11

*1

1

1

0

1

0

1

0

1

0
11 }][{

++++−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−++=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−+=

+
++

++
==

∫∫

∫∫

∫∫

++

CCCCC
MC
B

PCPC
C

PCPC
CM

B

PPCPPC
M
B

P
QCPC

QCPC
M
BPII

tot

PCPC
tot

tot

tot

 

[ ]

( )[ ]
( )[ ]

( )[ ]
( )[ ] )b35S(})11ln(11*2*)211ln(*)211()]1(8420[

)5ln(5**)5ln(*)5(]45)1(180[

*)1ln(*)1)](1(125{[
*)21(9
)1(

})11ln(11*2*2*)211ln(*)211()]1(8420[
)5ln(5***)5ln(*)5(]45)1(180[

**)1ln(*)1()]1(125{[
*)21(9
)1(

)}5ln(])1([90)11ln()]1(215[4d*)211ln()]1(215[4

d*)5ln(])1([90d*)1ln()]1(3[2{
)21(9

)1(2d

2

2

4
1

1

0

1

0
4
1

1

0
4
5

21

0
22

+−++−−+

+−++−−+

++−−
−

+
−=

+−−++−−+

+−−++−−+

−++−−
−

+
−=

−−−−−−+−−+

+−−++−−
−

+
−==

∫

∫∫∫

CCChh
CCChh

CChh
MCh
CVSB

CCCChh
CCCChh

CCChh
MCh
CVSB

hhhhPPChh

PPChhPPChh
Mh
CVSBPII

stot

stot

stot

 

 
 
 
 
 



	  
	  
	  
	  
	  
	  

23	  

S8. Variance of heterozygosity at a neutral locus 
 

As before, we assume an initial frequency x0 of A1 at the start of the period of 

maintenance of the population at a small size N. Under the diffusion approximation, 

the expected frequency of heterozygotes, H =2E{xy}, after t generations is given by: 

 

                                                   
H = 2x0y0 exp(−t / 2N ) (S37)

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
  

The variance of the frequency of heterozygotes, VH, is given by:  

 

                             

where 

               E{x
2y2} = E{x2 − 2x3 + x4} =Vx + x0

2 − 2E{x3}+E{x4} (S38b)

                     
 

Crow and Kimura (1970, p.336)	  give expressions for the higher moments of x about 

zero at time t that apply to the diffusion equation approximation:
  

             
E{x3} = x0 −

3

2
x0y0 exp(−t / 2N )−

1

2
x0y0 (x0 − y0 )exp(−3t / 2N ) (S39a)

         	  

                      

E{x4} = x0 −
9

5
x0y0 exp(−t / 2N )− x0y0 (x0 − y0 )exp(−3t / 2N )

−
1

5
x0y0 (5x0

2 − 5x0 +1)exp(−3t / N ) (S39b)  

Substitution of these expressions into Equations S37 provides an expression for the 

variance of the heterozygosity at a given time t:  

 

VH =
2H0

5
[exp(−t / 2N )− exp(−3t / 2N )]+H0

2[exp(−3t / 2N )− exp(−t / N )] (S40)
 

This is equivalent to the result obtained by Avery and Hill (1977) 

VH = 4E{x
2y2}−H 2 (S38a)

(S36) 

(S37a) 

(S38a) 

(S38b) 

(S39) 
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S9.  Supplementary tables 
 
Table A     Simulation and theoretical results for one locus subject to  
                  mutation to deleterious alleles 
     
a Approximation using  neutral r2 recursion; b Approximation using neutral σ2

d 
recursion; cApproximation using matrix recursion with selection; d Expectation 
from neutral simulations.  
 
Standard errors for 107 simulations are shown in parentheses. 
 
2Ns = 1, 2Nu = 0.1, 2Nv = 0.01, qeq = 0.296, N = 50 
 
h = 0.1, x0 = 0.5 
  
                           Generation 0.5N                                 Generation 2N 
              

          2N s            2N t          Hrel             Ps               2N s         2N t            Hrel       Ps 
 

 

C = 0        
0.068  
(0.00003)  

0.085a 

0.153b 
0.088 c 

0.068  
(0.00003)  
0.085 a 
0.153b 
0.088 c 

1.0004 
(0.0001) 
 1.0004c 
 

0.9843  
(0.00004) 
 0.9841 
(0.00004)d  

0.134  
(0.00009) 

0.263 a 
0.185 b 

0.190c 
 

0.134 
(0.00009) 
0.263 a 
0.185 b 

0.190c 
 

1.0082 
(0.0003) 

1.0083c 

0.5403  
(0.0002)0.
5375  

(0.0002)d 

  

 
C = 0.1        
0.067  
(0.00003) 

0.083 a 
0.141b 

0.066 c 

0.067  
(0.00003)  

0.083 a 
0.141b 

0.066 c 

1.0002 
(0.0001)  
1.0004c 

0.9842 
(0.00004)  
 

0.124 
(0.00008)  

0.173a 
0.230b 

0.344c 
 

0.124  
(0.00008)  

0.174 a 
0.230 b 

0.344c 
 

1.0076 
(0.0003)  
1.0078c 
 

0.5399  
(0.0002)  
 

C = 1        
0.055  
(0.00003)  

0.068 a 
0.084b 

0.070 c 

0.055  
(0.00003)  

0.068 a 
0.084 b 

0.070 c 

1.0004 
(0.0001)  

1.0003c 
 

0.9843  
(0.0004)  
 

0.071  
(0.00006)  

0.139 a 
0.102b 

0.146c 
 

0.071  
(0.00006) 

0.139 a 
0.102 b 

0.146c 
 

1.0050 
(0.0003)  

1.0048c 
 

0.5390  
(0.0002)  
 

C = 10        
0.018  
(0.00001)  

0.019 a 
0.017b 

0.018 c 

0.018  
(0.00001)  

0.019 a 
0.017 b 

0.018 c 

1.0000 
(0.0001)  

1.0001c 

0.9842 
(0.0004)  
 

0.014  
(0.00002)  
0.023 a 
0.021b 

0.022c 
 

0.014  
(0.00002) 

0.023 a 
0.021 b 

0.022c 
 

1.0001 
(0.0003)  

1.0005c 
 

0.5370  
(0.0002)    
 



	  
	  
	  
	  
	  
	  

25	  

h = 0.1, x0 = 0.1 
 
 Generation 0.5N                                 Generation 2N 
              

      2N s            2N t          Hrel             Ps               2N s         2N t            Hrel       Ps 
 

 
 

 

  

C = 0        
0.150  
(0.00007)  

0.389a 

0.701b 
0.404 c 

0.030  
(0.00002)  
0.070 a 
0.126b 
0.075 c 

1.0007 
(0.0004)  
1.0004c 

0.5534  
(0.0002)  
0.5536 
(0.0002)d 
 

0.157  
(0.00015)  

0.357 a 
0.252 b 

0.374 c 

0.113  
(0.00013) 

0.182 a 
0.129 b 

0.192 c 

1.0090  
(0.0007) 

1.0083c 

 0.1967 
(0.0001) 
 0.1956 
(0.0001)d  
 

C = 0.1        
0.147 
(0.00008) 

0.380 a 
0.648b 

0.394 c 

0.030  
(0.00002)  

0.068 a 
0.116 b 

0.071 c 

1.0008 
(0.0004)  
1.0004c 

0.5531  
(0.0002)  
 

0.145  
(0.00015)  

0.331 a 
0.233b 

0.348 c 

0.105  
(0.00012)  

0.169 a 
0.119 b 

0.178 c 

1.0072  
(0.0007)  
1.0078c 

0.1964  
(0.0001) 
 

C = 1        
0.127  
(0.00007)  

0.311 a 
0.388b 

0.322 c 

0.025  
(0.00002)  

0.056 a 
0.070b 

0.058 c 

0.9999 
(0.0004)  

1.0003c 

0.5531  
(0.0002)  
 

0.085 
(0.00011)  

0.188 a 
0.139 b 

0.199 c 

0.058  
(0.00008) 

0.096a 
0.007 b 

0.010 c 

1.0052 
(0.0007)  

1.0048c 

0.1958  
(0.0001)  
 

C = 10        
0.053  
(0.00004)  

0.086 a 

0.080b 

0.087 c 

0.008  
(0.00001)  

0.015 a 
0.014b 

0.015 c  

1.0000 
(0.0004)  

1.0001c 

0.5532  
(0.0002)  
 

0.018  
(0.00004)  
0.031 a 
0.029 b 

0.032 c 

0.011  
(0.00002) 

0.016 a 
0.015 b 

0.016 c 

1.0001  
(0.0007)  

1.0005c 

0.1956 
(0.0001)  
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h = 0.45, x0 = 0.5 
 
 Generation 0.5N                                 Generation 2N 
              

          2N s            2N t          Hrel             Ps               2N s         2N t        Hrel       Ps 
 
  

C = 0        
0.008  
(0.00001)  

0.011a 

0.018b 
0.011 c 

0.008  
(0.00001)  
0.011 a 
0.018b 
0.011 c 

0.9999 
(0.0001)  
0.9999 c 

0.9841  
(0.00004)  
0.9841 
(0.00004)d  

0.016 
(0.00001)  
0.031 a 
0.022b 

0.034 c 

0.016 
(0.00001) 
0.031 a 
0.022 b 

0.034 c   

0.9976        
(0.0003) 

0.9974 c 

0.5360  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.008  
(0.00001) 

0.010 a 
0.016b 

0.011 c 

0.008  
(0.00001)  

0.010 a 
0.016 b 

0.011 c 

0.9999 
(0.0001)  
0.9999 c  

0.9842 
(0.00004)  

 

0.014  
(0.00001)  

0.028 a 
0.020b 

0.031 c 

0.014 
(0.00001)  

0.028 a 
0.020 b 

0.031 c 

0.9978  
(0.0003)  
0.9976 c 

0.5361  
(0.0002) 
 

C = 1        
0.007  
(0.00001)  
0.008 a 
0.010b 

0.009 c 

0.007 
(0.00001)  

0.008 a 
0.010 b 

0.009 c 

0.9999 
(0.0001)  

0.9999 c 

0.9841  
(0.0004)  
 

0.009  
(0.00001)  

0.017a 
0.013b 

0.018c 

0.009 
(0.00001) 

0.017 a 
0.013 b 

0.018c 

0.9988  
(0.0003)  

0.9985c 

0.5364  
(0.0002)  
 

C = 10        
0.002  
(0.00001)  

0.002 a 
0.002b 

0.002c 

0.002 
(0.00001)  

0.002 a 
0.002 b 

0.002c 

0.9998 
(0.0001)  

1.0000 c 

0.9842 
(0.0004)  
 

0.002  
(0.00002)  
0.003 a 
0.003b 

0.004 c 

0.002 
(0.00002) 

0.003 a 
0.003 b 

0.004 c 

0.9999  
(0.0003)  

0.9999c 

0.5368  
(0.0002)  
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      h = 0.45, x0 = 0.1 
 
  
 Generation 0.5N                                 Generation 2N 
              

            2N s            2N t          Hrel             Ps               2N s         2N t           Hrel       Ps 

 
 

      
  

C = 0        
0.019  
(0.00001)  

0.049a 

0.083b 
0.051 c 

0.004  
(0.00002)  
0.009a 

0.015b 
0.009 c 

1.0005 
(0.0004)  
0.9999c  

0.5531  
(0.0002)  
0.5536  
(0.0002)d 
 

0.019  
(0.00002)  

0.042 a 
0.030 b 

0.046 c 

0.013 
(0.00002) 

0.021 a 
0.015 b 

0.023 c 

0.9999 
(0.0007) 

0.9974c 

0.1953  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.015  
(0.00001) 
0.038 a 
0.065b 

0.049 c 

0.003  
(0.00002) 

0.007 a 
0.012b 

0.009 c 

0.9995 
(0.0004)  
0.9999c  

0.5534 
(0.0002)  

 

0.015  
(0.00002)  

0.033 a 
0.023b 

0.043 c 

0.010  
(0.00002)  

0.017 

a0.012b 

0.022 c 

0.9975  
(0.0007)  
0.9976c 

0.1951  
(0.0001) 
 

C = 1        
0.016  
(0.00001)  

0.039 a 
0.047b 

0.041 c 

0.003  
(0.00002)  

0.007 a 
0.008b 

0.007 c 

0.9998 
(0.0004)  

0.9999c 

0.5528  
(0.0002)  
 

0.010  
(0.00001)  

0.023 a 
0.017b 

0.025 c 

0.007  
(0.00001) 

0.012 a 
0.009b 

0.010 c 

0.9988  
(0.0007)  

0.9985c 

0.1954  
(0.0001)  
 

C = 10        
0.007  
(0.00001)  

0.010 a 
0.010b 

0.012 c 

0.001  
(0.00001)  

0.001 a 
0.002b 

0.002 c 

0.9997 
(0.0004)  

1.0000c 

0.5531 
(0.0002)  
 

0.002  
(0.00001)  
0.004 a 
0.003b 

0.004 c 

0.001 
(0.00001) 

0.002 a 
0.002b 

0.002 c 

0.9990 
(0.0007)  

0.9999c 

0.1952  
(0.0001)  
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Table B    Simulation and theoretical results for a single locus 
                 with heterozygote advantage 
 
a Approximation using  neutral r2 recursion; b Approximation using neutral σ2

d 
recursion; cApproximation using matrix recursion with selection; d Expectation from 
neutral simulations.  
 
Standard errors for 107 simulations are shown in parentheses. 
 
   2Ns = 0.2, 2Nt = 0.2, qeq = 0.5, N = 50 
 
      x0 =0.5   
  
   Generation 0.5N                                 Generation 2N 
  
     2N s          2N t             Hrel             Ps               2N s          2N t               Hrel             Ps  

 
 
  

C = 0        
0.043  
(0.00002)  

0.051a 

0.105b 
0.053c 

0.043  
(0.00002)  
0.051a 
0.105b 
0.053c 

1.0003 
(0.0001) 
1.0003 c    
 

0.9841  
(0.00004)  
0.9841 
(0.00004)d  

0.091  
(0.00005)  

0.138 a 
0.099 b 

0.142c 
 

0.091 
(0.00005) 
0.138 a 
0.099 b 

0.142c 
 

1.0088 
(0.00035) 

1.0083 c 
 

0.5404  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.042  
(0.00002) 

0.051a 
0.096b 

0.051c 
 

0.042  
(0.00002)  

0.051a 
0.096b 

0.051c 
 

1.0002 
(0.0001)  

1.0003 c 
 

0.9842 
(0.00004)  
 

0.083 
(0.00005)  

0.127a 
0.090b 

0.143c 
 

0.083  
(0.00005)  

0.127a 
0.090 b 

0.143c 
 

1.0078 
(0.00035)  

1.0078 c 
 
 

0.5400  
(0.0002)  
 

C = 1        
0.035  
(0.00002)  

0.041a 
0.054b 

0.043c 
 

0.035  
(0.00002)  

0.041a 
0.054b 

0.043c 
 

1.0002 
(0.0001)  
1.0003 c 

0.9842 
(0.0004)  
 

0.043  
(0.00003)  

0.069 a 
0.051b 

0.077c 

 

0.043  
(0.00003) 

0.069 a 
0.051 b 

0.077c 

 

1.0048 
(0.00035)  

1.0046 c 
 

 

0.5389  
(0.0002)  
 

C = 10        
0.011  
(0.00001)  

0.011a 
0.010b 

0.011c 
 

0.011  
(0.00001)  

0.011a 
0.010 b 

0.011c 
 

1.0001 
(0.0001) 
1.0001 c   

 

0.9842 
(0.0004)  
 

0.007  
(0.00001)  
0.010 a 
0.010b 

0.010 c 
 

0.007  
(0.00001) 

0.010 a 
0.010 b 

0.010 c 
 

1.0004 
(0.00035) 
1.0004 c 
  

 

0.5372  
(0.0002)    
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   x0 =0.1 
 
           Generation 0.5N                                 Generation 2N 

  
           2N s          2N t             Hrel             Ps               2N s          2N t            Hrel             Ps  

 

 
 

 
  

C = 0        
0.094  
(0.00004)  

0.246a 

0.505b 
0.258c 

 

0.019  
(0.00001)  
0.044a 
0.091b 
0.046c 
 

1.0002 
(0.0004)  
1.0003 c    
 

0.5533  
(0.0002)  
0.5536  
(0.0002)d 
 

0.105  
(0.00009)  

0.190a 
0.137b 

0.212c 
 

0.077  
(0.00008) 

0.097a 
0.070b 

0.108c 

1.0082  
(0.0007) 

1.0083 c 
 

0.1966  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.092  
(0.00004) 

0.240 a 
0.459b 

0.251c 
 

0.020  
(0.00001)  

0.043a 
0.082 b 

0.043 c 
 

1.0005 
(0.0004)  

1.0003 c 
 
 

0.5535  
(0.0002)  
 

0.096  
(0.00008)  

0.161a 
0.114b 

0.179a 
 

0.070  
(0.00007)  

0.082a 
0.058b 

0.092c 
 

1.0311 
(0.0007)  
1.0078c 

0.1964  
(0.0001) 
 

C = 1        
0.079  
(0.00004)  

0.200 a 
0.262b 

0.210c 
 

0.016  
(0.00001)  

0.036a 
0.047b 

0.037c 
 

1.0008 
(0.0004)  

1.0003 c 

0.5533  
(0.0002)  
 

0.071 
(0.00006)  

0.091a 

0.066 b 

0.103c 

 

0.035  
(0.00005) 

0.047a 
0.034b 

0.061c 
 

1.0053 
(0.0007)  

1.0046 c 
 

0.1962  
(0.0001)  
 

C = 10        
0.032  
(0.00002)  

0.056a 
0.052b 

0.056c 
 

0.005  
(0.00001)  

0.010a 
0.009b 

0.011c 

1.0004 
(0.0004)  

1.0001 c   

 

0.5532  
(0.0002)  
 

0.008  
(0.00002)  
0.016 a 
0.015 b 

0.016 c 
 

0.005  
(0.00001) 

0.008a 
0.007b 

0.008 c 
 

1.0004  
(0.0007)  

1.0004 c 
 

0.1956 
(0.0001)  
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2Ns = 0.2, 2Nt = 0.1, qeq = 0.667, N = 50 
 
x0 =0.5 
 
                      Generation 0.5N                                 Generation 2N 

  
     2N s          2N t             Hrel             Ps               2N s          2N t            Hrel             Ps  

 

  

C = 0        
0.029  
(0.00001)  

0.034a 

0.070b 

0.036c 

 

0.029  
(0.00001)  
0.034 a 
0.070b 
0.036c 

 

1.0002 
(0.0001) 
1.0002 c    
 

0.9842  
(0.00004)  
0.9841 
(0.00004)d  

0.060 
(0.00004)  
0.089 a 
0.064b 

0.101c 
 

0.060 
(0.00004) 
0.089 a 
0.064 b 

0.101c 
 

1.0048        
(0.0004) 
1.0054 c       
 

 

0.5387  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.028  
(0.00001) 

0.033 a 
0.064b 

0.035c 
 

0.028  
(0.00001)  

0.033 a 
0.064 b 

0.035c 
 

1.0002 
(0.0001) 
1.0002 c    
 

0.9842 
(0.00004)  

 

0.055  
(0.00003)  

0.082 a 
0.058b 

0.093 a 
 

0.055 
(0.00003)  

0.082 a 
0.058 b 

 

1.0043  
(0.0004) 
1.0051 c       
  
 

0.5386  
(0.0002) 
 

C = 1        
0.023  
(0.00001)  
0.027 a 
0.036b 

0.028c 
 

0.023 
(0.00001)  

0.027 a 
0.036 b 

0.028c 
 

1.0001 
(0.0001)  

1.0002 c 

0.9842  
(0.0004)  
 

0.028  
(0.00002)  

0.045a 
0.032b 

0.051a 
 

0.028 
(0.00002) 

0.045 a 
0.032 b 

0.051a 
 

1.0024 
(0.0004) 
1.0030 c       
  

 

0.5380  
(0.0002)  
 

C = 10        
0.007  
(0.00001)  

0.007 a 
0.007b 

0.007 c 
 

0.007 
(0.00001)  

0.007 a 
0.007 b 

0.007 c 
 

1.0001 
(0.0001)  

1.0001 c 

 

0.9842 
(0.0004)  
 

0.004  
(0.00001)  
0.007a 
0.006b 

0.007c 
 

0.004 
(0.00001) 

0.007 a 
0.006 b 

0.007c 
 

1.0007  
(0.0003) 
1.0002 c       
  

 

0.5373  
(0.0002)  
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x0 =0.1 
 
                      Generation 0.5N                                 Generation 2N 

  
     2N s          2N t             Hrel             Ps               2N s          2N t            Hrel             Ps 

 

 

  

C = 0        
0.062  
(0.00003)  

0.165a 

0.034b 
0.171c 

0.013  
(0.00001)  
0.030a 

0.061b 
0.031c 

1.0023 
(0.0004)  
1.0002c  

0.5534  
(0.0002)  
0.5536  
(0.0002)d 
 

0.069  
(0.00006)  

0.121 a 
0.087 b 

0.137 c 

0.051 
(0.00006) 

0.062 a 
0.044 b 

0.070c 

1.0056 
(0.0007) 

1.0054c 

0.1962  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.061  
(0.00003) 
0.161 a 
0.309b 

0.178 c 

0.013  
(0.00001) 

0.029 a 
0.055b 

0.032 c 

1.0024 
(0.0004)  
1.0002c 

0.5531 
(0.0002)  

 

0.063 
(0.00006)  

0.111 a 
0.079b 

0.178 c 

0.046  
(0.00005)  

0.057 a 
0.040b 

0.091c 

1.0198  
(0.0007)  
1.0051c 

0.1961  
(0.0001) 
 

C = 1        
0.053  
(0.00003)  

0.131 a 
0.172b 

0.137 c 

0.010  
(0.00001)  

0.024 a 
0.031b 

0.025 c 

1.0010 
(0.0004)  

1.0002c 

0.5532  
(0.0002)  
 

0.033  
(0.00004)  

0.061 a 
0.044b 

0.070 c 

0.023  
(0.00003) 

0.031 a 
0.023b 

0.035 c 

1.0021  
(0.0007)  

1.0030c 

0.1959  
(0.0001)  
 

C = 10        
0.021  
(0.00001)  

0.035 a 
0.033b 

0.035 c 

0.003  
(0.00001)  

0.006 a 
0.006b 

0.006 c 

1.0000 
(0.0004)  

1.0001c 

0.5531 
(0.0002)  
 

0.006  
(0.00001)  
0.009 a 
0.008b 

0.010 c 

0.003 
(0.00001) 

0.005 a 
0.004b 

0.006 c 

0.9997  
(0.0007)  

1.0002c 

0.1953  
(0.0001)  
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S10.  Further supplementary figures 
 

 

 
 
Figure B  Comparisons of the matrix results (blue dots) and simulation results 
(red dots, with 95% confidence interval error bars) for the heterozygosity at 
the A locus relative to neutral expectation, for the case of mutation and 
selection. S = 1, C = 0.1, N = 50 and q* = 0.06.  
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Figure C   Estimates of Ne/N at the A locus for the case of heterozygote 
advantage obtained from the matrix approximation, as a function of the 
equilibrium frequency of the B2 allele and the scaled strengths of selection 
against homozygotes at the B locus. N = 50 and C = 0.1. 
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