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Proteomics-driven Antigen Discovery for
Development of Vaccines Against Gonorrhea*s

Ryszard A. Zielkeg, Igor H. Wierzbickif, Benjamin |. Baardat, Philip R. Gafkens§,
Olusegun O. Soge"], King K. Holmes(]||, Ann E. Jerse**, Magnus Unemott,

and © Aleksandra E. Sikora1§§

Expanding efforts to develop preventive gonorrhea vac-
cines is critical because of the dire possibility of untreat-
able gonococcal infections. Reverse vaccinology, which
includes genome and proteome mining, has proven very
successful in the discovery of vaccine candidates against
many pathogenic bacteria. However, progress with this
approach for a gonorrhea vaccine remains in its infancy.
Accordingly, we applied a comprehensive proteomic plat-
form—isobaric tagging for absolute quantification cou-
pled with two-dimensional liquid chromatography and
mass spectrometry—to identify potential gonococcal
vaccine antigens. Our previous analyses focused on cell
envelopes and naturally released membrane vesicles de-
rived from four different Neisseria gonorrhoeae strains.
Here, we extended these studies to identify cell envelope
proteins of N. gonorrhoeae that are ubiquitously ex-
pressed and specifically induced by physiologically rele-
vant environmental stimuli: oxygen availability, iron dep-
rivation, and the presence of human serum. Together,
these studies enabled the identification of numerous po-
tential gonorrhea vaccine targets. Initial characterization
of five novel vaccine candidate antigens that were ubiq-
uitously expressed under these different growth condi-
tions demonstrated that homologs of BamA (NGO1801),
LptD (NGO1715), and TamA (NGO1956), and two unchar-
acterized proteins, NGO2054 and NGO2139, were surface
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exposed, secreted via naturally released membrane ves-
icles, and elicited bactericidal antibodies that cross-re-
acted with a panel of temporally and geographically di-
verse isolates. In addition, analysis of polymorphisms at
the nucleotide and amino acid levels showed that these
vaccine candidates are highly conserved among N. gon-
orrhoeae strains. Finally, depletion of BamA caused a loss
of N. gonorrhoeae viability, suggesting it may be an es-
sential target. Together, our data strongly support the use
of proteomics-driven discovery of potential vaccine tar-
gets as a sound approach for identifying promising gono-
coccal antigens. Molecular & Cellular Proteomics 15:
10.1074/mcp.M116.058800, 2338-2355, 2016.

Despite current prevention and management strategies, in-
fections caused by sexually transmitted pathogens affect
hundreds of millions of women and men in both resource-
constrained and developed countries (1). Gonorrhea remains
a leading public health burden with an estimated 78 million
new cases annually worldwide (2). Major challenges in erad-
icating this ancient human disease include increasing multi-
drug-resistance among Neisseria gonorrhoeae strains and the
high incidence of asymptomatic infections that contributes to
the spread of gonorrhea (3, 4). Gonococcal infections often
have devastating sequelae in women including pelvic inflam-
matory disease, ectopic pregnancy, and infertility (5, 6). In
addition, gonorrhea during pregnancy causes chorioamnion-
itis, which can be complicated further by a septic abortion,
premature membrane rupture, and preterm delivery. Infants
born to mothers with cervical gonorrhea have an increased
risk of neonatal gonococcal conjunctivitis, which can lead to
corneal scarring and blindness. In men, untreated urethritis
may evolve into penile edema, urethral stricture and epidid-
ymitis (7, 8). Furthermore, gonorrhea facilitates the transmis-
sion and acquisition of HIV (9). For these reasons, it is critical
to develop effective interventions against gonorrhea. Cur-
rently, strains resistant to the last effective option for empiric
monotherapy—third-generation cephalosporins—are emerg-
ing and clinical treatment failures have been documented in
several countries (4, 10). History indicates that the incremental
development of antibiotic resistance in N. gonorrhoeae inev-
itably continues to challenge antibiotic therapy (4). The World
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Health Organization recently recognized the escalating prob-
lem of the spread of antimicrobial resistance in N. gonor-
rhoeae and highlighted the importance of novel approaches to
identify alternative strategies for the treatment and prevention
of N. gonorrhoeae infections, including a gonorrhea vaccine
(11).

Pioneered by Rappuoli and colleagues, reverse vaccinol-
ogy—which initially included genome and later proteome min-
ing—has proven to be very successful in the discovery of
vaccine candidates against many pathogenic bacteria (12—
15). In particular, these methodologies paved the way for the
newly developed group B meningococcal vaccine, which was
a formidable effort for many years. Among the 28 antigens
that were discovered and that elicited bactericidal antibodies
against group B meningococci in vitro were the Neisserial
heparin-binding antigen (NHBA), factor H-binding protein
(fHbp), and the Neisserial adhesin A (NadA). These three
proteins are formulated as part of the Bexsero meningococcal
group B vaccine approved by the European commission in
2013 and the United States in February of 2015 (12, 15, 16).
Unfortunately, N. gonorrhoeae homologs of these proteins are
not suitable vaccine targets (17). Further, in contrast to me-
ningococcal vaccines, progress on gonococcal vaccines has
been hampered primarily by the absence of a vaccine-tar-
getable surface capsule, exceptional variability of several sur-
face antigens, a poor understanding of protective responses,
and until relatively recently, the lack of a small laboratory
animal model to systematically test potential vaccine candi-
dates (16). However, recent potential breakthroughs—such as
the availability of transgenic mice to alleviate some host re-
strictions, new insights into immunosuppression mechanisms
used by N. gonorrhoeae, and growing evidence that induction
of Th1 response may be critical for vaccine efficacy—justify
re-visiting gonorrhea vaccine development and initiating a
significant focus in this area (16, 18-20).

Currently, ~12 potential gonorrhea vaccine antigens are
being pursued (16). However, this is a very limited repertoire
considering that, during the development of the Bexsero vac-
cine, out of nearly 600 candidates selected by in silico anal-
ysis, 350 recombinant meningococcal proteins were success-
fully expressed in Escherichia coli and evaluated for their
surface exposure and ability to induce bactericidal antibodies
(12). Thus, a comprehensive antigen discovery program
would be exceedingly valuable toward making a gonorrhea
vaccine a reality. We are approaching this goal by applying
proteomics-driven reverse vaccinology. In our previous study,
a quantitative proteome analysis of cell envelopes and natu-
rally released membrane vesicles derived from well-recog-
nized N. gonorrhoeae laboratory strains FA1090, F62, MS11,
and 1291 revealed a myriad of novel proteins, including 21
predicted outer membrane proteins (21). To extend these
studies, herein we report high-throughput profiling of the N.
gonorrhoeae cell envelope to identify ubiquitously and differ-
entially expressed proteins in response to environmental cues

relevant to infection including different oxygen tensions (aer-
obic, anaerobic), iron deprivation, and the presence of normal
human serum. In addition, a subset of five identified proteins
was evaluated for the capacity to induce antibodies that rec-
ognize a collection of diverse clinical isolates and have bac-
tericidal activity against serum resistant and serum sensitive
N. gonorrhoeae strains.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Growth Conditions—The following N. gonor-
rhoeae strains were used in this study: FA1090 (22), MS11 (23), 1291
(24), F62 (25), FA19 (26), the clinical isolates LGB1, LG14, LG20, and
LG26, which were collected from two public health clinics in Balti-
more from 1991 to 1994 and differ in porB variable region type and
pulsed gel electrophoresis patterns (21, 27), 13 isolates from patients
attending the Public Health-Seattle & King County Sexually Transmit-
ted Disease clinic from 2011 to 2013 (supplemental Table S1), and the
WHO 2015 reference strains (10, 28, 29).

N. gonorrhoeae isolates were cultured from frozen stocks stored at
—80 °C onto gonococcal base agar solid medium (GCB', Difco,
Sparks, MD) containing Kellogg’s supplements | (1:100) and Il (1:
1000) (30). After incubation for 18-20 h at 37 °C in a humid, 5% CO,
atmosphere, transparent colonies with piliated or nonpiliated colony
morphologies were sub-cultured onto GCB plates. Piliated N. gonor-
rhoeae variants were used for transformation, whereas nonpiliated
bacteria were used in all other experiments. Following ~18 h of
incubation as described above, bacteria were harvested from the
solid media using a polyester-tipped applicator (Puritan, Guilford,
ME), and suspended to a final ODgg, of 0.1 in gonococcal base liquid
(GCBL) medium containing Kellogg’s supplements | and Il and so-
dium bicarbonate (at a final concentration of 0.042%) (30 ,31). Sub-
sequently, gonococci were propagated as stated in the text: in GCBL
at 37 °C or aerobically on GCB; GCB with Kellogg’s supplement | and
with deferoxamine mesylate salt (Desferral, Sigma, St. Louis, MO) at
5 um final concentration [iron limited conditions (32)]; GCB with the
addition of 7.5% normal human serum [NHS (33)]; and anaerobically
on GCB with 1.2 mm nitrite as a terminal electron acceptor (34).

E. coli NEB5« and BL21(DE3) were used for genetic manipulations
and as a host for heterologous protein expression, respectively. The
E. coli strains were grown in Luria-Bertani (LB) medium (Difco) or
maintained on LB agar plates at 37 °C supplemented with appropriate
antibiotics. Antibiotics were used at the following concentrations: N.
gonorrhoeae kanamycin (40 pg/ml) and erythromycin (0.5 ug/ml);
E. coli kanamycin (50 ug/ml).

Isolation of Cell Envelopes—For proteomic analysis of the N. gon-
orrhoeae cell envelope composition, N. gonorrhoeae FA1090 was first
cultured on GCB, bacteria were collected from plates, suspended in
GCBL to an ODgqq of 0.1, and 100 ul aliquots were spread on solid
media for simultaneous growth under aerobic (standard GCB, iron
limited, and in the presence of human serum) and anaerobic (in the
presence of nitrite) conditions, as described above. Bacteria were
harvested when the colonies reached approximately similar size (after
18 and 36 h for aerobic and anaerobic conditions, respectively), and

" The abbreviations used are: GCB, gonococcal base agar solid
medium; C, cytoplasmic; CE, cell envelopes; CFU, colony-forming
units; COG, Clusters of Orthologous Groups; GCBL, gonococcal
base liquid medium; IPTG, isopropyl-3-D-galactopyranoside; iTRAQ,
isobaric tagging for relative and absolute quantification; MVs, mem-
brane vesicles; NHS, normal human serum; 2D-LC, two-dimensional
liquid chromatography; SCX, strong cation exchange; SGC, standard
growth conditions; SS, soluble fractions of supernatants.
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the cell envelope fractions were isolated as described previously (21,
35). Protein concentrations were measured using 2D Quant Kit (GE
Healthcare, Piscataway, NJ).

Two-dimensional Liquid Chromatography and Mass Spectrometry
(2D LC-MS/MS)— After isolation, the cell envelope-associated pro-
teins were precipitated, trypsinized and labeled with iTRAQ reagents
(AB Sciex, Waltham, MA) according to the procedures reported by
Zielke et al. (21, 35). The following iTRAQ tags were used to label
peptides in the cell envelope fractions derived from N. gonorrhoeae
cultured on GCB under four growth conditions: 114 for standard
aerobic; 115 for growth in the presence of 7.5% normal human
serum; 116 for iron-limited; and 117 for anaerobic. iTRAQ-labeled
peptides were separated using strong cation exchange (SCX) chro-
matography (21, 35). Desalted SCX fractions were analyzed by LC/
ESI MS/MS with a ThermoScientific Easy-nLC Il (Thermo Scientific)
nano HPLC coupled to a hybrid Orbitrap Elite ETD (Thermo Scientific)
mass spectrometer using an instrument configuration as described in
(36). In-line desalting was accomplished using a reversed-phase trap
column (100 um X 20 mm) packed with Magic C,gAQ (5-um, 200 A
resin; Michrom Bioresources, Auburn, CA), followed by peptide sep-
arations on a reversed-phase column (75 um X 250 mm) packed with
Magic C,5AQ (5-um, 100 A resin; Michrom Bioresources) directly
mounted on the electrospray ion source. A 90-min gradient from 7%
to 35% acetonitrile in 0.1% formic acid at a flow rate of 400 nL/min
was used for chromatographic separations. The heated capillary tem-
perature was set to 300 °C and a spray voltage of 2250 V was applied
to the electrospray tip. The Orbitrap Elite instrument was operated in
the data-dependent mode, switching automatically between MS sur-
vey scans in the Orbitrap (AGC target value 1,000,000; resolution
60,000; and injection time 250 msec) and MS/MS scans in the
OrbiTrap (AGC target value of 50,000; 15,000 resolution; and injection
time 250 msec). The 15 most intense ions from the survey scan were
selected for fragmentation by higher energy collisionally activated
dissociation (HCD) with normalized collision energy of 40%. Selected
ions were dynamically excluded for 45 s with a list size of 500 and
exclusion mass-by-mass width = 0.5.

Proteomic Data Analysis—Data analysis was performed using Pro-
teome Discoverer 1.4 (Thermo Scientific). The data were searched
against a SwissProt N. gonorrhoeae FA1090 database with 1963
protein entries (downloaded on January, 17, 2012) that included
common contaminants [the common Repository of Adventitious Pro-
teins (cRAP)]. Trypsin was set as the enzyme with maximum missed
cleavages set to 2. The precursor ion tolerance and the fragment ion
tolerance were set to 10 ppm and 0.8 Da, respectively. Variable
modifications included iTRAQ4Plex (+144.102 Da) on any N-Termi-
nus, oxidation on methionine (+15.995 Da), methyl methanethiosul-
fonate on cysteine (+46.988 Da), and iTRAQ4Plex on lysine
(+144.102 Da). Data were searched using Sequest HT. All search
results were run through Percolator for scoring. Quantification was
performed using the iTRAQ 4plex method built into Proteome Dis-
coverer. The mass spectrometry data have been deposited in the
ProteomeXchange Consortium (http://proteomecentral.proteomex-
change.org) via the PRIDE partner repository ProteomeXchange with
the data set identifier PXD001944. Additionally, supplemental Table
S2 lists all identified proteins with their accession number, a brief
description, calculated score, protein coverage, number of unique
and total peptides, iTRAQ ratios, molecular mass, and calculated pl.
All statistical analyses were performed as we described previously
(21, 35, 37). Briefly, only proteins identified with 1% false discovery
rate (FDR) based on at least one unique peptide with =95% confi-
dence were recorded. The default bias-correction was used and all
quantitative variables were analyzed by the Proteome Discoverer 1.4.
Subsequently, average ratios and standard deviations were calcu-
lated for proteins identified in three independent experiments. Pro-

teins were considered ubiquitously expressed if the iTRAQ ratios
were between 0.5 and 2, and were designated as differentially ex-
pressed when the values were below 0.5 or above 2 with the corre-
sponding p values < 0.05. The relative protein abundance heat maps
were created using MultiExperiment Viewer (version 4.9) software
(http://www.tm4.org/mev.html) (38).

Bioinformatic Analysis—Subcellular localization of identified pro-
teins was assessed as described previously (21, 35, 37) using
PSORTb 3.0.2 (39), SOSUIGramN (40), and CELLO 2.5 (41), and
majority-votes strategy was used for protein localization assignment.
In cases where these three software systems predicted different
subcellular localizations for a specific protein, the protein was as-
signed to a group of “unknown subcellular localization.” The pre-
dicted amino acid sequences of identified proteins were analyzed for
the presence of a signal peptide using the SignalP v.4.1 server (42).
Phylogenetic classification of identified proteins to the clusters of
orthologous groups (COGs) functional categories was achieved using
COGnitor.

Subcellular Fractionation Procedures—Nonpiliated, transparent N.
gonorrhoeae colonies of wild type strain FA1090 were harvested from
solid media, suspended in 500 ml of GCBL to an ODgq, of 0.1 and
cultured at 37 °C with aeration (220 rpm) to ODgqo of 0.6-0.8. Cells
were separated from culture supernatants by centrifugation (20 min,
6000 X g), and the cell envelopes were purified from whole-cell
lysates (21, 35). The naturally secreted membrane vesicles (MVs) were
harvested from the supernatants as described previously (21). The
isolated soluble supernatant fractions (SS; containing secreted pro-
teins and proteins originating from cell lysis) were stored at —20 °C
until used, whereas insoluble material containing MVs was reconsti-
tuted in PBS containing 0.4% SDS. The total protein amount in each
isolated subproteome (cytoplasmic, cell envelopes, MVs, and SS)
was measured using a DC Protein Assay Kit (BioRad, Hercules, CA).

Conservation of Candidate Vaccine Antigens in a Panel of N.
gonorrhoeae Isolates—The conservation of BamA, LptD, TamA,
NGO2054, and NGO2139 was assessed at both nucleotide and pre-
dicted amino acid levels between FA1090, NCCP11945 (http:/
www.ncbi.nlm.nih.gov/), the draft genome sequences of 14 different
GC strains (downloaded from http://www.broadinstitute.org/),
and the 14 WHO 2015 reference strains (10, 28, 29) using ClustalO-
mega (http://www.ebi.ac.uk/).

Genetic Manipulations— All genetic manipulations used to engineer
different N. gonorrhoeae mutants utilized in this study are described
in Supplemental Experimental Procedures.

Cloning and Purification of Recombinant Protein Variants—The
genes IptD, bamA, tamA, ngo2054, ngo2139, ngo0994 (laz), and
ngo0277 (bamD) were individually amplified using appropriate prim-
ers (supplemental Table S3). The subsequent PCR products were
digested with Ncol and EcoRlI or Ncol and Hindlll, as indicated, and
ligated into similarly cut pET28a(+) to create C-terminal-6XxHis-
tagged fusions. All constructed plasmids were moved to E. coli
BL21(DES3).

For the overproduction of individual proteins, overnight cultures of
E. coli BL21(DE3) carrying pET-LptD, pET-BamA, pET-TamA, pET-
NGO2054, pET-NGO2139, pET-Laz or pET-BamD were used to in-
oculate 1 L of LB supplemented with kanamycin. Protein overproduc-
tion was induced by the addition of 1 mm IPTG when the cultures
reached an ODgq, of about 0.5. After 3 h of growth at 37 °C, bacterial
cells were pelleted by centrifugation and cell pellets were stored at
—80 °C until used. Recombinant NGO2054, NGO2139, Laz and
BamD proteins were purified under native conditions whereas LptD,
BamA and TamA were purified under denaturing conditions. All pro-
teins were purified using the NGC Scout Chromatography system
(Bio-Rad). For native conditions, bacterial cells were resuspended in
lysis buffer (20 mm Tris pH 8.0, 500 mm NaCl, 10 mm imidazole) and
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lysed by five passages through a French pressure cell at 12,000 p.s.i.
Cell lysates were clarified by centrifugation and loaded onto Bio-
Scale Mini Profinity IMAC cartridges (Bio-Rad). Loosely bound pro-
teins were removed with 10 column volumes of wash buffer (20 mm
Tris pH 8.0, 500 mm NaCl, 40 mm imidazole) and proteins were eluted
with 40-250 mm imidazole gradient.

For proteins purified under denaturing conditions, cell pellets were
reconstituted in denaturing lysis buffer (6 m urea, 300 mm KClI, 50 mm
KH,PO,, 5 mm imidazole, pH 8) and lysed as described above.
Lysates were cleared from cell debris by centrifugation at 6000 X g
for 20 min at 4 °C and applied to Bio-Scale Mini Profinity IMAC
cartridges (Bio-Rad) equilibrated with denaturing lysis buffer. Col-
umns were washed with ten column volumes of denaturing wash
buffer (6 M urea, 300 mm KClI, 50 mm KH,PO,, 10 mm imidazole, pH 8)
and finally proteins were eluted with five column volumes of denatur-
ing elution buffer (6 m urea, 300 mm KCI, 50 mm KH,PO,, 250 mm
imidazole, pH 8).

Fractions containing the purified recombinant protein of interest
were dialyzed against 20 mm Tris pH 8.0, 500 mm NaCl, and 10%
glycerol for 24 h with three consecutive changes of the buffer. Pro-
teins were stored at —80 °C. The N. gonorrhoeae Obg protein, Obgg,
used in this study as a cytoplasmic protein marker, was purified as
described (43).

Antisera Preparations—Rabbit polyclonal antisera against the indi-
vidual proteins were prepared by Pacific Immunology (Ramona, CA)
using about 2 mg of the purified recombinant versions of BamA, LptD,
TamA, NGO2054, NGO2139, Laz and BamD and a 13-week antibody
production protocol was approved by IACUC Animal Protocol #1, in
a certified animal facility (USDA 93-R-283), as well as the National
Institute of Health Animal Welfare Assurance Program (#A4182-01).
The polyclonal anti-Obggc antiserum was obtained previously (43).

Bactericidal Assays—Nonpiliated colonies of N. gonorrhoeae
FA1090 and MS11 were inoculated into 5 ml of GCBL broth to an
ODgqp Of 0.1. Cultures were incubated with aeration at 37 °C until the
mid-logarithmic phase of growth (ODgy~0.6) was reached. The im-
mune and respective preimmune sera were heat inactivated by incu-
bation for 30 min at 56 °C and diluted in GCBL medium. Bacterial
cells [2 X 10* colony forming units (CFUs)/ml)] in 40 ul were mixed
with diluted antisera or preimmune sera and incubated for 15 min at
37 °C. Following incubation, 10 ul of NHS (Cellgro, Manassas, VA)
were added to each tube. As a control 10 ul of heat-inactivated NHS
(HI-NHS) was used. Samples were incubated for additional 30 min at
37 °C. Finally, 50 pl of each suspension were spread onto GCB plates
and the CFUs were determined after 18-20 h incubation. Controls
included bacteria incubated with: test sera with HI-NHS, pre-immune
sera with NHS, and pre-immune sera with HI-NHS. The average
percent killing was determined from at least four independent exper-
iments and was calculated as the number of CFUs in samples incu-
bated with antigen specific antisera and NHS to the number of CFUs
recovered from samples treated with rabbit postimmune sera and
HI-NHS (44). N. gonorrhoeae viability was not affected in any of the
control samples.

Dot Blotting—Non-piliated colonies of N. gonorrhoeae FA1090
were suspended to an ODgqyq of 0.1 in GCBL pre-warmed to 37 °C
and incubated for 3 h with shaking at 220 rpm at 37 °C. Bacterial cells
were harvested and suspended in GCBL to an ODgqq of 2.0. To obtain
whole-cell lysates, bacteria were incubated at 100 °C for 5 min fol-
lowed by sonication (30 s, amplitude 50). Suspensions (5 ul) of intact
and lysed cells were spotted onto a nitrocellulose membrane. The
membrane was allowed to dry for 30 min at room temperature,
blocked, and probed with respective polyclonal antibodies, as de-
scribed below.

Protease Treatment of Intact N. gonorrhoeae Cells—The surface
accessibility studies were performed using modified protocols de-

scribed previously (45, 46). After 3 h of growth in GCBL, N. gonor-
rhoeae FA1090 cells were harvested by centrifugation for 10 min at
2000 X g and 4 °C. The pellet was suspended in PBS (pH 8.0) to an
ODgqp Of 2.5 and 500 ul of this solution were incubated with 0, 40, or
80 wg/ml of Trypsin-Ultra™ [L-(tosylamido-2-phenyl) ethyl chloro-
methyl ketone-treated trypsin, NEB, Ipswich, MA] for 1 h at 37 °C. The
reactions were stopped by the addition of 10 ul of 50 mm phenyl-
methanesulfonylfluoride (PMSF) and cells were washed with PBS.
Finally, the N. gonorrhoeae cells were suspended in PBS and the
ODgoo of the suspension was measured. The cells were pelleted
again, lysed in SDS sample buffer and subjected to SDS-PAGE and
immunoblotting analysis, as outlined below.

SDS-PAGE and Immunoblotting Analysis—Whole-cell lysates were
obtained from N. gonorrhoeae grown in GCBL with aeration and on
GCB plates cultured under conditions specified in the text. Bacteria
were harvested from liquid media either at different time points of
growth or at desired ODgqq values, as indicated. Different N. gonor-
rhoeae clinical isolates were collected from GCB plates, followed by
suspension in prewarmed GCBL, and measurement of the cell density
at ODgq.Fractions containing either cytoplasmic, cell envelope, MVs,
or secreted proteins (the same amount of total protein loaded per
well), or whole-cell lysates matched by equivalent ODgyq units, were
prepared in SDS sample buffer in the presence of 50 mm dithiothreitol
and separated in either 10-20% Criterion Tris-Tricine TGX (BioRad) or
4-20% Mini-PROTEAN TGX precast gels (Bio-Rad). The proteins
were transferred onto 0.2 um nitrocellulose membrane (Bio-Rad)
using a Trans-blot Turbo (Bio-Rad). A solution of 5% milk in phos-
phate buffered saline pH 7.0 (PBS, Li-Core, Lincoln, NE) supple-
mented with 0.1% Tween 20 (PBST) was used for blocking. Following
1 h of incubation, polyclonal rabbit antisera against LptD (1:5,000),
BamA (1:10,000), TamA (1:5,000), NGO2054 (1:10,000), NGO2139
(1:20,000), Obggc [1:5,000, (43)], polyclonal anti-AniA antibodies [1:
10,000;(21)], monoclonal mouse anti-MtrE antisera (1:10,000), mono-
clonal mouse anti-Ng-MIP antibodies (1:10,000; a gift of Mariagrazia
Pizza, Novartis Vaccines, Italy), and polyclonal rabbit anti-TbpB anti-
sera (1:1,000; a gift of Cynthia Cornelissen, Virginia Commonwealth
University, Richmond) diluted in PBST as indicated in parenthesis
were added to the membranes. Horseradish peroxidase conjugate of
goat anti-rabbit IgG antiserum (BioRad) or goat anti-mouse IgG anti-
body (ThermoFisher Scientific), correspondingly, was utilized as the
secondary antibody at a 1:10,000 dilution. The reactions were devel-
oped using Clarity Western ECL-Substrate (BioRad) and a Chemi-
Doc™ MP System (BioRad) was used for Western blot imaging.

Experimental Design and Statistical Rationale— All studies to iden-
tify potential gonorrhea vaccine antigens including iTRAQ LC-MS/MS
experiments were performed on three separate occasions. Statistical
analysis was performed as described above. All other experiments
were conducted at least in biological triplicates and mean values with
corresponding S.E. were presented.

RESULTS AND DISCUSSION

Experimental Strategy—N. gonorrhoeae is an exclusive hu-
man pathogen that primarily infects the lower genitourinary
tract. Ascending infections are also common in women, as are
pharyngeal and rectal infections in both men and women.
Conjunctival infections can also occur (5). During colonization
within these microecological niches, N. gonorrhoeae encoun-
ters areas of different oxygen tension (aerobic and anaerobic
sites of infection), iron deprivation and, in the event of dis-
seminated infection, exposure to human serum (5, 47, 48). An
effective vaccine with a broad spectrum of protection would
preferentially consist of antigens that are not only highly con-
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conditions (SGC); on GCB with the addition of 7.5% normal human serum (+NHS); iron limited [GCB without ferric nitrate in Kellogg’s
Supplements and with deferoxamine mesylate salt at 5 um final concentration (-Iron)]; and anaerobically on GCB with nitrite as a terminal
electron acceptor (-O,). Bacteria were harvested from solid media when the colonies reached approximately the same size. Following lysis, cell
envelope proteins were enriched using a sodium carbonate extraction procedure and ultracentrifugation. The same amounts of proteins (100
1g) in each sample were subjected to trypsin digestion. Peptides in different samples were labeled with the following iTRAQ tags: 114 for SGC,
115 for NHS, 116 for -Iron, 117 for -O,. Following labeling, samples were pooled and the peptides were separated by strong cation exchange
and reversed-phase chromatography. The Orbitrap Elite was used to collect mass spectra and proteins were identified and quantified using
Proteome Discoverer. All experiments described above were repeated on three separate occasions.

served among different N. gonorrhoeae strains but are also
utilized by the bacteria to persist at anatomically distinct sites
within its sole human host. Accordingly, herein we performed
proteomic studies to identify potential vaccine antigens that
are ubiquitously expressed or induced by these environmental
cues. The experimental strategy is outlined in Fig. 1. N. gon-
orrhoeae FA1090 was spread on GCB plates and maintained
concurrently under standard growth conditions (SGC), GCB
supplemented with 7.5% normal human serum (+NHS), iron-
depleted GCB (-lron), and anaerobically in the presence of
nitrite as terminal electron acceptor (-O,). The plate-grown
gonococci were collected when the colonies reached approx-
imately similar size, lysed, and the membrane proteins were
isolated using sodium carbonate extraction coupled with ul-
tracentrifugation. This methodology enables enrichment of
the cell envelope proteins and yields samples compatible with
downstream proteomic applications, including iTRAQ labeling
and MS/MS analysis (21, 35, 49, 50). Isolated proteins from
bacteria cultured under individual growth conditions were
subsequently digested with trypsin, and the acquired pep-
tides were labeled with the following iTRAQ tags: SGC - 114;
NHS - 115; -lIron - 116; and -O, - 117 (Fig. 1). The labeled

samples were pooled and the peptide mixtures were fraction-
ated in two dimensions using off-line strong-cation exchange
chromatography followed by reversed-phase chromatogra-
phy performed in-line with the mass spectrometer. Finally, the
MS/MS analysis was accomplished using an Orbitrap Elite
mass spectrometer. These experimental procedures were re-
peated on three separate occasions and all raw data were
deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE part-
ner repository ProteomeXchange with the data set identifier
PXD001944.

Proteomic Data Analyses—The total number of proteins
identified based on at least two unique peptides filtered to a
1% FDR was 890, 853, and 956 in the first, second, and third
independent biological experiment, respectively (Fig. 2A). Fur-
ther analyses were applied solely to a group of 751 common
proteins identified during four growth conditions in biological
triplicate experiments.

Protein Functional Categories—Functional classification
using COG clustering identified twenty different phylogenetic
protein groups (Fig. 2B), with the largest subsets in category
J (translation, ribosomal structure and biogenesis; 92 pro-
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Fic. 2. Analysis of identified proteins. A, Venn diagram illustrating the distribution of proteins identified in independent triplicate proteomic
experiments. A total of 890, 853, and 956 individual protein species were identified in Experiment 1, 2, and 3; respectively. Further analyses
were applied to 751 common proteins identified in all experiments. B, A phylogenetic classification of common proteins was accomplished
using the Clusters of Orthologous Groups of proteins (COGs). Letters and digits displayed on the pie chart represent individual COGs and
numbers of proteins assigned to each phylogenetic group. C, Heat map illustrating the changes in N. gonorrhoeae proteome upon exposure
to the environmental cues relevant to infection. Relative abundance of proteins identified during different growth conditions (NHS, -Iron, and

this study

Molecular & Cellular Proteomics 15.7 2343



Proteomics-driven Reverse Vaccinology for Gonorrhea

TABLE |
Differentially expressed Neisseria gonorrhoeae cell envelope proteins in response to normal human serum

Accession Name Gene Average ratio = S.D.2 SP?

Periplasmic

Q5F7X1¢ Putative uncharacterized protein NGO1044 22 +1.74 N

Q5FAC5° Cytochrome c4 cyc4, NGO0101 2.5+ 2.06 Y
Inner membrane

Q5F4z5° ATP synthase C chain atpE, NGO2145 21+225 N

Q5F9Vv4° Putative uncharacterized protein NGO0284 2.8 £2.69 N

Q5F9N2° Putative HemY protein NGO0361 29 +1.19 N

Q5F6Y2° Putative uncharacterized protein NGO1411 3+ 4.04 N

Q5F767 Putative paraquot-inducible protein A pgiA, NGO1319 3.5 +1.77 N

Q5F6V9° Putative cadmium resistance protein cadD, NGO1435 3.7 £2.29 N

Q5F6K9 Penicillin-binding protein 2 penA, NGO1542 5.3 + 4.53 N

Q5FA49° Sec-independent protein translocase tatA, NGO0183 58+7.8 N

protein TatA

Q5F6M1°9 Cell division protein FtsQ ftsQ, NGO1530 2.8 £1.77 N
Unknown localization

Q5F9C2° Putative uncharacterized protein NGO0477 3.5 + 3.65 N

Q5FAD1¢ Pilin assembly protein pilP, NGO0095 5.1+7.36 Y

2 Average ratios and standard deviations were calculated for proteins identified in three independent experiments.

b predictions of signal peptide cleavage site using SignalP (42).

¢iTRAQ ratios were 0.5<proteins<2 in one of the biological triplicate experiments.
? The inner membrane localization of FtsQ was verified experimentally (103).

teins), category M (cell wall/membrane/envelope biogenesis;
86 proteins), and category E (amino acid transport and me-
tabolism; 79 proteins). Furthermore, 52 proteins were as-
signed only a putative function (category R), whereas 41 pro-
teins remained without an allocated biological role (category
S; Fig. 2B).

Assessment of Protein Expression—The relative levels
(ITRAQ ratios) of identified proteins were obtained by com-
paring N. gonorrhoeae proteome profiles under individual test
conditions to the corresponding protein expression at SGC,
as follows: +NHS/SGC (115/114), -lron/SGC (116/114), and
-0,/SGC (117/114). Similarly, to our previous studies (21, 37),
a >2.0-fold cutoff threshold in the iTRAQ ratios was chosen
as a criterion for differential protein abundance. Overall, our
experiments revealed that N. gonorrhoeae responds to the
environmental cues tested, particularly anaerobiosis, with
dramatic changes in the cell envelope proteome (Fig. 2C).
Expression of 17, 32, and 367 proteins in the presence of
NHS, upon iron deprivation, and during anaerobic growth,
respectively, was characterized as significantly different com-
pared with SGC (Fig. 2D, Tables I-1l and supplemental Tables

S4 and S6). Further, 259 proteins were ubiquitously ex-
pressed under all conditions tested (Fig. 2D, supplemental
Table S5 and S7).

Elimination of Cytoplasmic Proteins—Combining bioinfor-
matic prediction of protein localization with profiling of bac-
terial subproteomes (cell envelopes, naturally released MVs,
surface-exposed proteins, and secreted proteins) is an impor-
tant part of data analysis because enrichments are never
completely free from cytosolic proteins despite thoroughly
executed experimental procedures (21, 37, 51-53). In addi-
tion, even minute amounts (low femtomoles) of proteins pres-
ent in a sample can be detected by current MS instruments
(54). Some of the cytoplasmic proteins arise from cell lysis
during culture or copurify with large protein complexes teth-
ered to the cell envelope; others may be translocated to the
cell surface by noncanonical secretory pathways (51, 52).

To eliminate cytoplasmic proteins, a step that follows pro-
teomic mining in our decision tree of vaccine candidates
evaluation (Fig. 2D), the subcellular localization of all identified
proteins was analyzed using predictive web-based software
including PSORTb 3.0.2 (55), SOSUIGramN (56), and CELLO

-0,) was compared with the levels of corresponding protein species found in SGC. The color scale covers from fivefold down-regulation (blue),
through no change (white), to fivefold up-regulation (red). D, Decision tree to select gonorrhea vaccine candidates from the group of 751
common N. gonorrhoeae cell envelope-associated proteins identified with 1% FDR in three independent experiments via high-throughput
proteomic mining. This group contains 259 uniformly expressed and 416 specifically induced proteins. Cytoplasmic proteins were eliminated
using bioinformatics predictions and literature searches. Vaccine candidates were ultimately selected from 92 ubiquitously expressed proteins
identified by comparing the 168 uniformly expressed cell envelope proteins of this study with the 305 previously identified cell envelopes
proteins isolated from FA1090, MS11, F62, and 1291 (21). Subsequently, five of these proteins that were localized to both cell envelopes and
MVs fractions (21), and either had pivotal role(s) in other bacterial species (BamA, LptD, TamA) or unknown function (NGO2054 and NGO2139)
were subjected to initial assessments as potential gonorrhea vaccine candidates. E, Analysis of anaerobic, iron, and NHS-responsive stimulons
of N. gonorrhoeae. Differentially expressed proteins in response to anoxia, iron deprivation, and the presence of NHS were compared with
identify the common anaerobic, iron-depleted, and NHS-responsive protein stimulon.
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TaBLE llI
Analysis of polymorphic sites in vaccine candidate proteins among 36
Neisseria gonorrhoeae isolates

Length Polymorphic sites

Name/Gene .

bp AA Nucleotides (%) AA (%)
LptD 2403 801 18 (0.75) 8(1)
BamA 2376 792 21 (0.88) 7 (0.88)
TamA 1905 635 14 (0.73) 5(0.79)
NGO2054 270-273 90-91 8(2.9) 4(4.4)
NGO2139 864 288 2(0.23) 0 (0)

2.5 (41). The primary reason for including these three systems
and the majority-votes strategy for proteins assignment was
that each of the programs employs different methods for
prediction of protein localization.

In our analysis, proteins were allocated to a particular sub-
cellular compartment when at least two of the software sys-
tems predicted the same localization. In cases where
PSORTb, SOSUIGramN, and CELLO 2.5 assigned different
subcellular locations for a particular protein, the protein was
allocated to a group of proteins with “unknown subcellular
localization”. This approach yielded assignment of 4 extracel-
lular-, 26 outer membrane-, 53 periplasmic-, 116 inner mem-
brane-, 481 cytoplasmic-, and 71 proteins with unknown lo-
calization (Fig. 2C, Tables I-ll and supplemental Tables
S4-87).

Differentially Expressed Proteins — After excluding cytosolic
proteins, a total of 13, 22, and 89 proteins showed differential
expression during exposure of N. gonorrhoeae to NHS, iron
deprivation, and anaerobic conditions, respectively (Fig. 2E).

Analysis of the Common NHS, Iron-depleted, and Anaero-
bic Stimulon—Comparison of data sets revealed 10 signifi-
cantly stimulated proteins in all tested conditions compared
with standard aerobic growth (Fig. 2E). The NHS, iron-respon-
sive, and anaerobic stimulon includes FOF1-type ATP syn-
thase C subunit (AtpE, NGO2145), paraquat inducible protein
A (PqiA, NGO1319), a putative cadmium resistance protein
(CadD, NGO1435), penicillin-binding protein 2 (PBP2,
NGO1542), pilin assembly protein PilP (NGO0095), Sec-inde-
pendent protein translocase protein TatA (NGO0183), a puta-
tive HemY protein (NGO0361), and putative uncharacterized
proteins NGO0284, NGO0477, and NGO1411 (Tables I-llI).
None of these proteins were included in the previously de-
scribed common iron, hydrogen peroxide, and anaerobic
stimulon, which consisted of 14 genes and was constructed
based on separate global transcriptome analyses (57-59). The
poor correspondence between direct comparisons of differ-
ent data sets has been noted before (59) and is related to
bacterial culture methods (solid versus liquid media, different
growth phases), sample preparation, sensitivity, detection
limit, and cut-off settings of differential expression, as well as
the occurrence of post-transcriptional regulatory mecha-
nisms. An example of this latter challenge is exemplified by
studies elucidating the manganese-dependent oxidative

stress resistance of N. gonorrhoeae where proteomic ap-
proaches identified a set of 96 differentially regulated pro-
teins, whereas no changes in gene expression were detected
by microarray analysis and gPCR (60).

NHS Responsive Proteins—In response to NHS, expression
of a total of 13 cell envelope-associated proteins was signif-
icantly elevated within a range from 2.1- to 5.8-fold (Fig. 2E,
Table ). In addition to the 10 members of the proteome-based
stimulon (discussed above), expression of cytochrome c4
(NGOO0101), cell division protein FtsQ (NGO1530), and the
uncharacterized protein NGO1044 was considerably induced.
The increased levels of cytochrome c4 and NGO1044 were
also observed during anaerobic growth and upon iron limita-
tion, respectively, whereas FtsQ was solely up-regulated by
the presence of NHS (Fig. 2E, Tables I-ll, supplemental Table
S4).

Effect of Iron Deprivation on the Cell Envelope Protein Pro-
file—With the application of a >2.0-fold cutoff for differential
protein expression, six outer membrane proteins, four
periplasmic proteins, 10 inner membrane proteins, and two
proteins with unknown localization were designated as up-
regulated during growth of N. gonorrhoeae under iron limiting
conditions (Table Il). Among these proteins, 12 were identified
as part of the Fur regulon by an examination of the steady-
state levels of mRNA in response to iron availability and by
microarray (57, 61). Some of these proteins have been well-
characterized, including iron acquisition transporters such as
the transferrin receptor system composed of TbpA and TbpB,
ferric enterobactin receptor FetA and periplasmic iron-binding
transporter FetB, ferric binding protein A (FbpA), TonB-de-
pendent transporter TdfG, and ExbB (62-66). The TbpA and
TbpB proteins are being pursued as gonorrhea vaccine can-
didates because of their conservation within specific regions
among different isolates, importance in N. gonorrhoeae
pathophysiology, and abilities to elicit cross-reactive and bac-
tericidal antibodies (48, 67).

Importantly, however, our proteomic approach revealed an
additional 10 proteins with expression profiles that were pos-
itively regulated by low-iron conditions, including predicted
outer membrane proteins, NGO2111 and NGO1688, both
containing DUF560 domain of unknown function (Table II).
These proteins were identified using iTRAQ-2D-LC-MS/MS as
being ubiquitously present in the cell envelopes of N. gonor-
rhoeae strains FA1090, MS11, F62, and 1291 maintained
under routine aerobic cultivation in GCBL (21).

Differentially Expressed Proteins During Anaerobic
Growth—In our proteomic profiling, a total of 367 proteins
(about 19% of the N. gonorrhoeae FA1090 genome) were
differentially regulated during anaerobic growth (supplemental
Table S4 and supplemental Table S6). Deep sequencing anal-
ysis performed on similarly cultured gonococci revealed dif-
ferential regulation of 198 genes (59). This discrepancy sug-
gests that expression of many of these proteins is regulated at
the post-transcriptional level. After excluding cytoplasmic
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proteins, 89 proteins (four outer membrane, 11 periplasmic,
47 inner membrane, and 27 with unknown localization)
showed significantly altered quantities and eight of them were
also identified using a RNA-seq approach (supplemental Ta-
ble S4, (59)). Within this group only NGO0372 and NGO2012
were downregulated, with average ratios (= S.D.) of 0.4 *
0.06 and 0.2 = 0.11, respectively. Not surprisingly, proteins
that participate in the anaerobic denitrification pathway, in-
cluding outer membrane proteins AniA (68) and lipid-modified
azurin, Laz (69); inner membrane protein NorB (70); and dif-
ferent types of cytochromes, as well as proteins involved in
cytochrome biogenesis (71-73), were the most highly up-
regulated, with induction reaching 15-fold in comparison to
SGC (supplemental Table S4). It is worth noting that AniA is
currently being investigated as a gonorrhea vaccine candidate
because of its pivotal function in bacterial survival under
oxygen-limiting conditions in the presence of nitrite, expres-
sion in vivo, surface localization, conservation, and ability to
induce functional antibodies that inactivate the AniA nitrite
reductase activity (45, 74, 75). In addition to AniA, our pro-
teomic profiling revealed induced expression of three outer
membrane proteins including vaccine antigens NspA
(NGOO0203) and porin PI.B [NGO1812, (16)], as well as TdfJ
[NGO1205, (76)], which is a homolog of the N. meningitidis
zinc uptake protein ZnuD (77). The presence of TdfJ was not
required for survival of N. gonorrhoeae within cervical epi-
thelial cells (76). Its expression, however, was significantly
elevated in biofilms, where gonococci utilize the anaerobic
respiration pathway (78), thus the function of TdfJ in N.
gonorrhoeae pathophysiology remains to be further
elucidated.

Ubiquitously Expressed Proteins—In comparison to SGC,
the expression of 168 proteins (four extracellular, 18 outer
membrane, 37 periplasmic, 67 inner membrane, and 42 with
unknown localization) remained unaltered (i'TRAQ ratios of
0.5<proteins<?2) upon exposure of N. gonorrhoeae to NHS,
iron depletion and oxygen deprivation (supplemental Table
S5). In our previous proteomic analysis, 305 proteins were
designated as ubiquitously present in the cell envelopes iso-
lated from FA1090, MS11, F62, and 1291 (21). A comparison
of these two data sets revealed 92 ubiquitously expressed
proteins in common (Fig. 2D). This group contains known
outer membrane residents such as Phospholipase A (PIdA,
NGO1492); two potential gonorrhea vaccine antigens: pilus-
associated adhesin PilC and an outer membrane channel for
pilus extrusion PilQ (16); Omp3; and MafA (NGO1067). Ubig-
uitous proteins also included homologs of LPS assembly
protein LptD (OstA, ImpA, NGO1715); components of the
B-barrel assembly machinery (BAM) including BamA and
BamD (ComL, NGOO0277); the Translocation and Assembly
Module [TAM, (79)] consisting of TamA (NGO1956) and TamB
(NGO1955); hypothetical proteins NGO1344 and NGO2121;
and predicted lipoproteins NGO0834, NGO1985, NGO2054,
and NGO2139 [supplemental Table S5 and (21)].

Among the newly identified cell envelope-associated pro-
teins was a predicted outer membrane protein, NGO0952
[TdfH, (76)], comprised of conserved domains TIGR01785 and
cl21487, which are characteristic of TonB-dependent heme/
hemoglobin receptors/transporters and outer membrane
channels, respectively. The function of TdfH remains un-
known (76), but global transcriptome analysis revealed that its
expression might be subjected to repression by the AraC
transcriptional regulator MpeR (76, 80). A homolog of TdfH
from N. meningitidis, designated as CbpA, has been identified
as a receptor for calprotectin and thus plays a role in zinc
acquisition (81). Moreover, the levels of efflux pumps MtrCDE
and FarAB remained unaltered despite different growth con-
ditions (supplemental Table S5). The MtrCDE efflux pump
transports structurally diverse hydrophobic compounds out-
side the bacterial cell, whereas FarAB is required for resis-
tance against antimicrobial long chained fatty acids (82—84).
The surface exposed MtrE serves as an outer membrane
channel for both efflux systems (84), and is being developed
as a gonorrhea vaccine candidate (16).

Selected Vaccine Candidates—QOur constructed antigen
decision tree contains both uniformly expressed and specifi-
cally induced gonorrhea vaccine candidates (Fig. 2D). In this
report, we subjected to initial assessments as potential vac-
cine targets five proteins: BamA, LptD, TamA, NGO2054,
and NGO2139 (Fig. 2D). These candidates were uniformly
expressed during different growth conditions (supplemental
Table S5), displayed similar abundance in four N. gonor-
rhoeae strains, were localized to both cell envelopes and
MVs fractions (21), and had either pivotal role(s) in other
bacterial species (BamA, LptD, TamA) or unknown functions
(NGO2054 and NGO2139).

The Bam complex, BamA-E in E. coli, folds and inserts
beta-barrel proteins into the outer membrane [reviewed in
(85)]. The Omp85 protein family member BamA is found in all
Gram-negative bacteria (85, 86). Despite the overall functional
conservation, BamA homologs recognize their protein sub-
strates in a species-specific manner and display highly diver-
gent sequences located within the surface-exposed loops
(87-89). The finding that BamA of Burkholderia pseudomallei
induced protective immunity in mice (90) highlights the poten-
tial of this protein as a vaccine target. We reasoned that BamA
of N. gonorrhoeae, similar to other bacterial species, is an
essential protein. To test this hypothesis, we engineered a
strain of FA1090 in which a copy of bamA was placed under
the control of the IPTG-inducible promoter and inserted within
an intergenic chromosomal region between the IctP and aspC
genes (91). Subsequently, the native bamA was replaced
in-frame with the nonpolar kanamycin resistance cassette
using homologous recombination. As expected, the resultant
strain FA1090 AbamA/P,.::bamA grew robustly in the pres-
ence of IPTG, whereas without the inducer, the bacteria failed
to grow on solid media and halted proliferation in liquid media
within about 6 h from back dilution (data not shown and
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supplemental Fig. S1, respectively), concomitant to depletion
of BamA levels (Fig. 3).

Our second vaccine candidate, LptD, is a low-abundance
outer membrane B-barrel protein involved in transport of li-
popolysaccharide/lipooligosaccharide into the outer leaflet of
the outer membrane (92-94). We have demonstrated that, in
contrast to N. meningitidis (93) and similar to E. coli, LptD is
an essential protein for N. gonorrhoeae viability (21).

TAM is a newly discovered archetypal protein transport
system comprised of TamA (an Omp85 family protein) and
TamB. TAM promotes efficient secretion of autotransporters
and is required for virulence in proteobacteria (79, 95). Func-
tional characterization of the complex in E. coli, Citrobacter
rodentium, and Salmonella enterica demonstrated that TamA
is an integral outer membrane protein whereas TamB is a
large protein that is encoded in an operon along with the gene
for TamA and is located in the inner membrane. A similar
genetic organization of a putative TAM complex exists in N.
gonorrhoeae with TamA and TamB in an operon encoded by
NGO1956 and NGO1955, respectively. We discovered both
these proteins as being uniformly present in the cell envelopes
of different gonococcal strains (21). In agreement with other
organisms studied so far, the TAM complex is likely not es-
sential for N. gonorrhoeae viability as conditional or in-frame
deletion mutants of tamA or tamB, respectively, did not dis-
play noticeable growth defects [data not shown and (21)].

Finally, although bioinformatics predictions allocated
NGO2054 and NGO2139 to a group of proteins with unknown
subcellular location [supplemental Table S5 and (21)], both
proteins contain predicted signal peptides with a lipoprotein
box containing the indispensable cysteine residue, which
suggest their outer membrane localization (96). The NGO2054
protein encompasses a LambdaBor motif (amino acid resi-
dues 3 to 36), a bacterial virulence determinant encoded by
lysogenic coliphage lambda (97), whereas NGO2139 is anno-
tated in KEGG as a p-methionine transport system substrate
binding protein. The crystal structure of its homolog in N.
meningitidis (GNA1946) was recently solved and surprisingly
revealed an L-methionine bound into the protein cleft (98).
Both proteins remain functionally uncharacterized but were
found dispensable for N. gonorrhoeae viability during SGC in
liquid and on solid media (21).

Characterization of Antigen-specific Polyclonal Antisera—
Recombinant variants of each of the five vaccine candidates
that contained a C-terminal 6xHis extension tag to enable
purification from E. coli cell lysates using Ni-NTA affinity chro-
matography were generated. To provide additional controls
for our experiments, recombinant BamD and Laz were also
prepared.

The chimeric BamA, LptD, and TamA formed insoluble ag-
gregates and were purified under denaturing conditions,
whereas NGO2054, NGO2139, BamD and Laz were obtained
under native conditions. Subsequently, all proteins were used
to immunize rabbits and obtain polyclonal antisera. The reac-
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Fic. 3. Generation of polyclonal antibodies and immunoblotting
analysis. Recombinant versions of vaccine candidates BamA, LptD,
TamA, NGO2054, and NGO2139, as well as proteins employed as
controls in the experiments (Laz and BamD) were purified by NiZ"
affinity chromatography and subsequently used to obtain polyclonal
rabbit antisera. Wild type, isogenic conditional mutants, or knockouts,
as well as complemented variants of FA1090 (as indicated above
each immunoblot) were harvested from GCB. Whole-cell lysates
matched by equivalent ODgq, units were separated in 4-20% Mini-
PROTEAN TGX precast gels, transferred onto nitrocellulose mem-
branes and probed with different polyclonal rabbit antibodies.
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tivity of these newly generated antibodies was examined us-
ing wild type N. gonorrhoeae FA1090 and isogenic conditional
or in-frame deletion mutants, as well as corresponding com-
plemented strains. As expected, the individual antisera cross-
reacted with whole-cell lysates originating from the wild type
and complemented gonococci but not from the mutant strains
(Fig. 3).

Secondary Validation of iTRAQ Results—The reliability of
protein quantitation using iTRAQ on MALDI- and ESI-based
MS instrumentation has been demonstrated for alterations of
up to two orders of magnitude in a wide range of biological
samples assessed in technical and biological replicates. How-
ever, it has been considered that low-signal species may have
higher relative variability. In addition, underestimation of large
changes when using an iTRAQ-based protein quantitation
approach has also been reported [reviewed in (99)]. Therefore,
to provide additional validation of protein expression profiles,
the cell envelopes extracted from FA1090 cultured concur-
rently under SGC, in the presence of NHS, during iron depri-
vation, and anaerobically were subjected to SDS-PAGE and
immunoblotting analyses (supplemental Fig. S2). SDS-PAGE
coupled with colloidal Coomassie G-250 staining showed
that, as expected (Fig. 2C, supplemental Table S4), the most
altered was the overall cell envelope protein profile of N.
gonorrhoeae maintained under anaerobic conditions (supple-
mental Fig. S2A). In agreement with the iTRAQ analyses (sup-
plemental Table S5), similar levels of MirE, BamA, LptD,
TamA, NGO2054, NGO2139, BamD, and Ng-MIP were de-
tected by immunoblotting during all tested conditions (sup-
plemental Fig. S2B). As controls for differentially expressed
proteins, we utilized antisera against well-recognized protein
markers for anaerobic [AniA (21) and Laz (68)] and iron-limited
[TbpB (48)] conditions. The iTRAQ quantitation indicated that
in comparison to SGC, the relative levels of AniA and Laz
increased on average 9.5 * 2.81 and 2.9 = 0.59 fold,
respectively (supplemental Table S4), whereas there was
11.4 = 4.27 fold increase in TbpB abundance during iron
limitation (Table Il). Corroborating these findings, as shown
in supplemental Fig. S2B, increased amounts of AniA and
Laz, as well as TbpB were detected in the cell envelope
fractions of gonococci grown anaerobically and during iron
deprivation, correspondingly.

Additionally, to examine the expression of our vaccine can-
didates throughout N. gonorrhoeae growth, wild type FA1090
was maintained under routine aerobic cultivation in GCBL.
Bacterial proliferation was monitored by measurements of cell
density at ODggyo Within 6 h of the experiment (supplemental
Fig. S3A). Every hour samples were withdrawn and the whole
cell lysates were probed with anti-BamA, anti-LptD, anti-
TamA, anti-NGO2054, and anti-NG0O2139 antisera. The rep-
resentative immunoblots (supplemental Fig. S3B) showed
that the vaccine candidates were constitutively expressed
throughout the duration of the experiment.

Together, these analyses further supported iTRAQ-based
proteome relative quantitation and demonstrated that the se-
lected candidates are ubiquitously expressed during expo-
sure of N. gonorrhoeae to different environmental cues as well
as throughout different growth phases.

Assessment of Vaccine Candidates’ Localization and Sur-
face Exposure—Bioinformatic predictions of proteins’ subcel-
lular locations are invaluable tools for creating a “decision
tree” to evaluate vaccine candidates. Experimental verifica-
tion, however, is essential for final subcellular protein assign-
ment. The subcellular localization of AniA and Ng-MIP are two
great examples of discrepancies between in silico predictions
and experimental evidence. According to the predictive bioin-
formatic tools (SOSUIGramN, PSORTb, and CELLO) and the
majority-votes strategy, both proteins were assigned to the
periplasmic compartment (supplemental Tables S3 and S4,
respectively). In contrast, Shewell, L.K. et al. (45) demon-
strated the outer membrane localization and surface-expo-
sure of AniA by immune-S.E.M. and trypsin-accessibility stud-
ies. Likewise, subcellular fractionation of N. gonorrhoeae cells
coupled with immunoblotting and flow-cytometry experi-
ments revealed the surface-localization of Ng-MIP (100).

Therefore, the subcellular localization and surface exposure
of BamA, LptD, TamA, NGO2054, and NGO2139 were inves-
tigated. In these experiments, controls included protein mark-
ers for surface-exposed (Ng-MIP, MtrE, and AniA), periplas-
mic side of the outer membrane [BamD, (85)] and cytoplasmic
[Obggc (43)] localization, respectively. The N. gonorrhoeae
FA1090 cells were harvested at mid-logarithmic phase of
growth in GCBL, lysed and the whole cell lysate was sub-
jected to a carbonate extraction method to enrich for outer
membrane proteins in the cell envelope fraction (21). Separa-
tion of MVs from soluble proteins was achieved by high-
speed ultracentrifugation of culture supernatant (21). The
same total amounts of purified subproteomes were loaded
onto SDS-PAGE followed by immmunoblotting analyses with
antisera against individual proteins. As expected, the Obggc
was found exclusively in the cytosolic protein fraction (Fig. 4).
None of the proteins were detected in the soluble fraction of
the supernatant. Ng-MIP, MtrE, AniA, BamA, LptD, TamA,
NGO2054, NGO2139, and BamD were found predominantly
in the cell envelopes. In addition, these proteins were also
identified in MVs and some of them were detected in the
cytosol, which suggests that during the exponential phase
they were still tightly associated with the ribosomes.

Subsequently, to investigate the surface accessibility of
selected vaccine candidates, dot blotting experiments and
protease accessibility studies were conducted (Fig. 5A). In the
first approach, intact or lysed N. gonorrhoeae FA1090 cells,
cultured as described above, were spotted on the nitrocellu-
lose membrane and probed with primary antisera against
individual vaccine candidates as well as proteins utilized
as controls. The antibodies against BamA, LptD, TamA,
NGO2054, and NGO2139 cross-reacted with intact gono-
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Fic. 4. Subcellular localization of selected vaccine candidates.
Equal amounts of subproteome fractions (C-cytoplasmic, CE-cell
envelopes, MVs-naturally released membrane vesicles, SS-soluble
fractions of supernatants) derived from FA1090 cultured under stand-
ard growth conditions in GCBL were separated in 4-20% gradient
gels. The proteins were transferred to nitrocellulose and probed with
individual polyclonal rabbit antibodies against tested proteins, as
indicated on the left. Controls included protein markers for the
periplasmic face of the outer membrane (BamD) and cytoplasm
(Obggc) protein.

cocci similarly to anti-Ng-MIP, anti-MtrE, and anti-AniA anti-
sera (Fig. 5B). In contrast, BamD and Obggc were not de-
tected unless cell lysates were applied to the nitrocellulose
and probed with the respective antibodies (Fig. 5C).

In the second approach, intact N. gonorrhoeae cells were
treated with increasing amounts of trypsin. Reactions were
stopped with PMSF, cells were lysed by addition of SDS
loading buffer and probed with appropriate antibodies. As
anticipated, these experiments revealed that the surface ex-
posed proteins Ng-MIP, MtrE, and AniA were susceptible to
digestion by trypsin as their amounts significantly decreased
upon incubation with increasing concentrations of protease
(Fig. 5D). Similar results were obtained by probing samples
with antisera against vaccine candidates BamA, LptD, TamA,
NGO2054, and NGO2139. The vast majority of other proteins
remained unaltered as evidenced by comparison of protein
profiles from trypsin-treated and untreated samples by either
immunoblotting analyses of BamD and Obgg or by staining
using colloidal Coomassie G-250 (Fig. 5D and 5E, respec-
tively), which demonstrated the intactness of the cells.

Cumulatively, these data showed that the five vaccine can-
didates are surface-localized proteins and supported our ear-
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Fic. 5. Assessment of surface exposure of candidate antigens
BamA, LptD, TamA, NGO2054, and NGO2139. A, Experimental
outline of dot blotting of either intact or lysed N. gonorrhoeae FA1090
cells and protease accessibility studies using intact cells. B, Intact
cells of FA1090 were spotted on nitrocellulose and probed with
different polyclonal antibodies, as shown above individual dot blots.
C, Intact and lysed cells were used to detect BamD and Obg, which
were utilized as periplasmic and cytoplasmic protein markers, re-
spectively. D, Intact FA1090 cells were incubated with increasing
concentrations of trypsin (as indicated), lysed, separated in 4-20%
Tris-glycine precast gels and probed with individual antisera. E, In-
tactness of the cells during trypsin treatment was verified by separa-
tion of total-cell lysates by SDS-PAGE and visualization of protein
profiles with colloidal Coomassie G-250 staining.

lier observation (21) that they are also constituents of naturally
released MVs.

Complement-mediated Antibody-dependent Serum Bacte-
ricidal Activity—The ability of recombinant antigens to elicit
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Fic. 6. The purified recombinant variants of BamA, LptD, TamA,
NGO02054, and NGO2139 elicit bactericidal antibodies. Serum bac-
tericidal assays were conducted against 5 X 10 CFUs/ml of FA1090
(serum resistant) and MS11 (serum sensitive) N. gonorrhoeae strains
using the rabbit anti-BamA, anti-LptD, anti-TamA, anti-NG02054,
and anti-NGO2139 post-immune sera and NHS as the complement
source. The rabbit sera were heat-inactivated at 56 °C for 30 min. The
bacterial cells were pre-sensitized with dilutions of the antigen-spe-
cific heat-inactivated sera for 15 min, followed by the addition of NHS

protective antibodies against homologous and heterologous
N. gonorrhoeae strains FA1090 (serum resistant) and MS11
(serum-sensitive) was tested using the rabbit anti-BamA, anti-
LptD, anti-TamA, anti-NGO2054, and anti-NG0O2139 post-
immune sera and NHS as the complement source (101). As
expected (67), FA1090 was more resistant than MS11 to
bactericidal killing by all the sera examined (Fig. 6). All antisera
displayed bactericidal activity, and overall, the most potent
against both FA1090 and MS11 were anti-BamA, anti-
NGO2054, and anti-NGO2139. In particular, the bactericidalg
titers against FA1090 and MS11 were 32 and 512 for anti-
BamA, respectively, and 20 and 400 for anti-NG020154 and
anti-NG02139.

Conservation of Vaccine Candidates—The conservation of
the selected vaccine candidates (BamA, LptD, TamA,
NGO2054, and NGO2139) was examined by analyzing the
presence of polymorphic sites at both nucleotide and amino
acid levels using the completed genome sequence of strain
FA1090 (Gen Bank accession number AE004969), the draft
genome sequences of 14 different N. gonorrhoeae strains
(downloaded from the Broad Institute http://www.broadinstitute.
org/annotation/genome/Neisseria_gonorrhoeae/MultiHome.html,
and the 14 WHO 2015 reference strains (10, 28, 29). Overall,
these analyses demonstrated that our five vaccine candidates
were well conserved among 29 examined gonococcal iso-
lates, with the number of nucleotide/amino acid polymorphic
sites ranging from 2 (0.23%)/0 (0%) for NGO2139 to 21
(0.88%)/7 (0.88%) for BamA (Table IlI).

Subsequently, the expression of selected vaccine candi-
dates was assessed using whole-cell lysates derived from a
panel of temporally and geographically diverse N. gonor-
rhoeae strains (Fig. 7, supplemental Table S1). Because
BamA and LptD have homologs in other Gram-negative bac-
teria, the specificities of the antisera were also tested using
E. coli. All of the vaccine candidates were expressed by the
36 N. gonorrhoeae isolates; BamA, LptD, and NGO2139
showed similar abundance, whereas TamA and NGO2054
seemed to be expressed at variable levels in some gonococ-
cal strains. In addition, none of the antisera cross-reacted with
the E. coli whole-cell extracts (Fig. 7).

Together, these studies demonstrated that BamA, LptD,
TamA, NGO2054, and NGO2139 are conserved and ex-
pressed not only in the commonly used laboratory strains
(FA1090, MS11, F62, and 1291) but also clinical isolates from

at 10% final concentration, and incubation continued for 30 min. The
CFUs were determined by plating bacteria on solid media. The aver-
age percent killing was determined from at least four independent
experiments and was calculated as the number of CFUs in samples
incubated with rabbit post-immune sera and NHS to the number of
CFUs recovered from samples treated with rabbit post-immune sera
and HI-NHS. N. gonorrhoeae viability was not affected in any of the
control samples.
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Fic. 7. Expression of potential vaccine targets was evaluated using a panel of 36 temporally and spatially diversified GC isolates.
Clinical isolates of N. gonorrhoeae including WHO reference strains (as indicated) were harvested from GCB, matched by equivalent ODg
units and resolved in 4-20% Tris-glycine precast gels. Following transfer onto nitrocellulose membrane and blocking, the proteins were
probed with polyclonal rabbit antisera against BamA, LptD, TamA, NGO2054, and NGO2139. An E. coli strain (ER2566) was used as a

negative control.

Baltimore and Seattle, as well as the 2015 WHO reference
strains (10, 28, 29).

Final Remarks— Gonorrhea occurs at a high incidence and
has a major impact on reproductive and neonatal health
worldwide (2). Alarmingly, with each new antibiotic introduced
for gonorrhea, resistance has emerged, including resistance
to penicillins, tetracycline, macrolides, fluoroquinolones, and
recently the third-generation cephalosporins. Current treat-
ment options are seriously limited, and the development of a
gonorrhea vaccine is the only long-term solution to this prob-
lem. Progress on gonorrhea vaccines has been slow, in part
because of the high number of surface-exposed molecules in
N. gonorrhoeae that undergo phase or antigenic variation and
a lack of understanding of protective responses. Gonorrhea
vaccine development can therefore benefit from a compre-
hensive, unbiased approach for antigen discovery. The ap-
plication of comparative proteomics described in this study,
together with previous comprehensive analyses of the N.
gonorrhoeae cell envelopes and MVs (21), as well as other
global proteomic approaches are ideally suited for identify-
ing promising N. gonorrhoeae antigens and to guide future
gonorrhea vaccine development (102). These newly identi-
fied cell envelope-associated proteins can then be sub-
jected to rigorous evaluation that includes their expression
as recombinant proteins in E. coli, examination of their sur-
face localization and conservation among temporally, geo-
graphically, and genetically diverse panels of gonococcal
strains, assessment of their ability to induce antibodies that

react against heterologous N. gonorrhoeae strains and are
bactericidal, functional characterization, identification of
protective epitopes, testing different combinations of anti-
gens with various adjuvants and routes of immunization, as
well as their protective capabilities in the gonorrhea mouse
models. These studies could ideally lead to a selection of
rational vaccine candidates that should be further tested
alone and in different combination(s) in the human male
challenge model of gonococcal infection to examine pro-
tection against N. gonorrhoeae, as well as the safety and
nature of the immune responses generated. Finally, our
studies also offer an unbiased overview of the N. gonor-
rhoeae cell envelope at the proteome level. Accordingly, the
new research leads generated could provide novel paths for
the scientific community to investigate the mechanisms that
underpin N. gonorrhoeae pathophysiology. This, in turn,
may drive the rational design of new preventive, diagnostic,
and therapeutic interventions.
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