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Abstract

Purpose—Design a statistically rigorous procedure to estimate a single apparent diffusion 

coefficient (ADC) of lesion from the mean lesion signal intensity in diffusion MRI.

Theory and Methods—A rigorous maximum-likelihood (ML) technique that incorporated the 

statistics of the mean lesion intensity and accounted for lesion heterogeneity was derived to 

estimate the ADC value. Performance evaluation included comparison with the conventionally 

used linear-regression (LR) and a statistically rigorous ADC-map technique using realistic and 

clinically relevant simulation studies conducted with assistance of patient data for homogeneous 

and heterogeneous lesion models.

Results—The proposed technique outperformed the LR and ADC-map approaches over a large 

spectrum of SNR, ADC, lesion size, image-misalignment parameters, including at no image 

misalignment, and different amounts of lesion heterogeneity. The method was also superior at 

different sets of b values and in studies from specific patient-image-derived data. The technique 

takes less than a second to execute.

Conclusions—A rigorous, computationally fast, easy-to-implement, and convenient-to-use ML 

technique was proposed to estimate a single ADC value of the lesion. Results provide strong 

evidence in support of the method.

Index Terms

ADC estimation; Maximum-likelihood method; Statistics of Rician-distributed random variables; 
Single ADC value; Motion misalignment

Introduction

Diffusion is described as the thermally induced behavior of molecules moving in a 

microscopic random pattern in a fluid. Diffusion-weighted magnetic resonance imaging 

(DWMRI) is sensitive to this microscopic motion, which can be quantified by means of an 
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apparent diffusion coefficient (ADC) [1], [2]. Since cellular structures generally restrict 

water mobility, a change in the lesion anatomy in response to therapy typically results in a 

change in the ADC value of the lesion. There is considerable evidence in preclinical models 

that the ADC in tumors increases early in response to successful therapies [3]. Clinical trials 

have begun to examine the effectiveness of the ADC as an early surrogate marker for therapy 

response [4]–[7]. However, for DWMRI to function as a reliable imaging biomarker, 

accurate ADC estimation is critical.

There is considerable research on ADC estimation in diffusion-weighted (DW) images. 

Several statistically rigorous methods that account for the Rician distributed noise in DW 

images have been proposed to compute the ADC of the lesion on a pixel-by-pixel basis [8]–

[12], yielding an ADC map of the lesion. However, these techniques require that the images 

acquired at the different b values be perfectly registered with each other. Similarly, 

statistically rigorous techniques to model the Rician noise distribution have also been 

proposed in the context of estimating relaxation parameters from magnitude MR images 

[13]–[15]. However, these techniques again estimate the relaxation parameter in each pixel 

of the region of interest (ROI) on a pixel-by-pixel basis. Thus, their application to the 

problem of ADC estimation requires perfectly registered images at the different b values.

In lesions in organs such as the liver, kidney, or spleen, possible movement of the organ 

across the different b-value scans could result in misalignment of the images at the different 

b values [6], [7]. Consequently, computing the ADC map on a pixel-by-pixel basis is error-

prone [6]. To reduce the misalignment-related inaccuracies, the lesion is instead individually 

segmented at the different b values, and the mean signal intensity of the lesion pixels at the 

different b values is computed. This parameter is less variant to lesion movement and is used 

to compute a single ADC value for the lesion [6], [7], [16]–[18]. To compute this single 

ADC value, a linear-regression (LR) technique is currently used [6], [16]. However, as we 

show later, this LR method is based on an incorrect noise model and does not explicitly 

account for lesion heterogeneity, thus leading to biased ADC estimates in several clinically 

relevant scenarios. Statistically rigorous methods similar to those proposed for computing 

ADC or relaxation-parameter maps are not available for computing this single ADC value 

from the mean signal intensity values. Thus, in this paper, our objective was to design a 

statistically rigorous estimator for this single ADC value that incorporates an accurate 

statistical model of the noise in the measured mean signal intensity and accounts for lesion 

heterogeneity.

Another motivation for devising a estimator for the single ADC value of a lesion was that in 

several DWMRI studies, including those where the images at different b values are assumed 

perfectly aligned, often only a single ADC value of the lesion is used for further analysis, 

comparison, and reporting [19]–[23]. An often-used method to estimate this single ADC 

value is by estimating the ADC of all the image pixels, i.e. an ADC map, using a ADC-map 

technique, and then computing the mean ADC over all the lesion pixels. Statistically 

rigorous ADC-map techniques are often computationally intensive due to the large number 

of lesion pixels for which the ADC must be evaluated [9]. Further, ADC-map techniques use 

the individual pixel intensities as inputs, which is potentially a more noisy measurement than 

the measured mean signal intensity of the entire lesion. Additionally, the ADC-map 
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techniques have not been designed to estimate a single ADC value for the lesion, and thus 

might not be the optimal method for estimating a single ADC value. For example, the ADC-

map techniques are based on the noise statistics of the individual pixel intensities, and not 

the mean measured signal intensity over the lesion. In fact, we have previously shown that 

using the measured mean lesion intensity in conjunction with a simple ADC estimation 

approach yields a more accurate estimate for the single ADC value for homogeneous lesions 

in comparison to ADC-map approaches that use regression techniques [17], [24]. These 

observations led to further interest in designing an estimator for the single ADC value of the 

lesion from the mean lesion intensity measurements, and comparing it with statistically 

rigorous ADC-map techniques [9].

Theory

Problem Formulation

Let N be the number of b values at which the lesion is imaged. Let bi denote the b value for 

the ith scan, for i = 1,…, N. For the jth lesion pixel at the ith b value, let sij and mij denote the 

true signal magnitude and the measured (noisy) signal magnitude, respectively. Also, let us 

denote the true and measured mean intensity value of the lesion at b value bi by s̄i and m̄i, 
respectively. Using this mean signal intensity at the different b values, a single ADC value, 

denoted by a, must be estimated for the lesion, which is required to satisfy the mono-

exponential diffusion model [6]

(1)

where S0 is another unknown parameter. The measured mean signal intensity at b value bi is 

computed as

(2)

where J is the total number of lesion pixels in the image. Let M̄ = {m̄i, i = 1,…, N} denote 

the vector of measured mean signal intensities at the different b values. Our objective is to 

estimate the ADC value a and the parameter S0 given the mean measured signal intensities 

M̄.

Linear-Regression Approach

The LR approach is conventionally used to estimate the single ADC value a [6], [16], [25]. 

Denoting the noise in the measured mean signal intensity at b value bi by ni, we can write

(3)

using Eq. (1). Taking the logarithm on both sides of the above equation yields

Jha et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

We thus obtain a linear equation relating a and log(m̄i). In the LR approach, a least-squares 

minimization technique is used to estimate a and S0. However, least-squares techniques are 

optimal when the dependent random variable, in this case log(mī), is normally distributed 

[26]. However, as we discuss later, this is not the case. Another issue with the LR method is 

that in DWMRI, at different b values, the variance of the measured mean signal intensities is 

different [9], [10] due to reasons such as dependence of noise on true signal magnitude, 

lesion heterogeneity, non-linearity of the scanner in different acquisitions, dynamic behavior 

of the organ under consideration, and flow effects around the organ. The LR method does 

not model these factors. Thus, as shown in the Results section, it often yields biased results 

in several clinically relevant scenarios.

Proposed Maximum-Likelihood Approach

To overcome the issues with the LR approach, we must accurately account for the statistics 

of the measured mean signal intensity m̄i while deriving the estimation technique. It would 

also be preferable to have an estimation technique that is optimal in some sense. In this 

regard, the maximum-likelihood (ML) estimator has several useful properties. If an efficient 

estimator exists, i.e. an estimator that is unbiased and attains the lower bound on the 

variance of any unbiased estimator, then the ML estimator is efficient. We thus derive a ML 

estimator of the ADC value. The objective in the ML approach is to obtain values of {a, S0} 

that maximize the probability of occurrence of the measured mean signal intensities at all 

the b values. Therefore, the ML approach requires an accurate and rigorous formulation of 

the probability model of the measured mean signal intensity.

We consider the general case of a heterogeneous lesion. It is well known that MR images are 

corrupted by Rician noise [27]. Let us denote the variance of this noise by σr. Thus, at b 

value bi, for the jth lesion pixel, the probability model for the measured signal intensity mij is 

given by

(5)

where pr(mij|sij, σr) denotes the conditional probability distribution function (pdf) of mij 

given sij and σr and I0(x) denotes the zeroth-order modified Bessel function of the first kind. 

From Eq. (2), m̄i is the sum of J Rician-distributed random variables, {mij, j = 1,…, J}. We 

assume that the noise is independent and identically distributed (i.i.d) across all the pixels. 

Therefore, the J Rician-distributed random variables mij will also be independent of each 

other. However, they might not be identically distributed since in a heterogeneous lesion 

each pixel could have a different true intensity sij.

Our objective is to determine the pdf of m̄i, or alternatively, the pdf of the sum of N 
independent, but not identically distributed Rician random variables {mij, j = 1, 2,‥, N}. The 
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presence of the modified-Bessel function and the Heaviside function in the Rice distribution 

complicates this task. Even simple cases like the true magnitude being equal to zero are 

addressed in terms of approximate schemes such as saddle-point integration or infinite 

summation [12]. It has been shown using simulations that the sum of Rician random 

variables with the same mean value tends to a normal distribution [12]. In our problem, due 

to lesion heterogeneity, the Rician random variables {mij, j = 1, 2,…, J} do not have the 

same mean. Although we can show using the central limit theorem that the sum of Rician 

random variables approaches a normal distribution, determining the mean of this normal 

distribution is still complex, since the mean of a Rice distribution is a complicated 

expression with Bessel functions. We instead use the fact that if the signal-to-noise ratio 

(SNR) of each lesion pixel, i.e. sij/σr, is greater than 2.64, then the Rice distribution of mij 

will approach a normal distribution with mean  and variance  [9], [27]. On our 

dataset of lesion images, we empirically verified that the assumption of SNR > 2.64 is true 

with most lesion pixels. With this assumption, {mij, j = 1,…, J} are normal and 

independently distributed random variables.

Next, it can be shown, either using characteristic functions [26] or the convolution method 

[28], that the sum of J independent normal random variables will also be a normal random 

variable, with a mean and variance equal to the sum of the means and sum of variances of 

the J random variables, respectively. Since we have established that {mij, j = 1, 2,…, J} are 

normal and independently distributed, using Eq. (2) we can infer that m̄i is normally 

distributed with mean

(6)

and variance σr
2/J. Therefore, the expression for the PDF of m̄i can be written as

(7)

However, this probability model is still not useful since computing μi requires a knowledge 

of the unknown true signal intensity of each lesion pixel sij. In the ML scheme, we would 

like to express the unknown value in terms of S0 and a, but we cannot express sij in terms of 

S0 or a. To circumvent this issue, we rewrite each sij as the sum of s̄i and the deviation of sij 

from the mean, which we denote by δij, i.e.

(8)

Substituting Eq. (8) in Eq. (6), we can rewrite the mean of m̄i as
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(9)

We use the Taylor series to expand the term in the square root. Assuming that the 

heterogeneity of the lesion is not high, the second and higher-order terms in the expansion 

can be neglected. Consequently, the expression for μi can be simplified to yield

(10)

We recognize that since δij represents the deviation of sij from the mean signal intensity s̄i, 

 is equal to 0. Also,  is the sample variance of sij over the whole lesion, 

while  is the variance of MR noise. Since the noise and true signal intensity are 

independent of each other,  is the sample variance of mi over all the lesion 

pixels for the ith b value. We denote this term for the ith b value by , and it can be 

estimated from the measured lesion pixel intensities as

(11)

where σ̂
i denotes the estimated value of σi. Using Eqs. (10) and (11), μi can be further 

rewritten as

(12)

Substituting this expression in Eq. (7), we can rewrite the expression for the PDF of m̄i as

(13)

For the measurements at the different b values, the noise terms are independent of each 

other. We can write the complete probability model for the vector of measured mean signal 

intensities M̄ = {m̄i, i = 1,…, N} as
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(14)

where S̄ = {s̄i, i = 1,…, N} is the vector of true mean signal intensities. We note from Eq. (1) 

that each of these sī is related to the ADC value a and the parameter S0. Our objective is to 

compute the values of {a, S0} that maximize the probability of the measured mean signal 

intensities M̄. Thus, from Eq. (14), we obtain the likelihood function that we have to 

maximize:

(15)

For computational efficiency, we maximize the logarithm of the likelihood function given by

(16)

Substituting the expression for pr(M̄|a, S0, σr), or equivalently, pr(m̄i|s̄i, σr) from Eq. (13) 

into the above expression and ignoring terms that do not depend on {a, S0}, we derive that 

the ML estimates of {a, S0} should minimize the function

(17)

Therefore, the ML estimate of the ADC value of the lesion can be determined. We note that 

the function λ(a, S0, M̄) does not require us to explicitly compute σr, although there is 

dependence with respect to σr that is hidden in the term σ̂
i. Generally σr is computed from 

the signal intensities in the background regions of the image by maximizing the log-

likelihood for the Rayleigh-distributed data in that region [9]. However, such an estimate is 

error-prone since signal artifacts could conceivably enter such regions [9]. Samuel-Walker et 

al. [9] suggest that a more robust approach is to instead directly estimate the noise variance 

from the measured intensity of the lesion pixels. Our method implicitly takes the same 

approach since it estimates the variance σi from the lesion pixels instead of explicitly 

estimating σr.

Methods

In-Vivo Imaging

Our research group used DWMRI to monitor the therapeutic response in breast cancer 

patients with metastases to the liver [7]. Conventional T1 and T2-weighted imaging was 
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performed at 1.5 T, along with DW single-shot echo-planar imaging (DW-SSEPI) using b 

values of 0, 150, 300 and 450 s/mm2. To maintain good signal sensitivity in the images, 

larger b-values were not used in this study. Image parameters for the DW-SSEPI images 

were as follows: TE = 103 ms, 128 × 90 image matrix, FOV = 36 × 27 cm, TR = 6 s, 100 

kHz receiver. DWMRI image pairs (b=0 and 150, b=0 and 300, and b=0 and 450 s/mm2, 

respectively) were collected, where each pair was collected within a single breath hold. Each 

patient was imaged at day 0 (baseline), 4, 11 and 39 following the commencement of 

cytotoxic therapy. All patients had provided informed written consent, had a minimum of 

one liver metastasis measurable over 1.2 cm in at least two dimensions, were not pregnant, 

of at least 18 years of age, and scheduled to initiate a new chemotherapy regimen for their 

metastatic disease. The imaging protocol was approved by the University‘s institutional 

review board and conducted in accordance with the Health Insurance Portability and 

Accountability Act. From this in-vivo study, considering only the baseline images for each 

patient, we obtained image data at all b values from 14 lesions in 7 patients.

Implementation of the Algorithm

To estimate the ADC of the lesion, the only inputs required by the proposed algorithm are M̄ 

and {σ̂
i}, which can be easily obtained by drawing a ROI or segmenting the lesion and using 

the lesion pixel intensity values. We developed an automated image-segmentation software 

[29] to segment the lesions in the images at the different b values. The values of a and S0 

were estimated by maximizing the likelihood function given by Eq. (17) using an 

optimization routine in Matlab software (Mathworks, Natick, Mass). We also derived 

expressions for the derivative of the likelihood function with respect to a and S0, and passed 

these to the optimization routine. The method was implemented on a Pentium 4 computer 

(Gateway, CA) and was constrained to search only between reasonable values of the 

parameters. We fixed the search space for the ADC value between 0.1 × 10−3mm2/s to 5.0 × 

10−3mm2/s, to cover the range of values typically measured in-vivo [9]. The initial ADC 

value was kept as 2.0 × 10−3mm2/s. Further, since S0 should be close to the signal strength 

value at b value 0 s/mm2, we fixed the initial value for S0 to this measured value, and upper 

and lower bounded the search space by adding and subtracting, respectively, twice the 

standard deviation computed at b value 0 s/mm2 from the signal strength observed at b value 

0 s/mm2. The whole optimization task took less than a second to execute. An easy-to-use 

and computationally fast ADC estimator based on the proposed ML algorithm was thus 

developed.

Evaluation of the Algorithm

The true ADC value of the lesion in the in-vivo studies was not known since the histological 

analysis of the tumors was not performed. Thus evaluating the method using in-vivo data 

was not possible. In fact, even if the histological analysis were to be performed, the 

evaluation of the method with in-vivo data would hold only if the lesions were perfectly 

homogeneous. Thus, to evaluate the proposed method, we instead performed realistic 

simulation studies where the true ADC value of the lesion was known. The performance of 

the algorithm was compared with the conventional LR approach and an ADC-map approach 

on the task of estimating a single ADC value of the lesion. These realistic studies were 

guided by available patient data. To compute the ADC map, we used a statistically rigorous 

Jha et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and well-known ML-based technique [9] that accounts for the Rician distribution of the MR 

noise. The mean ADC of all the lesion pixels in the ADC map is often reported as the single 

ADC value for the lesion [21], [23], [30]. We thus computed the mean ADC value of the 

lesion pixels from the ADC map, and compared this estimated value with the ADC estimate 

using the proposed technique.

We now describe the methods for the simulation study, starting with the considered lesion 

models.

Lesion Models—The distribution of ADC values in liver lesions is a subject under 

investigation [31], and both homogeneous [31] and heterogeneous [4], [31], [32] lesions 

have been observed. To perform a comprehensive analysis, we conducted experiments with 

both lesion types. In the homogeneous lesions, as the name suggests, the ADC values were 

constant throughout the lesion. Homogeneous lesions are observed in cases such as 

colorectal hepatic metastases [31]. In the experiments on the homogeneous lesion models, 

the parameters of ADC, lesion SNR and lesion size were varied.

The distribution of ADC values in heterogeneous lesions varies significantly within a ROI, 

due to factors such as necrosis. Therefore, it is not uncommon to observe bimodal or even 

tri-modal distributions in liver lesions following a treatment. We studied three liver-lesion 

models based on discussions with radiologists, prior research in this field, and our dataset of 

patient images. The first model had a uniform distribution of ADC values in the lesion, 

similar to the model proposed in Walker-Samuel et al. [32]. The other two lesion models 

were simplistic representations of tumor distributions, inspired by the study in Scurr et al. 

[31] and using data in Koh et al. [33]. The rim model was a bimodal distribution of a 

metastatic lesion, with the rim having a lower ADC value than the center [31]–[33]. This 

represented a lesion where significant necrosis has occurred at the center of the metastasis. 

Since necrotic tissues show less impeded water diffusion than cellular tumor tissues, the 

central necrotic area of a metastasis shows lower MR-signal attenuation than the more 

cellular tumor periphery, yielding the rim appearance in DW images. This structure is 

typically seen for large lesions (size > 1 cm) [31]. The third model was a variegated lesion 

model consisting of low-ADC regions interspersed by sub-regions with heterogeneous low 

and high ADC values [31]. The rim and variegated lesion models are graphically shown in 

Fig. 1. The true ADC value of simulated heterogeneous lesions was computed from Eq. (1) 

using the true mean lesion intensities at b values of 0 s/mm2 and 150 s/mm2.

Lesion simulation—We used the available dataset of patient images to obtain the 

template for the lesion and the rest of the image. To explain the procedure, we first define an 

image dataset for a particular lesion in a given patient as all the DW images of that patient 

that contain the considered lesion. For a given patient image dataset, the considered lesion 

was segmented in the images at all the four b values, i.e. 0, 150, 300 and 450 s/mm2. The 

union of the segmented lesion regions at all the b values yielded a template for the shape of 

the lesion. Next, for a given set of imaging and lesion parameters, the lesion pixel intensities 

were obtained by sampling the corresponding Rice distribution (Eq. (5)). The value of S0 

was kept as a constant over the entire lesion. In our experiments, the lesions were simulated 

for different parameters, which included the lesion ADC value, lesion size, SNR at b value 
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s/mm2 (denoted by SNRb0 and defined as S0/σr), image misalignment values, different 

lesion models, and different amounts of heterogeneity. For a given set of parameters, 100 

noise realizations of the simulated lesions were generated. The simulated lesion was inserted 

into the patient image from where the lesion was segmented, where a simulated lesion at a 

given b value was inserted into the patient image at the same b value. Thus, at the end of this 

process, realistically simulated lesions with known ADC inserted in real patient images were 

obtained, as illustrated by two examples in Fig. 2.

For each noise realization, the values of the mean and variance of signal intensities of the 

lesion pixels over the true lesion ROI were determined from the simulated images. Using 

these values, the ADC of the lesion was estimated using the proposed and the LR 

techniques. Also, the ADC map was evaluated over the true lesion ROI, and the mean ADC 

value over the lesion ROI in the ADC map was computed.

Simulating Image Misalignment Across b values—We mentioned previously that an 

important advantage of the proposed method, in comparison to methods that compute the 

single ADC value from an ADC map, is the reduced sensitivity of the proposed approach to 

misalignment of the images across the different b values. To demonstrate this advantage, we 

conducted experiments that simulated simple motion misalignment of the lesion across the 

different b values. The amount of misalignment in a given experiment was obtained by 

sampling three integer values from a uniform distribution between 0 and mmax pixels. The 

simulated images at b values of 150, 300 and 450 s/mm2 were synthetically misaligned in 

the horizontal and the vertical direction by these three integer values. The ADC was 

estimated for different values of mmax using the proposed, LR, and the ADC-map [9] 

approaches. For the proposed and LR approaches, the lesion ROI was individually 

determined at all the b values using the true ROI template, while for the ADC-map 

approach, the ROI at b value 0 mm2/s was considered as the ROI template for all the b 

values.

Evaluation with Patient-Dataset Parameters—In the above-mentioned experiments, 

the proposed technique was evaluated over a range of different parameters, including the 

ADC values, SNR, size, and misalignment between images at different b values. We also 

studied the performance of the technique for specific values of these parameters obtained 

directly from the patient images. For this purpose, we used the available in-vivo dataset of 

14 lesions. The lesions were manually segmented in the images at the different b values. For 

the segmented lesions, an estimate of ADC and S0 was obtained using the proposed ML 

technique. Further, an estimate of the Rician noise variance σr for each lesion image dataset 

was estimated from regions of background noise using the technique proposed in Sijbers et 

al. [8]. Using these estimates, 100 noisy realizations of homogeneous lesions were simulated 

at the b values of 0, 150, 300 and 450 s/mm2. These lesions were then inserted into the 

corresponding patient images at the corresponding b values. At the end of this process, we 

had image datasets to study the performance of the proposed method in clinically relevant 

scenarios.

Evaluation at Higher b values—In several DWMRI studies, especially those where the 

organ of interest is other than the liver, higher b values, commonly around 1000 s/mm2 are 
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used [5]. At the higher b values, the SNR reduces, which affects the performance of ADC 

estimation procedures. To evaluate the utility of the proposed technique for higher b values, 

in a subset of the experiments, we also simulated homogeneous lesions at b values of 0, 500, 

and 1000 s/mm2.

Results

Homogeneous Lesions

A homogeneous lesion with the same template as in Fig. 2(a)–(b) (size of 292 pixels) was 

considered. The ADC and SNRb0 of the lesion were varied from 0.1 × 10−3 mm2/s to 5 × 

10−3 mm2/s and from 2 to 20, respectively. The results presented in Fig. 3 show that the ML 

approach had a lower normalized bias than the LR and ADC-map approach over a large 

spectrum of ADC and SNR values of the lesion, and especially at low SNR values.

To study the performance of the proposed method for different lesion sizes, a lesion with 

template as in Fig. 2(c) was considered. The size of the lesion was varied through 

morphological operations of image erosion and dilation. The ADC of the lesion was fixed at 

1.5 × 10−3 mm2/s and three SNRb0 values of 4, 8, and 12 were considered. The results of 

this experiment presented in Fig. 4 show that the proposed ML approach had a lower 

normalized bias than the LR and ADC-map approaches over a large set of lesion sizes for 

the considered SNR values. The proposed method was again especially more effective when 

the SNR was low.

The absolute value of the normalized bias averaged over the varied parameter and over all 

100 noise realizations, as presented in the first row of Table I, was about a factor of two 

larger for the LR and ADC-map techniques in comparison to the proposed ML method.

Heterogeneous Lesions

The ADC values of the lesion pixels for the uniformly distributed lesion were sampled from 

a uniform distribution between 1 × 10−3 mm2/s to 2 × 10−3 mm2/s. For the rim model, the 

ADC of the center and rim of the lesion were fixed to 2 × 10−3 mm2/s and 1.5 × 10−3 mm2/s, 

respectively. Finally, for the variegated lesion model, the lesion consisted of three regions: 

The main region had an ADC value of 1 × 10−3 mm2/s, and the sub-regions had ADC values 

of 2 × 10−3 mm2/s and 2.5 × 10−3 mm2/s, respectively. For each of these lesion models, we 

conducted two experiments. In the first experiment, the lesion template was chosen as in Fig. 

2(a)–(b) and the value of SNRb0 was varied from 2 to 20. In the second experiment, the 

lesion template was chosen as in Fig. 2(c)–(d), the value of SNRb0 was fixed at 6, and the 

size of lesion was varied.

The results from the experiment, presented in Fig. 5, show that the ML approach had a lower 

bias than the LR and ADC-map approaches for all the heterogeneous lesion models and a 

large spectrum of the considered values of SNRb0 and lesion size. These results are 

summarized in Table I, where we observe that the average of the absolute value of the 

normalized bias is lower with the proposed method in comparison to the LR and ADC-map 

method.
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We next studied the effect of increasing the lesion heterogeneity on the performance of the 

proposed technique. The heterogeneous lesion with uniformly distributed ADC values and 

template as in Fig. 2(a)–(b) was considered. The mean value of this uniform distribution of 

ADC values was fixed to 1.5 × 10−3mm2/s. To simulate different amounts of heterogeneity, 

the range of the uniform distribution was varied from 0 mm2/s to 2 × 10−3mm2/s. The 

experiment was conducted for lesion SNRb0 values equal to 4, 8, and 12. The results from 

this experiment, as presented in Fig. 6, show that as the heterogeneity of the lesion 

increased, the performance of the LR method deteriorated significantly. However, the 

performance of the proposed technique was only mildly affected by the increase in 

heterogeneity for all values of SNRb0. This was expected since in deriving the ML 

technique, we had accounted for some amount of heterogeneity of the lesion. Further, the 

proposed technique consistently outperformed the LR and ADC-map techniques.

Effect of Misalignment

The simulated image in Fig. 2(c)–(d) was considered. The value of SNRb0 for the simulated 

lesions was fixed to 6, based on the estimated value of SNRb0 for the corresponding actual 

lesion in the patient image. The magnitude of misalignment in the images at the four 

different b values, as quantified by the value of mmax, was varied from 0 to 5 pixels. The 

effect of motion misalignment was studied with lesions of different sizes, where the size of 

the lesion was varied using image dilation. As shown in the results in Fig. 7, the 

performance of the ADC-map method deteriorated heavily, yielding a bias of up to 12–35% 

for different lesion sizes. As expected, the proposed ML technique was not effected by this 

misalignment.

Using Specific Patient-Image Derived Data

A scatter plot of the ADC values estimated using the different procedures for the 14-lesion 

patient dataset is shown in Fig. 8. Note that in this experiment, the lesion, imaging, and 

misalignment parameters were directly obtained from the available patient dataset. As 

marked in the figure, often the value of SNRb0 was less than 5 in these image datasets, in 

which case, the LR method yielded an average normalized bias of up to 12.5%. The ADC-

map method yielded inaccurate results in several cases, reflecting the error that motion 

misalignment can cause in clinically realistic scenarios. The ML method yielded a less 

biased estimate than the LR technique in 11 of 14 cases. The reduction in bias was 

statistically significant, as shown by the Student’s t test on the bias of the estimators (p value 

< 0.04 for all 11 cases). In the other 3 cases, the performance of the two methods was 

statistically equivalent. Similarly, the ML method was less biased than the ADC-map 

technique in 13/14 cases, where again, the Student’s t test showed that the reduction in bias 

was statistically significant (p value < 0.005). For the remaining case, the performance of the 

ML and ADC-map techniques was statistically equivalent. The improved performance of the 

proposed technique in these very realistic clinical scenarios demonstrates the clinical 

relevance and value of the technique.

Performance at Higher b Values

Diffusion images corresponding to homogeneous lesions imaged at b values of 0, 500 and 

1000 s/mm2 were simulated. The ADC and SNRb0 for the lesions were varied. The ADC of 
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the simulated lesions was estimated using the proposed, LR, and ADC-map techniques. The 

results, as shown in Fig. 9, show that even for these higher set of b values, the proposed 

method outperformed the LR and ADC-map methods. In fact, even when the SNRb0 values 

were not as low (~ 10) and the ADC values were between 1 × 10−3 and 3 × 10−3 mm2/s, the 

LR and ADC-map technique had more than 5% bias, mainly due to the low SNR at high b 

values. The proposed ML-approach yielded more accurate estimates for these SNR and 

ADC values.

Discussions

The results showed that the LR technique was heavily biased for both homogeneous and 

heterogeneous lesions, with average bias values close to 10%. The bias was especially 

visible in images with low SNR values (SNRb0 < 5), which were often observed in our 

patient dataset. The proposed ML technique yielded a less biased estimate for the single 

ADC value of the lesion for both homogeneous and heterogeneous lesion models for a large 

spectrum of ADC values, size, and SNR, including at low SNR values. Further, in the 

presence of misalignment between images at different b values, as often observed in our 

patient dataset, the ML method clearly outperformed the ADC-map method. Thus, in those 

clinical scenarios where the images are misaligned at the different b values and only a single 

ADC value of the lesion is desired, the results present strong evidence in favor of the 

proposed ML technique.

Further, even in the absence of motion, the proposed ML technique was more accurate than 

a statistically rigorous map-based ADC estimation technique for both homogeneous and 

heterogeneous lesions. This is best demonstrated with the results for homogeneous lesions, 

where the proposed method, especially for low SNR values, had a reduced bias in 

comparison to the ADC-map technique (Fig. 3). The bias with the ADC-map technique has 

been observed previously [9] and is attributed to the likelihood function flattening out at low 

SNR values. The proposed technique yielded accurate performance in this case. This 

advantage of the proposed technique was even more evident when a higher set of b values 

were considered (Fig. 9). Higher b values are often used in organs other than the liver [5], 

and thus the results provide evidence for the general utility of the method. The ADC-map 

method is essential to study the heterogeneity of the lesion. Further, often the statistical 

distribution of ADC values is of clinical interest, and currently the proposed method is not 

able to provide this information. While this is a limitation of the proposed method, often in 

DWMRI studies, only a single ADC value of the lesion is used for reporting or evaluation 

purposes [3], [20], [21], [23], [30]. The experimental results present strong support for the 

use of the proposed method to compute this single ADC value instead of the ADC-map 

methods. Based on these results, it seems that in the absence of motion misalignment, a 

good strategy could be to use the ADC-map method to study and evaluate heterogeneity and 

distribution of ADC values, and use the proposed method to compute the single ADC value 

of the lesion.

The proposed ML method was on average, upto two orders of magnitude faster than the 

ADC-map technique. For example, for a lesion of size 279 pixels, executing the proposed 

ML, LR and ADC-map techniques for 10 trials required 0.36 s, 0.02 s and 99.5 s, 
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respectively. The method is easy to implement and convenient to use, since segmenting the 

lesion using a segmentation algorithm, such as a clustering-based technique we designed for 

diffusion MR images [18], was sufficient to obtain all the required input data for the 

proposed ML approach. The method does not require the user to mark a background region 

to obtain the Rician noise variance, as is required by some other methods [9], [10].

In the experiments related to simulating misalignment of the images, it was observed that the 

performance of the ADC-map technique deteriorated significantly with increasing 

misalignment. To overcome this misalignment-related issue, the images at the different b 

values could be registered. This could improve the performance of the ADC-map technique, 

but would require an extra registration step. If the registration is erroneous, then the 

performance of the ADC-map technique will suffer. Comparing the performance of the 

proposed technique with an ADC-map technique that uses a prior image-registration step 

would be an important area of future study. Also, if the misalignment is due to motion, it 

could affect the signal intensity at the different b values, and therefore, further bias the ADC 

estimate. In our simulations, we did not model this effect, which is another limitation of this 

study. However, note that this effect would also bias the LR and ADC-map methods apart 

from the proposed technique. Modeling for this effect in the ADC estimation procedure is 

another important area for future investigation.

One method to reduce the noise-related inaccuracies in ADC estimation is to take multiple 

images of the patient at the same b value. However, as we have shown [24], even in this case 

a simple ML-based method that uses a less rigorous probability model for the measured 

mean signal intensity is more accurate than a ADC-map method. The accuracy of this simple 

ML-based method can be improved further using the framework proposed in this paper.

The proposed ML method can be extended to scenarios where the measured signal is 

statistically the mean of Rician distributed random variables. For example, the method can 

be adapted to estimate a single value of the spin-spin T2 relaxation parameter from the mean 

magnitude MR data over a ROI. The evaluation of the accuracy and clinical relevance of a 

method similar to the proposed method but for estimating the single T2 relaxation parameter 

is another important area for future investigation.

We mentioned earlier that it is complicated to evaluate the proposed method with real patient 

data since the gold standard of the ADC value is not known. In this regard, we have 

developed a no-gold-standard (NGS) technique to evaluate segmentation algorithms for 

diffusion images [34], [35]. The NGS technique could be extended to evaluate the proposed 

technique with patient data. However, currently the NGS method requires several patient 

studies that were not available. We are currently investigating methods to reduce this 

requirement [36].

Conclusions

A statistically rigorous, computationally fast, easy-to-implement, and convenient-to-use ML 

method has been proposed to estimate the ADC of the lesion from the mean signal intensity 

measurements at the different b values. The method accounts for lesion heterogeneity and is 
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based on an accurate noise model for the mean signal intensity in a DW MR image. A 

comprehensive realistic simulation study shows that the proposed method is more accurate 

than the conventionally used LR and an ADC-map approach over a wide spectrum of 

possible ADC, SNR, and lesion sizes for both homogeneous and heterogeneous lesions. The 

proposed method is also more accurate than the LR and ADC-map techniques for different 

amounts of heterogeneity in a heterogeneous lesion model. These results were observed in 

both the presence and absence of misalignment between the images at the different b values. 

Further, the performance of the proposed algorithm is superior for different sets of b values 

and in studies with specific patient-image-derived data. Thus, overall, the results provide 

strong evidence supporting the use of this method when the end task is estimating a single 

ADC value of the lesion.
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Fig. 1. 
Graphical representations of the (a) rim and (b) variegated lesion models. The graphical 

representations are enlarged for visual clarity.
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Fig. 2. 
A homogeneous lesion (i.e. one with a constant ADC value for all lesion pixels) simulated at 

b values of (a) 0 s/mm2 and 450 s/mm2 inserted in the corresponding real patient images. 

Another homogeneous lesion of smaller size simulated at b value of (c) 0s/mm2 and (d) 

300s/mm2 inserted in the corresponding real patient image.
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Fig. 3. 
The normalized bias of the (a) ML, (b) LR, and (c) ADC-map approach on estimating the 

ADC of homogeneous lesions for various values of ADC and SNRb0. The normalized bias is 

expressed in percentage units. The ADC-map technique was computationally very intensive 

[9], and thus was executed over a smaller set of ADC and SNR values. The proposed ML 

approach outperforms the LR and ADC-map approaches, especially at low SNR values.
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Fig. 4. 
The absolute value of the normalized bias of the ML, LR, and ADC-map approaches in 

estimating the ADC of homogeneous lesions as the size of the lesion is varied. The 

experiment was conducted for SNRb0 values of (a) 4, (b) 8 and (c) 12. The error bars denote 

95% confidence intervals.
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Fig. 5. 
The absolute value of the normalized bias of the proposed ML, LR and ADC-map 

estimation techniques in estimating ADC values of heterogeneous lesions. Models 

investigated include (a)–(b) lesion with uniform distribution of ADC values (c)–(d) rim 

lesion model (e)–(f) variegated lesion model. The left and right side plots study the variation 

with lesion SNRb0 and lesion size, respectively. The error bars denote 95% confidence 

intervals.
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Fig. 6. 
The absolute value of the normalized bias of the ML, LR, and ADC-map estimation 

techniques for various amounts of heterogeneity in a heterogeneous lesion with uniform 

distribution of ADC values. The variation in heterogeneity is quantified by the range of the 

ADC values in this lesion. The experiment was performed for SNRb0 values equal to (a) 4, 

(b) 8, and (c) 12. The error bars denote 95% confidence intervals.
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Fig. 7. 
Comparing the performance of the ML, LR, and ADC-map approaches in estimating the 

ADC value as the misalignment between the images at the different b values increases. The 

experiment is performed for different sizes of both (a)–(c) homogeneous lesions with an 

ADC value of 1.5 × 10−3mm2/s and (d)–(f) heterogeneous lesions with uniform distribution 

of ADC values between 1 × 10−3 mm2/s to 3 × 10−3 mm2/s. For both these lesion models 

and for different sizes of the lesion, the performance of ADC-map approach deteriorates as 

the amount of misalignment between the images increases. The error bars denote 95% 

confidence intervals.
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Fig. 8. 
Comparing the performance of the ML, LR, and ADC-map techniques in estimating the 

ADC values for specific lesion and motion misalignment parameters derived directly from 

patient images. The average of the estimated ADC value using the different methods over 

the 100 noise realizations is plotted. The LR-based technique is not accurate for several 

lesions, for which, the SNRb0 values were smaller than 5. The ADC-map approach had high 

values of bias due to the misalignment between the images at the different b values. In all the 

cases in this realistic patient dataset, the proposed ML-based technique outperformed the LR 

and ADC-map approaches.
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Fig. 9. 
The absolute value of the normalized bias of the (a) ML, (b) LR, and (c) ADC-map approach 

on estimating the ADC of homogeneous lesions for various values of ADC and SNRb0 for b 

values of 0, 500 and 1000 s/mm2. The normalized bias is expressed in percentage units. The 

ADC-map technique was executed over a smaller set of ADC and SNR values for 

computational reasons. The proposed ML approach again outperforms the LR and ADC-

map approaches, especially at low SNR values.
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TABLE I

Absolute value of the average normalized bias (averaged over the parameter that is varied and the noise 

realizations) of the ADC values estimated using the LR, ADC-map, and proposed ML estimation methods. 

The bias is expressed in percentage units.

Type of lesion Parameter varied ML LR ADC-map

Homogeneous ADC and SNR 4.63 10.55 16.00

Size 3.33 6.66 5.82

Heterogeneous

  -uniformly distributed SNR 2.98 6.22 5.36

Size 3.33 7.27 4.81

Heterogeneous

  -rim model SNR 3.00 6.29 4.83

Size 3.19 7.23 4.78

Heterogeneous

  -variegated lesion model SNR 6.53 12.31 9.31

Size 5.06 7.69 9.63

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.


	Abstract
	Introduction
	Theory
	Problem Formulation
	Linear-Regression Approach
	Proposed Maximum-Likelihood Approach

	Methods
	In-Vivo Imaging
	Implementation of the Algorithm
	Evaluation of the Algorithm
	Lesion Models
	Lesion simulation
	Simulating Image Misalignment Across b values
	Evaluation with Patient-Dataset Parameters
	Evaluation at Higher b values


	Results
	Homogeneous Lesions
	Heterogeneous Lesions
	Effect of Misalignment
	Using Specific Patient-Image Derived Data
	Performance at Higher b Values

	Discussions
	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	TABLE I

