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Abstract

Coarse-grained features of macromolecular assemblies are understood via a set of order 

parameters (OPs) constructed in terms of their all-atom configuration. OPs are shown to be slowly 

changing in time and capture the large-scale spatial features of macromolecular assemblies. The 

relationship of these variables to the classic notion of OPs based on symmetry breaking phase 

transitions is discussed. OPs based on space warping transformations are analyzed in detail as they 

naturally provide a connection between overall structure of an assembly and all-atom 

configuration. These OPs serve as the basis of a multiscale analysis that yields Langevin equations 

for OP dynamics. In this context, the characteristics of OPs and PCA modes are compared. The 

OPs enable efficient all-atom multiscale simulations of the dynamics of macromolecular 

assemblies in response to changes in microenvironmental conditions, as demonstrated on the 

structural transitions of cowpea chlorotic mottle virus capsid (CCMV) and RNA of the satellite 

tobacco mosaic virus (STMV).
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 I. INTRODUCTION

A hallmark of macromolecular assemblies is the emergence of collective modes from 

rapidly fluctuating atomistic degrees of freedom (DoF). These systems exhibit dual 

macroscopic/microscopic behavior thereby reflecting the interplay of equilibrium and 

nonequilibrium processes across multiple time and length scales. Biologically relevant 

examples that display such coupling include processes affecting the structure and dynamics 

of macromolecular assemblies like viruses, ribosomes, liposomes, and intracellular 

granules.1–4 These systems are typically composed of multimillion atoms. They function on 

length scales of nanometers involving processes that occur on time scales ranging from 

nanoseconds to milliseconds. While molecular dynamics (MD) has been widely used to 

simulate macromolecular structures at an atomistic level, the simulation time for large 

nanoscale assemblies has been limited to tens or sometimes few hundreds of nanoseconds.5,6 

Feasibility of such simulations also depends on the extent of computing resources available. 

Recently, billion atom MD simulations have been accomplished.7,8 However, these 

simulations neglect Coulomb interactions, bonded forces, and the rapidly fluctuating 

hydrogen atoms. All the latter are central to biomolecular structure and dynamics. Thus, 

capturing bionanosystem behavior across diverse temporal and spatial scales presents great 

challenges in structural biology, fundamental mathematics and physics, and theoretical and 

computational chemistry.

Significant effort has been devoted to reduce the dimensionality of many-atom systems and 

accelerate their simulations by projecting the equation of motion in a low dimensional 

space.9–13 This is accomplished via modeling a system in terms of its collective DoF. The 

number of such DoF is often much lesser than the all-atom ones. Thus, macromolecular 

models based only on collective modes involve tracking much smaller number of dynamical 

variables than the all-atom description. Consequently, computational cost of implementing 

these reduced dimensional models is moderate. A list of relevant approaches would include 

bead- and shape-based coarse-graining models,14–16 rigid region decomposition,17 

symmetry constrained18 and curvilinear coordinate19 models, as well as principal 

component analysis (PCA)20,21 and normal-mode analysis guided approaches.22,23 These 

models have been successful in investigating structural transitions in a very rich set of 

biomolecular systems including BPTI, lysozyme, ligand-binding proteins,24 trans-membrane 

proteins,25 RNA segments,20,26 GRoEL,27 and viral protein capsids of different 

symmetries.15,28 However, they suffer from one or more of the following difficulties in the 

Singharoy et al. Page 2

J Phys Chem B. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



context of bionanosystem simulations: (1) characteristic variables are not slowly varying in 

time, (2) nonlinear motions like macromolecular twist is not readily accounted for, (3) 

internal dynamics, and hence inelasticity of collisions is neglected, (4) symmetry-breaking 

processes cannot be accounted for, (5) the forces involved must be calibrated for most new 

applications, and (6) generating intermediate all-atom trajectories for “on-the-fly” 

dimensionality reduction becomes very expensive for large systems.

A coarse-grained theory of macromolecular assemblies is statistical in character since 

specifying the coarse-grained variables leaves great uncertainty in the detailed all-atom state. 

Thus, the theory should provide an algorithm for evolving the coarse-grained variables and 

another for coevolving the probability of the detailed all-atom states. Acknowledging this 

multiscale perspective, we have discovered novel theoretical techniques that probe the cross-

talk across scales in time and space, yet preserve the key all-atom aspects of the assembly 

dynamics.29–35 The result is a set of stochastic equations for the evolution of coarse-grained 

variables, and those for constructing the coevolving probability of the all-atom states.

This is achieved via the introduction of a set of order parameters (OPs) that describe the 

overall organization of a system. These OPs capture changes in symmetry that follow large-

scale structural transitions. Such transitions emerge from the interplay of long-range 

organization and order-destroying effects of thermal fluctuations. To account for this cross-

talk between variables on different time and length scales, OPs enable generation of an 

ensemble of all-atom states. This ensemble, in turn, affects evolution of the overall structure 

through the thermal forces and diffusivities. Thus, emergence of new structures resulting 

from changes in conditions imposed on the macromolecular assemblies is probed. All these 

properties are critical for the practical implementation of a multiscale molecular dynamics/

order parameter extrapolation (MD/OPX) approach32,36,37 and more recently a fully self-

consistent multiscale approach and software deductive multi-scale simulator (DMS).38 

These approaches have captured polyalanine folding from a linear to a globular state,39 

Ostwald’s ripening in nanocomposites,31 pathways of structural transition and disassembly 

in virus capsids,38 counterion induced collapse in viral RNA, and stability of RNA–protein 

complexes.33

In this article we review several examples of OPs in the context of modeling 

macromolecular assemblies (section II.A). A special class of macromolecular OPs, notably 

the space warping ones, is shown to account for slow collective DoF relegating the high 

frequency fluctuations to all-atom ensembles (section II.B). An attempt is made to place 

these coarse-grained variables within the classic notion of OPs that indicate symmetry 

breaking in phase transition theory40 (section II.C). This analysis further reveals the physical 

significance of several of the space warping OPs (section II.D). These OPs serve as the basis 

of a multiscale simulation algorithm that captures the slow dynamics of macromolecular 

assemblies simultaneously preserving all-atom details (section II.E). In this context, the 

applicability of these OPs is compared to that of the PCA modes (section II.F). The OPs are 

used to simulate structural transitions in cowpea chlorotic mottle virus (CCMV) capsid and 

the free and protein bound states of RNA in satellite tobacco mosaic virus (STMV) over a 

range of temperature and salinity (section III). These simulations yield key insights on 
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macromolecular structural transitions and identify a regime of physical conditions over 

which the OP mediated multiscale simulations are applicable.

 II. METHODOLOGY

 A. Types of Order Parameters

OPs are coarse-grained variables characterizing the large-scale spatial organization of a 

system. Several types of OPs have been identified. Examples and the phenomena they have 

been used to describe are as follows.

• Scaled coordinates: Collective and single-particle behaviors in quantum 

systems,41 and scaled center-of-mass coordinates for proteins in 

macromolecular assemblies.42,43

• Curvilinear coordinates: Macromolecular conformational dynamics.19

• Density-like variables: Release of drug molecules from a nanocapsule, the 

dynamics of enveloped viruses,35 and liquid crystal phase transitions.44,45

• Space warping parameters: Overall size, shape and state of deformation of 

viruses and other macromolecular assemblies.30,33,34

• Subsystem OPs: The asymmetric motions of different subunits of a complex 

macromolecular assembly.31,35

• Hierarchical OPs: Disassembly/collapse dynamics of the icosahedral or other 

structures of viruses.46

Other examples of OPs in the theory of macromolecular structures commonly used are 

system diameter, end-to-end distance, radius of gyration, solvent accessible surface area 

(SASA), and measure of similarity to a reference structure in molecular biophysics (e.g., 

root-mean-square deviation of atomic positions between simulation and reference 

structures). However, these do not form a complete set, facilitate the construction of all-atom 

configurations, or evolve much slower than the typical time scale of atomistic fluctuations. 

Therefore, unlike the space-warping variables, these OPs cannot underlie a multiscale 

methodology (section II.E). Furthermore, space-warping OPs subsume the slowly varying 

parameters from the aforementioned list.33 A central property of the space warping OPs is 

that they evolve slowly. The origins of slowness include (a) inertia associated with the 

coherent dynamics of many atoms evolving simultaneously, (b) migration over long 

distances, (c) stochastic forces that tend to cancel, and (d) presence of high free energy 

barriers involving collective motion. In the following, discussion on structural space warping 

OPs is extended.

 B. Construction of Space Warping Order Parameters

We construct space warping OPs to capture coherent motions of many-atom systems as 

follows. Consider a macromolecular assembly described via the positions of its N 

constituent atoms  labeled i = 1,…, N. In our approach,  is related to a reference position 

Singharoy et al. Page 4

J Phys Chem B. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



. Deformation of space taking  to  is continuous and is used to introduce OP  via 

the transformation

(1)

where  denotes the kth OP and the factor uki is defined in terms of a basis function 

 for reference position  of atom i. Index k labeling the  is a set of three integers 

{k1k2k3} such that  is a product of Legendre 

polynomials of orders k1, k2, k3 for the X, Y, Z components of  respectively. As the 

change, space is deformed, and so do the macromolecules embedded in it. Since we seek a 

dimensionality reduction, the number of  is much less than the number N of atoms. Thus, 

we take a finite truncation of the k sum in (1); this necessitates introduction of a residual 

(denoted ) to correct the coherent deformation generated by the . With this

(2)

An explicit expression for the  is obtained by minimizing the mass-weighted square 

residuals  with respect to the .32 This yields

(3)

With the above formulation, dimensionality reduction for many-atom systems from the N-

atom configuration to M OPs is achieved through

(4)

Next, we make use of the Liouville equation to elucidate the rate of OP dynamics. The 

Liouville operator is defined , where  and 

 are the momentum of and net force on atom i. Given eq 3, one may compute 

as . This yields
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(5)

By definition, the basis functions uki vary smoothly across the system. Thus, near 

equilibrium, linear combinations of rapidly fluctuating atomic momenta tend to cancel, 

thereby reducing the rate of OP evolution. As a result, these OPs can be extrapolated over 

longer periods in time relative to individual atoms. For the various choices of k, evolution of 

the corresponding  tracks collective (correlated) motions on different time scales. With this, 

eq 5 provides mathematical basis for the simulation approach implemented in MD/OPX.32

 C. Role of Symmetry

The concept of OPs originated in the theory of phase transitions. In that context, they are 

variables that are zero in one phase (usually above the critical point), and nonzero in 

another.47 More generally, they change discontinuously across a first-order transition and 

their derivatives change across a second-order case indicating a change in the physical state 

of the system. For example, a magnetic system above the Curie temperature is isotropic, but 

anisotropy emerges below this temperature as atomic-scale magnets tend, on the average, to 

have a preferred direction.40 Net magnetization of the system serves as an OP capturing the 

emergent order of atomic-scale magnets that underlie this symmetry breaking transition. 

Similarly, the space-warping OP here provides a framework that captures the emergent order 

observed in viruses and other macromolecular assemblies under appropriate conditions in 

the host medium. For example, if  is independent of i then the OP  is 

proportional to the center-of-mass of the assembly.46 Some of the space warping OPs 

defined in this way constitutes a strain tensor accounting for compression-extension-rotation, 

while others describe more complex deformations like tapering, twisting and bending 

(section II.D). Furthermore, the effective OP masses, μk as defined in eq 3, decrease for 

larger values of k. This suggests that OPs with higher k probe deformations of smaller 

regions in space. Thus, a model based on this set of OPs captures a spatially diverse range of 

coherent deformations through the various choices of k. Thereby, such a model can describe 

the emergence of structural order and accompanying symmetry changes in macromolecular 

systems.

A typical example of macromolecular structural transition that resembles classical phase 

transition from isotropic to anisotropic states is now discussed. Consider a nanoscale 

assembly consisting of a spherical nanocore with a number of surface-attached viral capsid 

protein pentamers. In the absence of nanocore, pentamers often self-assemble into 

icosahedral structures of different T-numbers depending on the host medium conditions.28 

However, in the presence of the nanocore, arrangement of the surface-attached proteins may 

differ dramatically from those of the icosahedral structures in a nanocore free solution.48 In 

particular, symmetry of the surface assemblies can be strongly influenced by the size and 

surface properties of the nanocore. If the core particle is of radius equals to the cavity of a T 
= 1 structure, then the pentamers would likely assemble in a T = 1 symmetry.48 However, if 
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the core particle diameter is increased beyond the cavity size (but less than the diameter of 

the next T number structure) then a point is reached wherein bare spots appear on the core. 

Consequently, some preferred pentamer-to-neighbor-pentamer interactions are lost and these 

pentamers undergo Brownian motion over a range of temperatures. With this, the 

orientational order defining a T = 1 icosahedron can be disturbed and a symmetry breaking 

transition resulting in an assembly of randomly oriented pentamers is realized.

The above example can be placed more explicitly in the context of the classic relationship 

between symmetry breaking and emergence of OPs as follows. First, express the distribution 

of the pentamer density in terms of spherical harmonics and associated weights. At high 

temperature, the symmetric structure of pentamers is lost and hence the surface density is 

uniform (wherein weights of all harmonics except those for the lowest order ones are zero). 

Depending on the structure that emerges, at lower temperature, the weights of certain 

harmonics can depart from their values in the uniform state. In this case, weights of the 

spherical harmonics following the emergent geometry pattern (e.g., T = 1 icosahedron) serve 

as OPs in a manner similar to that used in the theory of ferromagnetism. When  are 

spherical harmonics, the  in eq 3 provides a way to capture this transition. From this 

example it is seen, the space warping OPs are directly analogous to those appearing in the 

classical theory of phase transition for cases where simple symmetry can be identified.

The classical phase transition theories, like that for magnetization, are built on the properties 

of infinite systems, e.g., renormalization group concepts.49 In contrast, macromolecular 

assemblies are finite, in fact small in extent and hence cannot completely follow the theory 

of macroscopic phase transitions. Furthermore, macromolecular assemblies can be in 

conformational states without a simple, readily identifiable symmetry, e.g., ribosomes. 

Nonetheless, as pH and other conditions in the host medium change, the system can switch 

to a different conformation.50 Such a system experiences structural transition between two 

states, neither of which has a readily identifiable symmetry. This suggests that often OPs in 

macromolecules cannot be readily associated with the breaking of symmetry even if they 

signify a dramatic change of order. Therefore, other metrics are required to signal the 

emergence of new order in macromolecular systems when there are no readily identifiable 

symmetries involved.

For the space warping OP formulation of eq 3 such metrics include

• The onset of long-time tails in correlation functions of OP momenta indicating 

the coupling of a proposed set of OPs to emergent ones.46

• The systematic growth of residuals in eq 2 during structural transitions 

indicating the emergence of new types of organization from rapidly fluctuating 

atomistic processes.46

Numerical procedures for constructing the emergent OPs are provided in section III. With 

this, the space warping OPs can be used for the classical symmetry breaking type transitions 

in macromolecular systems and also provide an approach in cases where symmetries are not 

readily identifiable.
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 D. Structural Characterization of Macromolecular Systems

Macromolecular assemblies display a rich array of structural organizations. For example, 

simple nonenveloped viruses often show an icosahedral arrangement of pentameric or 

hexameric protein subunits. However, under certain conditions they may exist in capsular, 

twisted and conical shapes.28 Transition between these structures occurs via symmetry 

breaking pathways that account for changes in overall assembly organization. As shown 

below, the set of space warping OPs is rich enough that many types of symmetry are 

embedded in them. As in nature, observed symmetries for a given system emerge due to the 

underlying interatomic forces. This feature of the present approach enhances the capability 

to discover pathways of structural transition or self-assembly.29,31

Considering a T = 7 virus capsid as shown in Figure 1, it is demonstrated that specific 

combinations of space warping OPs capture the deformation of the symmetric T = 7 virus 

capsid into conical, capsular and twisted capsular forms. Transformations captured via these 

OPs are understood below in terms of a set of fundamental global and local deformations.51 

Consider the example of a tapering deformation (Figure 1). Take Uk, k = 100, 110, 101 to be 

x0, x0y0, and x0z0, respectively. Neglecting residuals, eq 1 becomes 

, and similarly for yi and zi (where xi,yi,zi are the three 

Cartesian components of r⇀ vector and ϕkα is the α-th component of OP ). This 

relationship can be written in the tensorial form

(6)

For the choice of ϕk as specified in Figure 1 (i.e., ϕ100x, ϕ100y, ϕ110x, ϕ110z = 0 and ϕ100x, 

ϕ110y, ϕ101z, ϕ101y, ϕ101x ≠ 0), J is the Jacobian matrix for tapering along the X axis.51 

Thus, these OPs capture structures that are tapered with respect to the reference 

configuration . Similar matrix transformations can be constructed using other 

combinations of OPs to explain the twisting and bending transitions of Figure 1. In this 

context, examples of OPs that enable motions like extension-compression-rotation were 

provided earlier.39,46 Thus, the space warping variables are coarse-grained in character and, 

in addition, are rich enough to capture the emergence of overall order and symmetry 

breaking in macromolecular assemblies. With this, they enable a multiscale methodology as 

follows.

 E. Deductive Multiscale Analysis

Equation 3 implies that for a given set of atomic positions the corresponding OPs  are 

uniquely defined. However, the converse is not true, i.e., there exists multiple all-atom 

configurations consistent with a given set of OPs . Thus, the OP construction scheme 

constitutes a many-to-one mapping from the all-atom to the coarse-grained description. As a 

consequence, the OP description retains overall structural information, losing all-atom 
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details. Atomistic structures are reconstructed via a procedure called deductive multiscale 

analysis (DMA) that evolves the OPs with an ensemble of all-atom configurations as 

follows.

The description adapted starts with the probability density ρ of the N atomic positions and 

momenta Γ. However, this formulation masks the underlying hierarchical organization of a 

macromolecular assembly. To address this, in DMA ρ is hypothesized to depend on Γ both 

directly, and via a set of OPs, indirectly. With this ansatz, a multiscale analysis of the 

Liouville equation yields sets of coupled Langevin equations for the OPs31,52

(7)

where τ = ɛ2t and ɛ is a smallness parameter, e.g., ratio of typical atomic mass to that of the 

entire assembly. The variance of noise  is bound by diffusivity . The factors  are 

related to the ensemble average of correlation functions between hierarchical OP momenta 

 via

(8)

where μk is the effective mass associated with ϕk as defined in eq 3 and 

 is the lowest order Liouville operator. The 

thermal-average force  is given by

(9)

for OP-constrained Helmholtz free-energy F, where

(10)

Q(ϕ,β) is the partition function constructed from configurations consistent with the set of 

 (denoted ϕ collectively).

In the above formalism, thermal average forces  are constructed at each Langevin time 

step via Monte Carlo integration of atomic forces  obtained from interatomic force fields 
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(e.g., CHARMM53). Note that this does not require any assumption on the form of the 

dependence of the thermal average forces on the OPs; this is automatically incorporated 

because the all-atom ensembles used to carry out the thermal averaging are constructed for 

the values of the OPs at the given Langevin time step. Furthermore, this formalism accounts 

for the full impact of fluctuations  as the random forces in the Langevin equations are 

constructed to be consistent with the diffusivity factors .

The thermodynamic forces involved are small so that the state is captured by the slowly 

varying OPs. As the system evolves toward equilibrium the thermodynamic forces vanish 

and the system is fluctuation dominated. Both these cases are accounted for in our multiscale 

OP approach since the intensity of fluctuations is chosen to be consistent with the diffusion 

factors. Finally, if the thermodynamic forces are extremely large then the time scale of OP 

evolution approaches that of atomistic fluctuations. With this, the time scale separation 

between fast and slow variables is violated and the theory does not hold.

Inherent in our DMA approach is the capability to reconstruct atomistically resolved states 

given the evolving coarse-grained dynamics. Any coarse-grained theory carries an inherent 

uncertainty in the fine scale states.54 DMA addresses this by providing the conditional 

probability density for the atomistic configurations given the instantaneous values of the 

OPs. These configurations are generated by a procedure denoted hybrid sampling in which 

the all-atom structures are reconstructed from the coarse-grained description via randomly 

varying the residuals  at constant values of OPs (eq 2).34 Therefore, the OPs constrain the 

ensemble of atomic states, while the latter determine the thermal average forces and 

diffusivity factors that control OP evolution (eq 7). Thus, the OPs imply a multiscale 

simulation algorithm that accounts for cross-talk between coarse-grained and atomic DoF. 

All these ideas are implemented as the DMS software.

 F. Use of PCA and Legendre Basis Functions for Order Parameter Construction

Bionanosystems undergo large-scale conformational changes involving collective motions of 

strongly interacting clusters of atoms. Such structural changes often correspond to the 

functionally relevant motions of macromolecular systems.4,21 Collective DoF can be 

observed through calculating the autocorrelations of the normalized 3N-dimensional atomic 

displacement vectors from consecutive time windows as

(11)

where  denotes the normalized 3N-dimensional atomic displacement vector during 

the l-th time window of size δt for l = 1,…, L.

There is a variety of coarse-grained variables in the literature that are used to analyze 

coherent motions in biomolecular systems (section I). Here, we test the suitability of using 

the basis vectors obtained from PCA for constructing the slow variables used in the 

multiscale analysis of section II.E. To address this issue, consider using the PCA modes (or 

eigenvectors) as the basis functions for constructing OPs (see the Appendix). Correlations 

Singharoy et al. Page 10

J Phys Chem B. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the PCA derived basis functions Uk are compared to those of the Legendre 

polynomial ones uki at selected time intervals. Strong correlation in the long time behavior 

of these variables implies slow evolution of the functions used to construct the basis vector 

which, in turn, underlies coherent OP behavior. With this, define a correlation matrix C for 

the basis vectors via

(12)

where  denotes the kth PCA or Legendre basis vector (k = 1,…, M) from the l-th time 

window (l = 1,…, L). In analogy with the PCA modes, the Legendre polynomials are 

constructed here using atomic displacements of a given time interval tl (and not absolute 

positions as in eq 1, Appendix). The average structure required to calculate these PCA 

modes is changed with each time window, and similarly for the reference coordinates needed 

to construct OPs. This treatment of the Legendre polynomials enables a fair comparison with 

PCA modes in the context of analyzing basis function behavior as both variables are then 

expressed in terms of atomic displacements for a given time interval. This particular 

construction of uki is used for PCA comparisons only.

 III. RESULTS AND DISCUSSION

 A. Suitability of Coarse-Grained variables for Deductive Multiscaling

PCA has been applied to reduce the dimensionality of MD trajectories for analyzing large-

scale structural changes.21,55 Their behavior is compared with that of the space warping OPs 

for dimensionality reduction and deductive multiscaling. For demonstration, we choose the 

CCMV capsid as our model system because of its extensively studied structural transition 

phenomena.56,57 The crystal structure of wild-type CCMV is solved at 3.2 Å resolution by 

X-ray crystallography.57 Its capsid consists of 180 chemically identical protein subunits that 

form a 286-Å-diameter icosahedral shell with a T = 3 quasi-symmetry.

Macromolecular assemblies (e.g., virus capsids) evolve in stochastic fashion, and therefore 

simulating their long-time behavior should account for an ensemble of atomic positions and 

momenta. Thus, an analysis aimed at extracting low-frequency modes (e.g., space warping 

OPs or PCA) from MD should in principle be performed with an ensemble of trajectories. 

Here, 30 replica NAMD58 runs with different random atomic velocity initializations are 

executed starting with the swollen CCMV capsid. Since the characteristic time of OP 

evolution is expected to be ∼O(N) times longer than that of atomistic fluctuations (see eqs5 

and 7), each MD trajectory is run for 105 fs (100 ps) for investigating the low-frequency 

modes.

While it is ideal to study the time evolution of all atoms in the system, it is impractical to 

perform PCA diagonalization of the large 3N × 3N atomic positional covariance matrix for 

the 400 000 atom capsid. Thus, only data on 10% of Cα atoms (every tenth residue, 2940 in 

total) in the CCMV capsid backbone is extracted for our PCA study. We divide the 100 ps 

ensemble-averaged trajectory of swollen CCMV capsid into 10 time windows, each of 
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which is input to the MD analysis program carma59 for PCA. Every calculation yields 8,820 

eigenvectors and their eigenvalues. The first 20 PCA eigenfuctions are found to capture 

about 95% of structural changes in swollen CCMV capsid. We then choose these 20 modes 

from each time window and calculate their correlation matrix C from consecutive time 

windows using eq 12 to compare their similarities and thereby monitor coherence.

Figure 2a shows dot products of atomic displacement vectors , i.e., the Δ matrix 

expressed via eq 11 using 10 ps time windows. The overlap of  from neighboring time 

windows (the upper and lower diagonal entries) are found to be significant (about 0.6). As 

the distance between time windows increases, the  autocorrelations decrease gradually 

to about 0.2. These correlations imply that the capsid undergoes slowly evolving collective 

motions over time intervals of 10 ps or longer. Figure 2b shows the correlation matrix C of 

PCA basis vectors from the first two consecutive time windows calculated using eq 12. 

These PCA vectors are found to display small overlapping with their dot products distributed 

between −0.02 and +0.02. Basis vectors from other sets of consecutive time windows also 

give similar results. In contrast, Legendre polynomials of atomic displacements display 

significantly larger correlation between the basis vectors of the two consecutive time 

windows (similar values as the correlations of Δ) compared with that of the PCA (see Figure 

2c). The antidiagonal entries have switching positive and negative values because of the odd 

and even properties of Legendre polynomials used.

Space warping basis vectors constructed with Legendre polynomials of atomic 

displacements at consecutive time intervals display large similarities implying coherence of 

the basis vectors uki as shown in Figure 2c, which, in turn, reflects the slowly evolving 

nature of the collective motions illustrated in Figure 2a. This suggest that the OPs 

constructed from these basis vectors are suitable to project system configuration over long 

time (10 ps or longer). Therefore, they can serve as a basis for the multiscale analysis 

introduced in section II.E. The comparison of Legendre with PCA derived basis vectors 

implies that the latter capture correlated motions on time scales lesser than 10 ps, not 

suitable to project system configuration over long time, and do not manifest the coherence in 

evolution required to construct OPs for deductive multiscaling and related simulations. Thus, 

temporal scales captured through these PCA modes are shorter than those described by OPs 

constructed from the Legendre polynomials of Figure 2. In the deductive multiscale 

formalism however, such local motions are captured through the construction of all-atom 

ensembles that probe events on time scales much smaller than that of OP evolution (section 

II.E). Alternatively, incorporation of more OPs in the coarse-grained description enables 

capturing short scale collective motions32 (as discussed in sections III.B and III.C). Thus, 

the space warping OPs when embedded in our multiscale approach together with the implied 

quasi-equilibrium ensemble of OP constrained atomic configurations capture dynamics on 

shorter, similar, as well as longer scales than PCA modes. As a result, the OPs provide an 

ideal and versatile reduced description that enables the deductive multiscaling of N-atom 

macromolecular assemblies.
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 B. Symmetry Breaking and CCMV Capsid Structural Transition

The slowly evolving nature of OPs suggests a multiscale MD/OPX approach to simulate 

bionanosystem dynamics.32,36,37 In this approach, a set of replica MD runs with different 

velocity initializations is used to estimate the rate of OP change. Since OPs evolve 

coherently, they are readily extrapolated over long time periods using this rate through eq 5. 

Thus, the slow overall dynamics of the system is simulated. At every time step, the replica 

MD runs are repeated to reassess the rate of OP change that enables further extrapolation in 

time.

Biomolecular systems of nanoscale size provide ideal examples for illustrating the 

effectiveness of an OP based simulation methodology. MD/OPX was used to simulate the 

shrinkage of a swollen CCMV capsid in vacuum for 200 ns.36 33 OPs were constructed by 

using Legendre polynomials of atomic coordinates over order (0, 1, 2) in X, Y, and Z 
directions. Low-order Legendre polynomials were selected because they vary smoothly in 

space and thus can capture the overall nanoscale deformation of the virus capsid. Thirty 500 

fs replica MDs were used for calculating the rate of OP evolution and extrapolating them to 

evolve the system. As the OPs are slowly varying in time, the length of MD runs used to 

compute the rate of their change are typically much smaller than the extrapolation time step. 

With this, adaptive timesteps in the range of 50–60 ps are achieved to extrapolate the OPs. 

These are 4 orders of magnitude larger than the typical MD timesteps (e.g., 1 fs). As shown 

in Figure 3a, the CCMV shrinkage was found to be an energy-driven, symmetry-breaking 

process that involves large-scale translation and rotation of pentamers and hexamers in the 

capsid. The capsomeres undergo cooperative motions through strongly coupled allosteric 

interactions during shrinkage. As a result, this viral structural transition starts locally and 

then propagates across the capsid, i.e., they proceed via intermediate states that are not 

constrained to the icosahedral symmetry of the initial and final states (i.e., T = 3).

Variables that capture the symmetry breaking nature of this CCMV capsid structural 

transition are the hexamer and pentamer orientation angles (Figure 3b). Their values change 

gradually during capsid shrinkage, indicating change in orientational order of the capsid 

subsystems. Insight into the nature of transitions involving these variables can be gained via 

analogy with the ferromagnetic phase transitions. For example, magnetic orientational order 

changes as temperature changes across the Curie value. Similarly, the capsid structural 

transition involves capsomere rotation as the pH and thus the protonation state of protein 

residues in the system changes.37,56 However, unlike traditional examples in ferromagnetic 

transitions where the crystal structure remains intact, the orientational reordering of 

capsomeres accompanies shrinkage of the T = 3 capsid. This behavior, in turn, is similar to 

ferromagnetic phase transitions in alloys that simultaneously involve negative expansion of 

lattice parameters.60 Thus, transitions involving change in capsomere orientations for a fixed 

T-number could occur as analogues to the change in lattice structure accompanying some 

ferromagnetic transitions.61 Such structural transitions are also observed in molecular solids 

and liquid crystals44 where eularian angles are used as orientational OPs.
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 C. Structural Transition between States of Uncertain Symmetry

Traditionally, OPs are used to characterize macroscopic phase transitions wherein symmetry 

breaking is usually apparent since the symmetries of the states on either side of the transition 

are readily identified. While transitions in macromolecular systems often demonstrate large-

scale structural reorganization, the symmetries involved can be less apparent (section II). 

Here, we use DMS38 simulations to illustrate new OP related metrics that signal the change 

of order in macromolecular systems without readily identifiable symmetry. These 

simulations are based on the two-way transfer of structural information between OPs 

(coarse-grained description) and atomistic configurations (characterized by quasi-

equilibrium probability densities) as described in section II.E. The demonstration system, 

RNA of STMV, is chosen because it (a) has interesting complexity, containing 949 

nucleotides arranged in 30 double stranded helical stems joined via single-stranded loops, 

(b) is highly flexible, (c) expresses nonlinear motions and, (d) unlike CCMV, does not have a 

readily identifiable initial symmetry.62 With this, applicability of the space warping OPs of 

section II as coarse-grained variables that efficiently probe highly complex motions is tested.

The initial state of the STMV RNA is taken to be when it resides inside the capsid with 

associated protein subunits. The simulated evolution follows after the capsid is removed 

instantaneously. In a 1:1 electrolyte like NaCl, the RNA initially expands, then shrinks due 

to electrostatic shielding by the diffusive counterion cloud, and finally fluctuates among 

atomistic states of similar energy.33 All-atom configurations resulting from this simulation 

imply that the RNA tertiary structure is highly disrupted, although secondary structures 

remain after 50 ns.33 In contrast, in a 2:1 electrolyte like MgCl2, Mg2+ ions tightly bind to 

the RNA. Thus, secondary and tertiary structure is preserved during the 25 ns simulation 

(see Figure S1). This DMS predicted RNA stability in 0.3 M 2:1 electrolyte is in agreement 

with previous experimental and theoretical predictions6,63 and reconfirmed here with 

NAMD simulation results at 310 K (Figure S2a).

To further test the robustness of DMS, the RNA simulation in 0.3 M MgCl2 is repeated over 

a range of temperatures between 310 and 425 K. At each temperature 25 ns all-atom 

trajectories are obtained. Details of conditions and parameters used for these simulations are 

listed in Tables S1 and S2 in the Supporting Information. Increase in temperature results in 

the emergence of new collective motions. To capture these motions, OPs that were not 

included to the initial set of collective variables are added to the reduced description and 

subsequently evolved via Langevin equations (see section SI2 of the Supporting Information 

for details). Such OPs, denoted  corresponds to values of k for which nonlinear local 

motions like tapering, twisting and bending are probed (Figure 4b). This illustrates that new 

space warping OPs can be readily added to capture complex motions as they emerge in 

response to change changes in the microenvironment.

Tracking the decay characteristic of OP velocity autocorrelation functions calculated by 

using eq 8 provides a criterion of completeness for a given set of OPs. In particular, 

appearance of long time tails in these correlation functions typically suggests there are 

additional OPs that couple to the set considered originally.33,46 As these “missing” modes 

are accounted for via the introduction of additional OPs ( ), the corresponding OP 
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velocity autocorrelation functions rapidly decay indicating completeness of the reduced 

description (Figure 4a). With this, the growth of residuals  (Figure S3) and emergence of 

long tails in correlation functions (manifested during the construction of all-atom ensembles 

via hybrid sampling as described in section II.E) indicate the necessity of additional OPs that 

capture a shift in structural organization. Therefore, these quantities serve as OP related 

metrics that signal the change of order in macromolecular systems even if symmetry 

breaking is not readily identifiable.

The DMS results at 310 K and 425 K are benchmarked with those of 5 ns NAMD 

simulations. The OP trajectories obtained from these simulations are found to be in 

agreement (Figure S2); this validates the applicability of DMS simulations over a 

biologically relevant range of temperatures. However, as temperature increases the time 

scale of OP evolution decreases. This limits the size of Langevin OP timesteps and, 

subsequently, the applicability of the noninertial Langevin equations that underlie DMS 

simulations. Thus, simulations in the 310–425 K range are carried out using DMS; higher 

temperature simulations are performed using NAMD to capture the inertial regime that 

restricts DMS applicability (section SI2, in the Supporting Information). Comparison with 

MD at multiple temperatures ensures that DMS predicted results are free from artifacts. This 

also confirms that the predicted temperature behavior of the RNA is not affected by the 

switch in simulation methodology (DMS to MD) at 450 K.

The present investigation of RNA dynamics over a range of temperatures provides insights 

into a macromolecular phase transition. The essence of this transition is seen in Figure 5 

where ensemble average values of three selected OPs are plotted versus temperature. The 

temperature-dependent behavior of average OP values suggests a phase transition type 

phenomenon occurs between 475 and 500 K. OPs undergo a drastic change in magnitude 

across this transition region (Figure 5). Observed increase in OPs implies expansion of the 

RNA structure. Thus, space warping OPs indicate a substantial shift in order between states 

of RNA in which symmetries are not distinct. Since these OPs capture overall RNA 

structure, analogous transition behavior is observed for other coarse-grained descriptors like 

the number of hydrogen bonds (Figure 5), radius of gyration (Figure S4), and end-to-end 

distance.

Most RNAs have a degree of heterogeneity in the nucleotide sequence. With this, one might 

expect heterogeneous nucleation sites for the transition. i.e., nucleotides are not all equally 

responsible for the structural changes in RNA. In the present simulations, the 14th and 19th 

nucleotide (ADE and URA, respectively) in each of the 30 RNA helices were found to be 

more thermo-labile, i.e., sensitive to changes in temperature. As shown in Figure 6a, 

enhanced motion of these nucleotides is reflected in significant shifts in their dihedral angles 

as the temperature changes. A Poisson–Boltzmann evaluation of electrostatic energies64 

shows that these two nucleotides are the most stable when RNA is embedded inside the virus 

capsid (Figure S5). Strong protein-nucleic acid interactions hold dihedral angles neighboring 

these nucleotides unchanged. However, when the capsid is removed, setting the RNA free as 

simulated here, the associated dihedrals change appreciably. Consequently, these dihedrals 

sample a range of values that evolve away from those of the protein-bound RNA (Figure 6a). 

As the transition zone is entered the motion of these thermo-labile centers increase until a 
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RNA-wide transition is expressed. For example, at these temperatures (475–500 K), the 

internucleotide hydrogen bond breaks providing additional DoF to the RNA helices (Figure 

5). This, together with enhanced mobility of the thermo-labile centers, results in correlated 

nucleotide motions in their vicinity. Emergence of such motions like twisting or bending 

(Figure 4) disrupts secondary structure of the double stranded RNA stem and mediates the 

propagation of an instability front across the entire macromolecule (Figure S6) that 

transforms all the helices to coils (Figure 6c). Resulting shift in order of the overall RNA 

structure is indicated by the discontinuous temperature behavior of space warping OPs 

across the transition region (Figure 4). Thus, the thermo-labile nucleotides provide centers of 

nucleation that initiate the observed first-order like phase transition between the 

encapsidated and coiled states of STMV RNA. Root mean square (rms) fluctuations about 

the mean dihedrals for nucleotides of the RNA helices are presented (Figure 6b). Such 

fluctuations increase near the transition zone as expected if the analogy to macroscopic 

phase transitions is to hold.

In the above, the temperature-dependent behavior of STMV RNA is investigated from the 

space warping OPs, nucleation and fluctuation perspectives. Results suggest a first-order like 

phase transition occurs between 475 and 500 K. Such behavior reflects the interplay between 

local and overall structures of RNA. Although there is no experimental data available for the 

transition temperature of STMV RNA, earlier simulations on smaller RNA loops suggest a 

melting point between 420 to 430 K.65 Given that the present system is much larger (i.e., 

949 versus 14 nucleotides and an order or 2-fold greater number of dinucleotide bonds), the 

high transition temperature suggested here is not surprising. Besides, significant 

discrepancies between experimental and theoretical results on macromolecular structure and 

dynamics are well-known.66 These differences can be attributed to factors such as the finite 

size of all-atom ensembles constructed at every Langevin time step for computing the 

thermal forces and diffusions (section II.E), possible incompatibility of force-fields with 

high temperature simulation,65 discrepancies in thermal expansion coefficient of TIP3P 

water model,67 and problems with simulating the counterion environment as realized in the 

experiments.68 Nonetheless, RNA simulations in aqueous medium have been performed for 

temperatures in the range 300–700 K.65,69 These simulations have provided insights into the 

thermorigidity and functionality of multiple RNA structures. Even though the above 

simulation inconsistencies might affect computing exact transition temperatures, the 

behavior of OPs across transition regions as reported here qualitatively follows previously 

observed trends.66,69,70 With this, the space warping OPs used for macromolecular 

assemblies have properties analogous to those used in the theory of macroscopic phase 

transitions.

Our results also suggest that proteins on the inner surface of STMV capsid greatly enhance 

the stability of the thermo-labile nucleotides, i.e., suppress motion of the nucleation centers 

(see Figures 6a and S7). Consequently, viruses can survive in high temperatures (∼400 K) 

without losing the RNA tertiary structure.71 Thus, the free-energy minimizing structure of a 

virus can enable it to withstand severe temperatures, as commonly observed. At very high 

temperatures however, these protein–RNA interactions are lost and so the virus ultimately 

loses stability.
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 D. Performance of Multiscale Techniques

Structural transitions in CCMV and RNA of STMV provide examples of phenomenon in 

which accounting for the cross-talk among multiple time and length scales becomes critical. 

Since both DMS and MD/OPX are based on the interplay of all-atom and coarse-grained 

variables, such multiscale methodologies naturally account for this cross-talk. Furthermore, 

application of these techniques leads to efficient computation of slow processes. For 

example, MD/OPX simulation with adaptive OP extrapolation timestepping is about 6 times 

faster than direct MD. Similarly, DMS is found to be about 11 times faster than NAMD at 

310 K. This efficiency reduces by 4 fold at 425 K. This is expected as the OPs loose 

coherence with increase in temperature. However, a direct comparison with conventional 

MD run is not appropriate. This is because at each OP time step 200–300 all-atom structures 

consistent with the instantaneous OP values are obtained. Thus, DMS or MD/OPX 

simulation corresponds to an ensemble of 200–300 conventional MD runs, for which the 

timecourses of the spacing warping OPs are essentially the same, while the detailed 

atomistic configuration varies among members of the ensemble. Finally, a single MD run 

may not be representative of an ensemble of possible time courses, which, in contrast is 

automatically overcome in the all-atom multiscale approach.

 IV. CONCLUSIONS

Space warping OPs capture key elements of symmetry breaking manifested in structural 

transitions of macromolecular assemblies. Their generality allows them to capture a variety 

of symmetries that emerge as a consequence of the underlying interatomic forces and 

conditions to which the system is subjected. The space warping OPs enable a multiscale 

analysis which accounts for the cross-talk between the coarse-grained and all-atom DoF, and 

characterizes an ensemble of atomic configurations coevolving with the OPs. In this context, 

spacing warping OPs together with the multiscale analysis capture a more diverse range of 

coherent motions than do PCA modes. These ideas are demonstrated via simulations of 

symmetry breaking accompanying CCMV capsid shrinkage, and a first order structural 

transition in RNA of STMV. The multiscale methodology presented here is robust to a range 

of salinity and biologically relevant temperatures. However, high temperature regimes 

reduce the multiscale simulation performance due to the loss of time scale separation 

between coarse- and atomic-scale processes. Depending upon conditions, OP-mediated 

multiscale simulations are much more efficient than conventional MD simulations.
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 APPENDIX

 Principal Component Analysis for Dimensionality Reduction

Principal component analysis (PCA) involves diagonalization of the positional covariance 

matrix for selected atoms (like Cα in protein backbone)

(A1)

where xi and xj are atomic coordinates and the 〈⋯〉 denote trajectory averages over a 

selected time window tl with l = 1,…, L. This generates an orthogonal set of eigenvectors 

(i.e., basis vectors or modes), denoted U, each associated with an eigenvalue that indicates 

the amplitude of fluctuations along that eigenvector. Eigenvalues divided by their sum 

describe relative contributions of the associated eigenvectors to major conformational 

changes observed in the trajectory. For reduced representation of the system, a subset of 

PCA eigenvectors with largest eigenvalues is chosen and the number of these eigenvectors 

M is normally much smaller than the total number of atoms N,21,72 i.e.,U ≡ {Uk, k = 1,…, 

M} for M ≪ N.

Simple changes in the definition of space warping OPs (eq 1) enable its construction using 

the PCA basis vectors. To achieve this, space warping OPs are recast in terms of 

displacements from a mean configuration. This yields

(A2)

where  are atomic coordinates of the system reference configuration which can be starting 

structure of a time window and ϕk are the OPs tracking displacement from this structure. 

Similarly, the Legendre polynomials constructing uki are defined as functions of atomic 

displacements,  (i = 1,…, 3N) from the selected time window tl (section II.B). 

Introducing these uki into eq 1 yields analogues of A2 in the Legendre basis

(A3)

where the factor uki is constructed using functions of the form . This treatment of 

the Legendre polynomials enables a fair comparison with PCA modes in the context of 

constructing basis vectors as functions of atomic displacements.
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Figure 1. 
Normalized space warping OPs with specified k-indices are shown to deform a T = 7 capsid 

into conical, capsular, and twisted capsular forms. Cartesian components of only 33 OPs are 

chosen for this analysis as they are sufficient to capture these transformations.
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Figure 2. 
Correlation matrices of (a) atomic displacement vectors of the ten consecutive time windows 

of 100 ps ensemble-averaged trajectory and (b) PCA and (c) space warping basis vectors 

from the first two consecutive time windows. Twenty PCA and 27 Legendre basis vectors 

are used as they keep the residuals σi in eqs A2 and A3 small.
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Figure 3. 
200 ns MD/OPX simulation of the shrinkage of swollen CCMV capsid: (a) CPK 

representation of Cα atoms of the resulting structure with arrows indicating the atomic 

displacements from their original positions in the starting PDB structure to their final 

positions and (b) time courses of the average rotation angle for pentamers and hexamers 

calculated via superimposing their structures to the initial configurations.
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Figure 4. 
(a) Velocity autocorrelation functions for a typical OP (Φ100X). Absence of a long-time tail 

indicates lack of coupling to other slow variables not included in the set of OPs. As 

temperature increases, so does the area under a curve, implying greater OP diffusion. (b) 

Appearance of new OPs (k = 2 and 3 here) indicates emergence of collective motions as 

temperature increases. Some of these OPs correspond to those for twisting and tapering 

(Figure 1), thereby capturing the emergence of nonlinear deformation about thermo-labile 

centers of the RNA helix (inset). These emergent OPs are obtained from the population of 

growing residuals as described in Figure S3 in the Supporting Information.
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Figure 5. 
Phase transition behavior of STMV RNA captured via the quasi-discontinuous change of 

space warping OPs between 475 and 500 K suggesting that these OPs are appropriate 

indictors of a change in organization even if the nature of symmetry breaking is not 

apparent. The change in OPs indicates thermal expansion of the RNA. Similar behavior is 

reflected in the average number of intranucleic acid hydrogen bonds that rapidly decreases 

across this region.
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Figure 6. 
(a) Average deviation of nucleotide dihedral angles from their initial values at t = 0 for 30 

nucleotides comprising of the RNA helix for temperatures between 310 and 500 K. At 

temperatures lower than the transition temperatures, nucleotides 14 and 19 show maximum 

deviation from their room temperature values. At temperatures in the transition zone, a more 

RNA-wide motion occurs, as indicated by the increase in dihedral deviation of neighboring 

nucleotides. In contrast, the protein bound RNA helix is the least mobile. (b) rms 

fluctuations about mean dihedral angles showing distinct increase with temperature. 
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Dihedral angles are calculated using the AMIGOS73 program. Only η-type dihedrals73 are 

plotted for illustrative purposes. At each temperature, the ensemble average dihedrals are 

averaged over all the thirty RNA helices to obtain data for this plot. (c) Global and local 

changes in the structure of viral RNA accompanying the transition between states of 

uncertain symmetry.
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