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Abstract

A new method is proposed that extends the use of regularization in both lasso and ridge regression 

to structural equation models. The method is termed regularized structural equation modeling 

(RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of 

creating easier to understand and simpler models. Although regularization has gained wide 

adoption in regression, very little has transferred to models with latent variables. By adding 

penalties to specific parameters in a structural equation model, researchers have a high level of 

flexibility in reducing model complexity, overcoming poor fitting models, and the creation of 

models that are more likely to generalize to new samples. The proposed method was evaluated 

through a simulation study, two illustrative examples involving a measurement model, and one 

empirical example involving the structural part of the model to demonstrate RegSEM’s utility.
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The desire for model simplicity in exploratory factor analysis (EFA) has led to the long-

standing goal of achieving simple structure. By simple structure, we are broadly referring to 

a pattern of factor loadings where each indicator is influenced by a minimal number of latent 

factors, preferably one. Multiple researchers have set different criteria for achieving simple 

structure, with the most notable being Thurstone (1935, 1947). However, the desire for 

simplicity in model structure comes by many names, including the aforementioned simple 

structure (Thurstone, 1935), variable complexity (Browne, 2001), parsimony (Marsh & Hau, 

1996; Raykov & Marcoulides, 1999), “sparse loadings” in the context of principal 

components analysis (PCA; Zou, Hastie, & Tibshirani, 2006), and finally, sparsistency, 

denoting that all parameters in a sparse model that are zero are correctly estimated as zero 

with probability tending to one (Lam & Fan, 2009). Across multiple fields and different 

terminology, the goal is roughly the same: to accurately and efficiently estimate a model that 

is parsimonious in allowing users to easily interpret the model’s representation of reality.

However, simpler is not always better. Overconstraining models in an attempt to make 

interpretation easier, can lead to unacceptable levels of misfit and biased parameter estimates 

Correspondence should be addressed to Ross Jacobucci, Department of Psychology, University of Southern California, SGM 501, 
3620 South McClintock Avenue, Los Angeles, CA 90089, USA. jacobucc@usc.edu. 

HHS Public Access
Author manuscript
Struct Equ Modeling. Author manuscript; available in PMC 2016 July 08.

Published in final edited form as:
Struct Equ Modeling. 2016 ; 23(4): 555–566. doi:10.1080/10705511.2016.1154793.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Hsu, Troncoso Skidmore, Li, & Thompson, 2014; Muthén & Asparouhov, 2012). In a 

confirmatory factor analysis (CFA), biased parameter estimates manifest as inflated 

covariances between latent factors caused by not allowing cross-loadings or residual 

covariances. It is not that the goal of simple structure is a poor choice, but that blind 

adherence to this strategy can lead to bias and misinterpretation in model evaluation and 

selection. Although more complex models typically fit better, improved fit comes at the loss 

of interpreting the meaning of each factor and relations between factors. In addition to the 

increased interpretability of simpler models, parameter estimates often have smaller standard 

errors, allowing for more precise substantive conclusions (Raykov & Marcoulides, 1999).

The question that remains is this: When we conduct a purely exploratory search or wish to 

improve on a poor fitting model, how can we conduct this search, and how do we do it well? 

Specification search (e.g., Kaplan, 1988; MacCallum, 1986) refers to the modification of a 

model to improve parsimony or fit. This exploratory phase of model modification in 

structural equation modeling (SEM) has traditionally been conducted using modification 

indices (for overview, see Chou & Huh, 2012). Conducting specification search with the use 

of modification indices is fraught with problems, including capitalizing on chance 

(MacCallum, Roznowski, & Necowitz, 1992), as well as a low probability of finding the best 

global solution (Chou & Bentler, 1990). Model modification with the use of modification 

indexes might work well if the number of misspecifications is small, but when there is a 

higher degree of uncertainty regarding the model structure, global search strategies are 

needed. This has led to the proposal of heuristic search algorithms such as ant colony 

optimization (Leite, Huang, & Marcoulides, 2008; Marcoulides & Drezner, 2003), genetic 

algorithm (Marcoulides & Drezner, 2001), and tabu search (Marcoulides, Drezner, & 

Schumacker, 1998; for overview, see Marcoulides & Ing, 2012).

Outside the field of psychometrics and SEM, there has been an increasing focus on 

developing methods for creating sparse models, particularly in regression and graphical 

modeling. Although it is beyond the scope of this article to provide a detailed account of this 

work (for overview, see Hastie, Tibshirani, & Wainwright, 2015; Rish & Grabarnik, 2014), 

there are specific developments with latent variable models that are noteworthy. These 

methods for sparsity have focused on the development of alternative cost functions that 

impose a penalty on the size of certain parameters. This method for penalizing the size of 

certain parameters is generally referred to as regularization, shrinkage, or penalization. The 

drawback of these alternative cost functions is that they induce model misfit and a reduction 

in explained variance. In the context of latent variable models, sparse estimation techniques 

were first applied to PCA through the use of penalization to create sparse loadings (Zou et 

al., 2006) along with alternative methods of rotation (Trendafilov & Adachi, 2014). Similar 

methods have also been applied to EFA through the use of penalized maximum likelihood 

estimation (Choi, Zou, & Oehlert, 2010; Hirose & Yamamoto, 2014a; Ning & Georgiou, 

2011).

Although regularization has been introduced in the context of PCA and EFA, less research 

has been done in the context of CFA, or SEM in general, where the researcher has more 

influence in constraining the model parameters based on theory. An example is when a 

researcher is creating a psychometric scale that contains a mixture of items known to be 
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good items of the construct of interest and items that have been recently developed. Factor 

loadings for the previously validated items could be left free and penalties could be added to 

the factor loadings of the newly created items. This allows the researcher to test the 

inclusion of the new items while leaving the loadings for the previously validated items 

unpenalized to stabilize the estimation of the factor(s) of interest. This is precisely the area 

between EFA and CFA, between purely unrestricted and restricted model specification, in 

which a void exists in options for model creation in the frequentist framework. Model 

creation is very rarely conducted in a purely exploratory or confirmatory manner. It is this 

middle ground that has led to problems, where researchers use CFA for exploratory 

purposes, when EFA would be best (Browne, 2001).

In an attempt to extend the use of regularization to SEM, a new method is proposed, termed 

regularized SEM (RegSEM). RegSEM adds penalties to specific model parameters set by 

the researcher, allowing greater flexibility in model specification and selection. 

Traditionally, model selection is a categorical choice; selection is between a small number of 

models that were either hypothesized or created as a result of poor fit. Adding a sequence of 

small penalties to specific parameters turns model selection into a continuous choice, where 

the resulting models lie somewhere on the continuum between the most unrestricted and 

restricted models. For instance, a researcher could start with a completely unconstrained 

factor model, selecting three latent factors, and allowing every item to load on every factor. 

Penalties for each factor loading parameter could be gradually increased until every loading 

equals zero. An external criterion such as performance in a holdout data set, or an 

information criterion that takes into account complexity, could then be used to choose one of 

the models. By building penalties directly into the estimation, the researcher has more 

flexibility in testing various models, while building in safeguards to prevent overfitting. 

Model selection of this nature is common in the data mining literature but in psychometrics 

it is rarely, if ever, used.

The objective in developing RegSEM is not necessarily to replace existing methods in 

psychometrics, but instead to tackle two different goals. One is to transfer the benefits of 

regularization to SEM. As demonstrated in the studies that follow, RegSEM can be applied 

in ways that no traditional method in psychometrics could be applied. The second goal is to 

show the general applicability of RegSEM for creating parsimonious SEMs.

The purpose of this article is to give a detailed overview of RegSEM, demonstrating its 

utility in a simulation study, two illustrative examples involving a measurement model, and 

one empirical example involving the structural part of the model. To set the stage for 

RegSEM we cover the matrix formulation of SEMs, as well as previous work on 

regularization in both regression and EFA. RegSEM is then discussed in detail, followed by 

a simulation study to test its ability to choose the correct model and evaluate various fit 

indexes in conjunction with RegSEM. More detail on choosing a final model and when 

RegSEM is and is not appropriate is then covered with two illustrative examples. Finally, an 

empirical example demonstrating the use of regularization at the structural level of an 

structural equation model is provided. We conclude with recommendations on the use of 

RegSEM across different contexts and directions for future applications and extensions.
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 BACKGROUND

 Reticular Action Model

To provide the background on general SEM and make clear what matrices are available for 

regularization, we briefly detail Reticular Action Model (McArdle, 2005; RAM; McArdle & 

McDonald, 1984) notation as it provides a 1:1 correspondence between the graphical and 

matrix specifications (Boker, Neale, & Rausch, 2004), as well as only requiring three 

matrices to specify the full SEM. Additionally, the current implementation of RegSEM only 

uses the RAM matrices, making it necessary to understand the notation. One of the main 

benefits in using RAM notation is that only one matrix is needed to capture the direct 

effects. As direct effects might be the most natural parameters for regularization, this makes 

formulation simpler than having to add penalties to more than one matrix.

To illustrate the matrix specification with RAM notation, we use a one-factor CFA model. In 

this model, depicted in Figure 1, there is a single latent factor, f1. For identification, we fixed 

the variance of f1 to 1. This allows us to estimate factor loadings (λ1 − λ4) and unique 

variances (u1−u4) for each of the manifest variables (X1−X4).

In RAM, the three matrices are the filter (F), the asymmetric (A), and the symmetric (S). 

The F matrix is a p × (p + l) matrix, where p is the number of manifest variables, and l is the 

number of latent variables. This matrix contains ones in the positions corresponding to each 

manifest variable, and zeros elsewhere. In this case, with four observed variables (X1−X4) 

and one latent variable (f1), the F matrix has four rows and five columns, such that

Directional relationships, such as directed paths or regressions between variables (factor 

loadings), are contained in the A matrix. In Figure 1, the only directed paths are the four 

factor loadings, each originating from the factor f1 and going to each of the observed 

variables. This results in an A matrix of

In A, there are no relationships between the observed variables (Columns 1–4), and the only 

entries are in Column 5 for the factor f1. If we wished to incorporate the mean structure 

(necessary for longitudinal models), we would add an additional column to A to include the 

unit constant. Because none of the models tested in the remainder of this article include 

mean structures, details regarding their inclusion in matrices and the resultant expectations 

are omitted (see Grimm & McArdle, 2005; McArdle, 2005).
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The S matrix is a square matrix that contains all two-headed arrows, which can be either 

variances or covariances. In Figure 1, there is a unique variance for each of the manifest 

variables and one variance for f1. This results in

In this case, the factor variance has been constrained to 1. If, for instance, we wished to add 

a covariance between X1 and X2, we would add a free parameter to position [2,1] and [1,2] 

in S.

After having specified these three matrices, we can now calculate the expected covariance 

matrix (McArdle & McDonald, 1984),

(1)

where−1 refers to the inverse of a matrix and ′ is the transpose operator. Once the expected 

covariance matrix is calculated, this can then be inserted into a loss function such as 

maximum likelihood (Jöreskog, 1969; ML; Lawley, 1940),

(2)

where C is the sample covariance matrix and | · | is the determinant. Given the brief overview 

of RAM and its reference to ML, we can now incorporate regularization. For further detail 

underlying matrix specification and algebra see McArdle (2005).

 Regularized Regression

The two most common procedures for regularization in regression are the ridge (Hoerl & 

Kennard, 1970) and the least absolute shrinkage and selection operator (lasso; Tibshirani, 

1996); however, there are various alternative forms that can be seen as subsets or 

generalizations of these two procedures. Both methods minimize a penalized residual sum of 

squares. Given an outcome vector y and predictor matrix X ε Rn×p, the ridge estimates are 

defined as

(3)

where β0 is the intercept, βj is the coefficient for xj, and λ is the penalty that controls the 

amount of shrinkage. Note that when λ = 0, Equation 3 reduces to ordinary least squares 
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regression. As λ is increased, the βj parameters are shrunken towards zero. The lasso 

estimates are defined as

(4)

In lasso regression, the l1-norm is used, instead of l2-norm as in ridge, which also shrinks the 

β parameters, but additionally drives the parameters all the way to zero, thus performing a 

form of subset selection (for more detail, see Hastie, Tibshirani, & Friedman, 2009; 

Tibshirani, 1996).

Although these methods for regularization are intuitively appealing, the question of how to 

best choose λ remains. Two different methods dominate: using a fit index that takes into 

account complexity, such as the Akaike information criteria (AIC; Akaike, 1973) or 

Bayesian information criteria (BIC; Schwarz, 1978), or using cross-validation (CV). The 

simplest form of CV, and the type that has been used widely in SEM applications (Browne, 

2000), is splitting the sample into two: a training and test data set. A large number of 

prespecified λ values can be utilized (e.g., 40) with each of these models run on the training 

data set. Instead of examining the fit of the model at this point, the parameter estimates are 

then treated as fixed parameters and model fit is re-estimated on the test data set. This almost 

invariably results in worse model fit, but ultimately gives a more accurate estimate of the 

generalization of the model. After all of these models have generated fit on both the training 

and test data sets, it is common to pick the model that results in the best fit on the test data 

set, or choose the most penalized model (most sparse) within one standard error of the best 

fitting model (Hastie et al., 2009).

 Regularized EFA and PCA

First proposed in the context of PCA (Jolliffe, Trendafilov, & Uddin, 2003; Zou et al., 2006), 

sparse estimation procedures for dimension reduction have flourished with a number of 

different methods proposed for both PCA and EFA (Choi et al., 2010; Hirose & Yamamoto, 

2014b; Jung & Takane, 2008; Ning & Georgiou, 2011). Jung and Takane (2008) proposed 

penalizing the diagonal of the observed covariance or correlation matrix to overcome the 

propensity for EFA to yield improper solutions (negative unique variances). This is in 

contrast to other sparse EFA methods that explicitly use different forms of regularization as a 

method of achieving a sparse structure, similar to the original goal of achieving simple 

structure. A sparse structure denotes a factor loading matrix with a large number of zeroes, 

leading to simpler interpretations of each latent factor. This is in contrast to what is typically 

done in EFA (PCA), where an orthogonal factor (component) structure is estimated and a 

specific number of factors (components) are retained. This solution then undergoes rotation, 

either oblique or orthogonal, to achieve simple structure. An alternative method is that of 

target or procrustean rotation (Browne, 2001), where a mechanical rotation is replaced with 

researcher-specified target loadings of zero. This represents a more flexible approach, 

allowing for input from the researcher on producing a sparse structure. Typically, this 
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rotation does not lead to loadings of exactly zero. Instead, loadings below some prespecified 

threshold are either omitted from display, or are replaced by truncated values. Needless to 

say, this is a nonoptimal solution to obtaining a sparse structure (Trendafilov & Adachi, 

2014).

 REGULARIZED STRUCTURAL EQUATION MODELING

As an attempt to generalize forms of regularization from the regression framework to that of 

SEMs a new general cost function is proposed for regularization. Although regularization 

could be added to any form of estimation, ML will be the only estimation method detailed. 

As previously detailed in Equation 2, the ML cost function can be written as

(5)

Using the ML cost function as a base, the general form of RegSEM estimation is

(6)

where λ is the regularization parameter, and takes some value between zero and infinity. 

When λ is zero, ML estimation is performed. P(·) is a general function for summing the 

values of one or more matrices. The two most common forms of P(·) include both the lasso 

(‖·‖1), which penalizes the sum of the absolute values of the parameters and ridge (‖·‖2), 

which penalizes the sum of the squared values of the parameters. The norm in this case can 

take any form of either vector or matrix, and allows any combination of parameters or 

matrices. The general form of RegSEM is no different from other regularization equations. 

The distinction between RegSEM and other forms of regularization comes in the 

specification of which parameters to penalize. RegSEM allows the regularization of 

parameters from general SEM models. Regularized parameters can come from either the A 
or S matrices in RAM notation; however, it could easily be generalized to include matrices 

from other SEM matrix configurations (e.g., LISREL). Practically, because the value of λ is 

the same for every parameter, only parameters from either A or S, not both, should be 

penalized in a model. The penalization of parameters from one matrix in a sense pushes the 

parameter values into the other matrix (penalizing the A matrix (factor loadings) pushes the 

values into the corresponding entries of the S matrix (residual variances), and vice versa), 

therefore, estimation problems could occur if dependent parameters were both penalized. 

One important detail, with regard to implementation, is to standardize variables prior to 

estimation because of the summation of parameter estimates in the penalty term. By 

standardizing the variables, we ensure that each penalized parameter is given an equal 

weight in contributing to model fit.

The most obvious application of Equation 6 is to penalize the A matrix. As ML and ordinary 

least squares can be shown to be equivalent in regression under certain assumptions, the 

exact same estimates from lasso regression can be produced by adding lasso penalties to the 

direct effects in a regression model specified as a SEM. It is worth noting that to get an exact 
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equivalence, the residual variance for the outcome variable needs to be fixed in structural 

equation model as this is not a freely estimated parameter in regression (instead a by-product 

of summing the squared residuals). As a result of this equivalence, RegSEM can be seen as a 

more general form of regularization, with lasso and ridge regression viewed as subsets.

As in regularized regression, an optimal value of λ is chosen by using a large number of 

values (typically 20–100) and running the model for each value of the penalty. In RegSEM, 

the initial penalty should be zero and the penalty should increase thereafter. This is done 

because of the propensity for estimation problems in SEMs with latent variables. 

Furthermore, instead of increasing the penalty until all penalized parameters reach zero, 

testing can be halted once estimation problems occur. This might be most relevant in 

penalizing factor loadings, where after a high enough penalty is reached, a latent factor no 

longer has strong enough indicators to reach a stable solution.

RegSEM is implemented as a package in R (R Core Team, 2015), termed regsem. The 

regsem package makes it easy for the researcher to fit a model with the lavaan package 

(Rosseel, 2012), and use this model as the basis for regularization with regsem. The regsem 
package uses the RAM matrices, and has built in capabilities for specifying a large number 

of penalties with and without cross-validation.

 Degrees of Freedom

The degrees of freedom for a model using RAM matrices is

(7)

where r(C) is the rank of the sample covariance matrix and r(Ȧ, Ṡ) is the rank of the matrix 

of first derivatives for A and S at the solution. When an element of A or S is shrunken to 

zero, the first derivative necessarily goes to zero, resulting in an increase in degrees of 

freedom. This concurs with work done on degrees of freedom for lasso regression, as Zou, 

Hastie, and Tibshirani (2007) proved that the number of nonzero coefficients is an unbiased 

estimate of the degrees of freedom for regression. Practically, the degrees of freedom 

changes only when the beta coefficient for a predictor is shrunken to zero. In the context of 

SEM, this translates to an increase in the degrees of freedom when a factor loading or 

covariance is shrunken to zero. It is worth noting that this only occurs for lasso penalties, as 

ridge parameters are not shrunken all the way to zero. Practically speaking, changing the 

degrees of freedom as parameters are shrunken to zero can have a large impact on assessing 

model fit. For instance, when assessing the fit on the training sample, introducing penalties 

without changing the degrees of freedom will only result in a decrement in fit (e.g., when 

using the root mean square error of approximation [RMSEA], Tucker–Lewis index [TLI], or 

comparative fit index [CFI]).

 STUDY 1: SIMULATION

The purpose of Study 1 was to determine the ability of RegSEM with lasso penalties to 

perform a form of subset selection through choosing a final model with selected factor 
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loadings specified as zero. To choose a final model, and it is unknown which fit index is best 

to use, across either the training or test data set. To examine this question, a number of 

different fit indices were used to choose a final model. Selection involved choosing the 

model that fit best according to each fit index. A CFA model was used, with the population 

parameters simulated at the values in Table 1. Dash marks refer to fixed values of zero in the 

population model. Performance was judged through measuring the percentage of false 

positives (number divided by 9), or choosing a final model that concluded factor loadings 

that were simulated as zero were in fact nonzero.

Each model had nine factor loadings simulated with a true value of zero, but were in fact 

allowed to be freely estimated. The simulateData() function from the lavaan package 

(Rosseel, 2012) in R was used to simulate both training and test data sets that conformed to 

the factor structure and at the specified sample size. Four different sample sizes were used, 

100, 400, 2,000, and 10,000. It was expected that performance would increase as sample size 

increased due to less random noise in the simulated factor loadings. The results of the 

simulation are displayed in Table 2.

The fit indices used to judge performance included the ML cost function Ftrain and Ftest, 

non-centrality parameter (NCP) NCPtrain and NCPtest, and the root mean square error of 

approximation (RMSEA) RMSEAtrain and RMSEAtest. In the test versions of each fit index, 

the covariance matrix from the test data set was used in Equation 7 instead of the train 

covariance matrix. Finally, both the AIC (AICtrain) and BIC (BICtrain) were only used with 

the training data set. This was due to the degree of penalty for extra parameters in Equation 

9, which was thought to be enough to increase the generalizability to alternative data sets.

It is important to note that because both the NCP and RMSEA take into account degrees of 

freedom, their values could decrease (get better) even as the FML becomes worse. This is due 

to the degrees of freedom increasing as additional factor loadings are set to zero. Because of 

this, both the NCP and RMSEA might do well when using the train data despite FML 

monotonically increasing as λ is increased. The results of Study 1 are displayed in Table 2. 

False negatives (how often the final model over-penalized the true factor loading of 0.2 and 

concluded that it was zero) are not displayed because the percentage of errors was very low. 

Across the sample sizes, the BIC performed the best, especially for larger sample sizes. For 

N = 100, the RMSEAtest had the lowest percentage of error. This could be due to how 

sample size is factored into the BIC, whereas the RMSEA is not affected by sample size.

The results suggest that sample size played a large role in the use of regularization in SEM. 

Across all of the fit indices, model selection improved as sample size increased. 

Additionally, the results of all fit indices were better in the test sample versus the training. 

This is not surprising given the amount of research on regularization with cross-validation. It 

is interesting that even when combining a fit index that penalizes complexity, such as the 

NCP or RMSEA, none of the results suggest that RegSEM over-penalized models when 

examining the results from the test sample. The lack of false negatives, combined with none 

of the false positives reaching zero, provides evidence for this conclusion and might lend 

support to choosing the least complex model within one standard error of the best fit as in 

regression (Hastie et al., 2009). Additionally, with the RMSEA and NCP proving more 
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accurate in model selection in comparison to FML, the importance of taking into account the 

change in degrees of freedom is highlighted.

Overall, the results are very promising. Even though error rates for some of the fit indexes 

were above 20%, this is not cause for concern. The resulting erroneous factor loadings were 

on the order of 0 to 0.1, and might be up for elimination simply on the grounds of their small 

magnitude. When the goal of regularization is to achieve simple structure or subset selection 

in the context of factor analysis, the BIC was best, with the RMSEAtest coming in a close 

second. More research is needed with other forms of structural equation models to determine 

if the same results hold. The purpose of this simulation was not to show that performing 

subset selection with RegSEM completely negates the need for human judgement, but 

instead that RegSEM can identify models that are closer to the truth and might indicate 

further model modification that could bring researchers closer to the right or best answer.

 STUDY 2: FIT ILLUSTRATION

The question of when regularization can improve model fit, and when using non-penalized 

estimation might be best still remains. In some cases, the initial model might fit well, 

without too complex of a representation. Further, the addition of regularization might not 

improve the fit of the model on a holdout sample. The use of regularization does not 

guarantee improved model fit with respect to generalizability. In these scenarios, the starting 

structure of the model might be incorrect; either a different factor structure is needed or 

other model assumptions are violated. This can only be determined with a thorough 

examination, assessing multiple fit indices across a spectrum of penalties.

In the first illustrative example, data were simulated using the simulateData() function from 

the lavaan package. Using a sample size of 500, the population model was simulated to have 

three factors, with three manifest variables as indicators for each factor, with no cross-

loadings. However, for demonstration purposes, RegSEM was used with a model that 

allowed three cross-loadings for each factor in addition to the three true loadings. To 

illustrate a situation where little was known regarding the structure of the factor loadings, 

other than that there were six plausible indicators for each factor, penalties were applied to 

all factor loadings (factor variances were constrained to be one). The values of FML for both 

the train and test data sets are displayed in Figure 2.

The addition of shrinkage moved the cross-loading parameters closer to zero, resulting in a 

better fit on the test data set despite also penalizing the true factor loadings. This is 

evidenced by the slight convexity to the test fit line, with a minimum achieved at a value of λ 

greater than zero. Note that fit will always be worse on the training data set when using a fit 

index that does not account for model complexity. In this situation, a two-step strategy might 

be advisable. The first step penalizes all of the factor loadings to determine which loadings 

might be zero. Once the zero loadings are determined, re-fitting the model with only the 

non-zero factor loadings and no regularization.

However, the use of penalties does not always improve test model fit, which is demonstrated 

in Figure 3. In Figure 3, the Holzinger-Swineford data set (Holzinger & Swineford, 1939) 
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was used to test a one-factor model with a subset of nine cognitive scales. This initial fit was 

not good (χ2 (27)= 348.7, p <.001), and the increase of penalties only made the train and test 

model fit become worse (monotonic increase in each fit line). In this case, it would be 

necessary to start with a different factor structure. The best fitting structure to these data is 

generally thought to be a bi-factor model with one general factor and three specific factors. 

In situations like this where the ML fit is poor and the use of regularization on the factor 

loadings only makes it worse, it might be advisable to conduct a search for the best model. 

To use RegSEM to search among different factor structures, not just for which indicators are 

necessary within a single factor structure, it is generally best to start with the most complex 

model and then add penalties to see which factors, loadings, and so on are unnecessary.

To get a feel for how regularization influences parameter estimates, the estimates for the 

nine factor loadings in the Holzinger-Swineford sample were plotted in Figure 4 for lasso 

penalties and in Figure 5 for ridge. In Figure 4, some factor loadings are quickly set to zero, 

whereas the estimates in Figure 5 all plateau at a point greater than zero. If the goal of 

regularization was to remove factor loadings (set to 0), then plotting the estimates across the 

range of λ values can be particularly helpful. This facilitates the inclusion of domain or 

theoretical knowledge into the decision-making process. For instance, in Figure 4, the factor 

loadings that were set to zero rather quickly could be the most natural candidates for 

removal, even without looking at the fit indices.

 STUDY 3: EMPIRICAL EXAMPLE

To demonstrate the utility of RegSEM at the structural part of a multiple indicators multiple 

causes (MIMIC) SEM, we analyzed data from the 2006 Health and Retirement Study (HRS; 

Juster & Suzman, 1995). The motivating model, depicted in Figure 6, was a one-factor CFA 

model using 7 items (rc1–rc7) from the Immediate Recall task. The latent variable, 

conceptualized as short-term memory (STM), was predicted by five covariates: age, gender, 

race, hispanic, and years of education (Ed). Fitting the non-regularized model (Model 1) 

resulted in the estimates for the regressions that are displayed in Table 3.

All of the regression coefficients in Model 1 were significant at p <.001. The question we 

were trying to answer in this analysis was not what covariates have a significant relationship 

in predicting the latent variable, but instead, which regressions were likely to generalize 

beyond this sample. With a sample size of over 18,000, it was expected that every regression 

coefficient would be significant. One alternative is that we could have chosen which 

covariates to keep based on effect sizes, although this again does not get to the question of 

what is likely to generalize beyond the HRS sample. To get at generalizability, we turned to 

regularization.

Using RegSEM, we could apply either ridge or lasso penalties. We chose to use lasso 

penalties to stabilize the estimates and perform subset selection. Lasso penalties tend to 

over-penalize parameters that were not set to zero (Hastie et al., 2009). Away to overcome 

this is to use lasso penalties to first identify the nonzero paths, and then run an unconstrained 

model (i.e., linear regression with no penalties) using only these variables in the model. This 

is known as the relaxed lasso (Meinshausen, 2007). Therefore, in addition to using lasso 

Jacobucci et al. Page 11

Struct Equ Modeling. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



penalties (Model 2), we kept the non-zero regressions from this model and re-estimated the 

model without penalties (Model 3). The factor loading estimates from Model 1 were used as 

fixed estimates for both Models 2 and 3. Imposing this form of invariance is necessary for 

both ensuring that the formulation of the latent construct stays the same across penalties, and 

also preventing the pushing of parameter estimates from the structural regression estimates 

to the factor loadings. Constraining the factor loadings ensures that the regularization only 

affects the regression parameters.

To choose the optimal value of penalty (λ), we used the RMSEA with cross-validation. The 

HRS sample was randomly split into two: a training and test data set. RegSEM was 

conducted on the train data set with twenty values of λ, and the RMSEA was tested on the 

test data set to get a better understanding of how the model will fit beyond the current 

sample.

The lowest value of RMSEA occurred at a λ of 0.7. Rerunning the RegSEM model at this 

penalty value produced the estimates in the column for Model 2 in Table 3. The only non-

zero regression was for age. Removing the penalty and only keeping age as a predictor of 

STM for Model 3, we can see in Table 3 that the resulting parameter estimate is almost the 

same as in Model 1. As a result, using RegSEM with lasso penalties pared away all but one 

covariate, age, suggesting that going forward this might be the only important variable to use 

as a covariate for conditioning the model estimates.

 DISCUSSION

The application of RegSEM in the above two studies reported here represents a small subset 

of the possible ways to use regularization with SEM models. These studies demonstrated 

that RegSEM makes model choice nearly continuous, and allows for a more flexible 

application of finding the model structure that increases both interpretability and 

generalizability. Study 1 showed RegSEM had a high propensity for choosing the correct 

model in a scenario where non-penalized estimation would result in choosing a model with a 

large number of non-zero factor loadings that are in reality zero. Study 2 provided a 

demonstration of scenarios where RegSEM can and cannot improve the fit of the initial 

model, and how plotting the fit across the range of λ values can assist in determining the best 

tool for the data. Finally, Study 3 demonstrated the application of RegSEM with lasso 

penalties on the structural part of a MIMIC model with the HRS data set. This example can 

be seen as a direct translation of lasso regression to the use of lasso penalties for the 

regression parameters in a structural equation model.

As it currently stands, we are unaware of any method to regularize specific parameters at the 

structural model of an SEM. Of course, one could test the measurement model, and then 

generate a factor score to be entered into one of the many pieces of software for conducting 

regularized regression. However, creating factor scores is fraught with problems (e.g., Grice, 

2001), and this strategy does not generalize to more complicated models that might have 

more latent factors, for instance. Although Study 3 included only a small number of 

predictors in the structural model, this empirical example demonstrates an additional way 

that RegSEM can be used. With the advent of Big Data, it will become increasingly common 
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to have extremely large models with possibly hundreds or thousands of covariates. To make 

sense out of this high level of complexity, using regularization with lasso penalties, for 

instance, will become increasingly useful to pare away unnecessary and uninformative 

parameters, allowing the researcher a clearer picture of what the model says about reality. 

RegSEM gives the researcher the flexibility to use theoretical input in shaping the model 

while exploring alternative specifications of both the measurement and structural parts of 

complex SEMs to enhance either interpretability or generalizability.

The purpose of introducing a new form of estimation for SEMs was not necessarily to show 

how it is better in certain scenarios, but instead to show that one general method can 

accomplish several tasks that would have required using separate methods. As previously 

mentioned, the contexts examined in Studies 1 through 3 represent a small subset of the 

possible applications of RegSEM. In addition to the aforementioned benefits, regularization 

can provide stable solutions in the case of multicollinearity among predictors and when the 

number of predictors is larger than the number of cases (p > n; for overview, see Hastie, et 

al. 2009; McNeish, 2015). Additionally, given the aforementioned advent of Big Data, 

regularization has provided more accurate solutions in the case of recovering high-

dimensional signals in areas such as image reconstruction and genomic data, to name a few 

(for overview, see Hastie et al., 2015; Rish & Grabarnik, 2014). Given that this article has 

focused on using RegSEM mainly for model search and modification, future research should 

investigate other applications of RegSEM outside this context.

The question of whether ridge or lasso penalties (or other forms of penalty) should be used 

and in what circumstances remains. If subset selection is the aim, lasso penalties are clearly 

better. Lasso penalties shrink parameters all the way to zero, whereas ridge estimates never 

reach zero. RegSEM with ridge penalties can be seen as an extension of ridge SEM (Yuan & 

Chan, 2008; Yuan, Wu, & Bentler, 2011), where a ridge penalty is added to the diagonal of a 

covariance or correlation matrix. In contrast, RegSEM can be seen as a method for adding 

various types of penalties to any part of the SEM.

Although a limited number of applications of RegSEM are detailed, there are a wide array of 

possible applications not covered, particularly in more complex SEMs. One possibility is 

applying regularization to longitudinal models specifying multiple curves. This might be 

understood easiest with latent-growth curve models (McArdle & Epstein, 1987; Meredith & 

Tisak, 1990), where models can be tested with anywhere from a linear model with fixed 

factor loadings from the slope to the latent basis growth model, which can be seen as an 

exploratory approach to determining the optimal shape of development (Grimm, Steele, 

Ram, & Nesselroade, 2013). One could penalize the deviation in the slope from a linear 

curve, to produce a slope on the continuum between the most constrained, fixing all slope 

parameters as in the case of linear basis, to the least constrained, in the case of the latent 

basis growth model. Particularly through the use of cross-validation, the final model could 

be chosen on the potential for generalizability. RegSEM allows for more robust testing of 

models and their potential to generalize, overcoming the problems with only testing models 

that differed largely in their model specification. RegSEM turns model selection into a more 

continuous decision.
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An area for future research is the comparison of frequentist and Bayesian methods for 

regularization in SEM. Although not marketed as a method for performing regularization or 

more broadly for achieving simple structure, Bayesian SEM (BSEM; Kaplan & Depaoli, 

2012; Lee, 2007; Levy, 2011; Muthén & Asparouhov, 2011) allows the researcher a high 

level of flexibility in specifying model structure. Specifically, the Mplus implementation of 

BSEM (Muthén & Asparouhov, 2011) using small variance priors allows for parameter 

estimates to occupy the area between unconstrained and fully constrained, yielding a hybrid 

approach. Changing the prior variance on a parameter can either shrink or inflate the 

parameter estimates, resulting in a more continuous form of model selection. Setting the 

prior variance of some parameters to be small to restrict the likely range of estimates, allows 

the researcher to experiment with allowing more influence of some parameters and negating 

the influence of others. Although the equivalence or similarity between regularization in a 

frequentist and Bayesian framework has been established in the context of regression (Park 

& Casella, 2008; Tibshirani, 1996), this has not been the case in the context of SEM. Future 

research should compare the parameter estimates between RegSEM and BSEM with both 

Normal (ridge) and Laplace (lasso) distribution priors.

The applications discussed in this article have not addressed uncertainty regarding the 

number of factors in a model. This is a next step of examination, where the number of 

factors are allowed to vary in addition to the factor loading estimates. One could imagine 

starting with the largest number of factors possible (given identification constraints; e.g., 

Hayashi & Marcoulides, 2006), and through increasing the penalties to each factor loading, 

eliminate latent factors from the model when either the number of non-zero loadings or sum 

of loadings drops below a threshold. Although more complicated in its implementation, this 

form of testing of models is necessary to create a form of automatic model creation. The 

goal of testing both the number of factors and their respective loadings is more in line with 

the search algorithms described in the introduction (e.g., Marcoulides & Ing, 2012). It is 

worth testing whether these methods can produce similar results to RegSEM, and in what 

circumstances one might be preferred. One possibility is to incorporate one of the many 

genetic algorithm or tabu search R packages into regsem to provide a comparison, allowing 

the researcher greater flexibility in choosing the final model.

The accuracy of the final parameter estimates in Study 1 was not detailed. The reason for 

this is simple as in many cases a two-step strategy to deriving final model parameter 

estimates might be warranted. In lasso regression, it has been found that the lasso has a 

propensity to over shrink the coefficients, with these estimates biased toward zero (Hastie et 

al., 2009). Testing different forms of obtaining the final parameter estimates is an additional 

area for future study with regard to RegSEM, as it is unclear whether conducting a two-stage 

approach would be beneficial and in what circumstances.

Despite the lack of applications using regularization in the psychological and behavioral 

sciences, this will soon change. A recent overview of using the lasso for regression 

(McNeish, 2015), along with applications in differential item functioning (Magis, 

Tuerlinckx, & Boeck, 2014; Tutz & Schauberger, 2015), highlight this movement. It is 

fitting that regularization will start its proliferation at the same time that we face a crisis of 

replication (e.g., Pashler & Wagenmakers, 2012). This fact, in and of itself, is enough 

Jacobucci et al. Page 14

Struct Equ Modeling. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evidence that we need to find ways to measure the propensity to replicate or generalize. 

RegSEM, seen as a family of tools for regularization with psychological and behavioral data, 

offers a flexible approach to model generation and modification, with an emphasis on 

generalizability. This article represents a first step in the application and evaluation of 

RegSEM.
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FIGURE 1. 
Example one factor confirmatory factor analysis model.
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FIGURE 2. 
Example analysis using 9 scales from a simulated data set demonstrating how fit of both the 

training and test data sets changes across increasing penalization.
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FIGURE 3. 
Example analysis using 9 scales from the Holzinger – Swinefored data set demonstrating 

how fit of both the training and test data sets changes across increasing penalization.
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FIGURE 4. 
Example analysis using 9 scales from the Holzinger–Swinefored data set. A one-factor 

model was used, penalizing the absolute the absolute value of each of the 9 factor loadings. 

The top axis denotes the number of nonzero loadings at every five iterations. The bottom 

axis details the sum of of the absolute values of the factor loadings at every 5 iterations.
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FIGURE 5. 
Example analysis using 9 scales from the Holzinger–Swinefored data set. A one-factor 

model was used, penalizing the 12 normal of each the 9 factor loadings. The top axis denotes 

the number of nonzero loadings at every five iterations. The bottom axis details the sum of 

the absolute values of the factor loadings at every 5 iterations.
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FIGURE 6. 
Health and Retirement study structural equation model. Note. STM=short-tem memory.
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TABLE 1

Simulated Factor Structure: Each Factor was Esimated With 6 Factor Loadings, 3 “True” Loadings and 3 

“False” Loadings.

Latent Factors

Items F1 F2 F3

X1 1.0 - 0

X2 0.2 - 0

X3 1.0 - 0

X4 0 1 -

X5 0 0.2 -

X6 0 1 -

X7 - 0 1

X8 - 0 0.2

X9 - 0 1

Note. Loading entries with a dash were not included in the estimated structure.
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TABLE 2

Performance of Fit indexes in Choosing the Simulated Model

Average False Positive Percentage

N 100 400 1,000 10,000

Ftrain 52.4 46.0 41.1 27.2

NCPtrain 43.3 40.9 37.0 26.9

RMSEAtrain 42.8 38.1 34.2 24.3

BICtrain 22.3 10.6 5.5 4.2

A1Ctrain 29.0 19.6 23.1 13.6

Ftest 28.1 30.0 31.9 24.7

NCPtest 23.2 22.6 22.6 17.7

RMSEAtest 22.2 12.6 12.4 10.6

Note. Each run was replicated 500 times. NCP=noncentrality parameter RMSEA=root mean square error of approximation; BIC=Bayesian 
information criterion; AIC=Akaike information criterion. Values in bold represent the lowest average false positive percentage for each sample size.
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TABLE 3

Parameter Estimates From the Structural Part of the Heath and Retirement Study Structural Equation Model

Structural Model

Covs Model 1 Model 2 Model 3

age −0.069 −0.038 −0.067

gender 0.078 0 0

race −0.015 0 0

hispanic 0.012 0 0

education 0.013 0 0
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