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There is long-term (trophic) purinergic signalling involving cell proliferation,

differentiation, motility and death in the development and regeneration of

most systems of the body, in addition to fast purinergic signalling in neuro-

transmission, neuromodulation and secretion. It is not always easy to

distinguish between short- and long-term signalling. For example, adenosine

triphosphate (ATP) can sometimes act as a short-term trigger for long-term

trophic events that become evident days or even weeks after the original

challenge. Examples of short-term purinergic signalling during sympathetic,

parasympathetic and enteric neuromuscular transmission and in synaptic

transmission in ganglia and in the central nervous system are described,

as well as in neuromodulation and secretion. Long-term trophic signalling

is described in the immune/defence system, stratified epithelia in visceral

organs and skin, embryological development, bone formation and resorp-

tion and in cancer. It is likely that the increase in intracellular Ca2þ in

response to both P2X and P2Y purinoceptor activation participates in

many short- and long-term physiological effects.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Introduction
The proposal that purine nucleotides are extracellular signalling molecules, as

well as an intracellular energy source, was first reported by Drury & Szent-

Györgyi [1]. Then in 1970, adenosine 50-triphosphate (ATP) was shown to be

a transmitter in autonomic neuromuscular transmission [2] and in a later

review the term ‘purinergic’ signalling was introduced [3]. This concept was

not accepted by many for the next 20 years. Separate purinergic receptor

families, P1 (adenosine) and P2 (ATP/adenosine 50-diphosphate (ADP)) were

described in 1978 [4], but the turning point in acceptance of purinergic signal-

ling came after the receptors for purines and pyrimidines were cloned and

characterized in the early 1990s [5]. Four P1 receptor subtypes (A1, A2A, A2B,

A3), seven P2X ion channel receptors (P2X1 – 7) and eight G-protein-coupled

receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14) are currently

recognized [6]. Activation of P2 receptors leads to increase in intracellular

Ca2þ: from extracellular sources for P2X receptors and from intracellular sites

for P2Y receptors. Perhaps because of their ancient origin, the array of purino-

ceptor subtypes has a unique property of being extraordinarily widely

distributed throughout living cells and tissues [7]. In contrast to all other chemi-

cal transmitters, which are, as a rule, segregated to certain cell types and certain

functions, the receptors for purines and pyrimidines are found everywhere, and

it is almost impossible to find a cell without sensitivity to ATP and its

analogues. There has been a rapid expansion of the field since 1995 [8,9].
2. Short-term purinergic signalling
ATP was shown to be a transmitter released from non-adrenergic, non-

cholinergic nerves to produce short-term purinergic signalling from inhibitory

enteric nerves in the guinea pig taenia coli [2] and from excitatory
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Figure 1. Short-term (acute) purinergic signalling controlling vascular tone. Schematic illustrating the main receptor subtypes for purine and pyrimidines present in
most blood vessels. Perivascular nerves in the adventitia release ATP as a cotransmitter: ATP is released with noradrenalin (NA) and neuropeptide Y (NPY) from
sympathetic nerves to act on smooth muscle P2X1 and, in some vessels, P2X2, P2X4 and P2Y2 purinoceptors, resulting in vasoconstriction. ATP is also released
together with calcitonin gene-related peptide (CGRP) and substance P (SP) from sensory nerves during ‘axon reflex’ activity and broken down to adenosine
diphosphate (ADP) to act on smooth muscle P2Y1 purinoceptors in some regions of some vessels resulting in vasodilatation. P1(A1) purinoceptors on nerve terminals
of sympathetic and sensory nerves mediate adenosine (AD) (arising from enzymatic breakdown of ATP) modulation of transmitter release. P2X2/3 purinoceptors
are present on a subpopulation of sensory nerve terminals. P1(A2) purinoceptors on vascular smooth muscle mediate vasodilatation. Endothelial cells release
ATP and uridine 50-triphosphate (UTP) during shear stress and hypoxia to act on P2Y1, P2Y2 and sometimes P2Y4 purinoceptors leading to the production of
nitric oxide (NO) and subsequent vasodilatation. ATP, following its release from aggregating platelets, also acts on these endothelial receptors. Blood-borne platelets
possess P2Y1 and P2Y12 ADP-selective purinoceptors as well as P2X1 receptors, while immune cells of various kinds possess P2X7, as well as P2X1, P2Y1 and P2X2

purinoceptors. P2X2, P2X3 and P2X4 receptors have also been identified on endothelial cell membranes. (Modified from [23], with permission from Lippincott
Williams and Wilkins.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150422

2

parasympathetic nerves in the urinary bladder [10]. Short-

term purinergic signalling was demonstrated when ATP

was identified as a cotransmitter with noradrenalin in sym-

pathetic nerves in the taenia coli [11], cat nictitating

membrane [12], vas deferens [13,14] and in blood vessels

[15,16]. ATP is also a cotransmitter with acetylcholine in

motor nerves supplying developing skeletal muscle [17],

bladder [18] and carotid body [19] and in sensory-motor

nerves with substance P and calcitonin gene-related peptide

[20]. Later ATP was shown to be a cotransmitter, mediating

short-term purinergic signalling, in neurons in the central

nervous system (CNS) [8,21,22]. The involvement of short-

term purinergic signalling in the control of vascular tone is

illustrated in figure 1. Purinergic synaptic transmission

between nerves was shown in the coeliac ganglion [24,25]

and the medial habenula in the brain [26]. ATP released

during synaptic transmission can activate astrocyte receptors,

which in turn initiate Ca2þ signals and propagate Ca2þwaves

in the astroglial networks via the activation of P2Y receptors

and the diffusion of inositol trisphosphate (IP3) through the

gap junctions [27]. Ionotropic P2X receptors are responsible
for rapid astrocytic signalling, whereas metabotropic P2Y

receptors mediate long-term effects [28].

Short-term signalling involved in prejunctional neuro-

modulation via both P1 and P2 receptors was also

recognized in both peripheral [20,29,30] and CNSs [31,32].

Purinoceptors are extensively present in the CNS, where

they mediate neuronal excitability and they are important

for signalling in neuronal–glial circuitry, being an important

gliotransmitter [8,33,34].

Purinoceptors are present in all peripheral tissues, being

involved in short-term as well as long-term regulation of

different functions, including neuromuscular and synaptic

transmission and secretion in gut [35], and secretion in

kidneys [36], liver [37] and reproductive systems [38]. In vascu-

lar [16] and respiratory systems, ATP mediates reflex activities

via activation of sensory nerves [39]. Activation of purinocep-

tors can mediate rapid responses in the immunological system

[40], in blood cells [41], skin [42], bones and muscles [43], urin-

ary tract [44] and heart [45]. Short-term purinergic signalling

also takes place in secretion from endocrine [46] and non-

endocrine cells [35]. P2X3 and P2X2/3 receptors are involved
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Figure 2. Schematic diagram illustrating the potential functions of extracellular nucleotides and P2 receptors in modulating bone cell function. ATP released from
osteoclasts (e.g. through shear stress or constitutively) or from other sources can be degraded to adenosine 50-diphosphate (ADP) or converted into uridine
50-triphosphate (UTP) through ecto-nucleotidases. All three nucleotides can function separately on specific P2 receptor subtypes, as indicated by the colour
coding. ATP is a universal agonist, whereas UTP is only active at the P2Y2 receptor and ADP is only active at the P2Y1 receptor. ADP acting on P2Y1 receptors
seems to stimulate both the formation (i.e. fusion) of osteoclasts from haematopoietic precursors and the resorptive activity of mature osteoclasts. For the
latter, a synergistic action of ATP and protons by the P2X2 receptor has been proposed. ADP could also stimulate resorption indirectly through actions on osteoclasts,
which in turn release pro-resorptive factors (e.g. receptor activator of nuclear factor kB ligand, RANKL). ATP at high concentrations might facilitate fusion of osteo-
clast progenitors through P2X7 receptor pore formation or induce cell death of mature osteoclasts through P2X7 receptors. In osteoblasts, ATP, through P2X5 receptors,
might enhance proliferation and/or differentiation. By contrast, UTP, through P2Y2 receptors, is a strong inhibitor of bone formation by osteoblasts. For some recep-
tors (e.g. P2X4 and P2Y2 receptors on osteoclasts or P2X2 receptors on osteoblasts), evidence for expression has been found but their role is still unclear. (Reproduced
from [68], with permission.)
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in nociception [47]. Purinergic signalling via P2Y12 receptors is

well established for control of platelet aggregation.
3. Long-term (trophic) purinergic signalling
ATP and it analogues are involved in tissue remodelling in

response to injury and play a key role in the regulation of

subsequent repair and regeneration [48]. Stimulation of puri-

noceptors triggers astrogliosis, the generalized response of

astrocytes to brain damage, involving cell proliferation and

remodelling of the neural circuitry [49,50]. Reactive astroglio-

sis is instrumental for both the formation of scar and

limitation of brain-damaged area (through anisomorphic

astrogliosis), as well as for the post-insult remodelling and

recovery of neural function (by isomorphic astrogliosis).

The initial events in the responses of astroglia to purinergic

signalling are instrumental for glial Ca2þ excitability or can

initiate long-term effects [51]. For reactive astrogliosis, not

only was increase in intracellular calcium absolutely necess-

ary, but ATP was also shown to be one of the key factors

involved in its initiation via the activation of P2Y G-protein-

coupled receptors linked to phospholipase C and IP3 [52].

These trophic/astrogliotic proliferative effects of P2 agonists

were found both in vitro, in glial cultures, and in vivo, in

nucleus accumbens of rats [53–56]. P2X receptors mediate

long-term potentiation in the hippocampus [57]. Activation
of P2X receptors can have multiple effects on synaptic plas-

ticity, either inhibiting or facilitating the long-term changes

of synaptic strength depending on the physiological context

[58]. Long-term purinergic signalling also occurs in chronic

inflammation and neuropathic pain [59].

(a) Embryological development
P2 receptor subtypes appear transiently during both embryolo-

gical and postnatal development, suggesting that ATP is

involved in the sequential proliferation, differentiation, moti-

lity and death of cells during the complex events involved

[8,60,61]. For example, in Xenopus embryos a novel P2Y8 recep-

tor was cloned and shown to be transiently expressed in the

neural plate and tube from stages 13 to 18 and again at stage

28, when secondary neurulation occurs in the tail bud

[62]. Transient expression of P2Y1 receptors in the limb buds

of chick embryos mediates rapid cell proliferation [63].

During postnatal development of cerebellum [64] and skeletal

muscle [65] changes in expression of P2X receptor subtypes

have been described. Purinergic signalling in development is

likely to involve cross-talk between several other signalling

pathways, including growth factors, cytokines and extracellu-

lar matrix components [61]. During early development of

the myotube P2X5 receptors were present, followed by

P2X6 receptor expression, and then P2X2 receptors were

expressed during the development of the neuromuscular
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junction. ATP-evoked Ca2þ transients in the chicken retina

were the strongest as early as E3, but were drastically reduced

at E11–13.5 [66]. Similar mechanisms are involved in adult

neurogenesis [67].

(b) Bone formation and resorption
Osteoclast activity and bone resorption are activated by ADP

via P2Y1 receptors, whereas ATP and uridine 50-triphosphate

(UTP) signalling via P2Y2 receptors in osteoblasts inhibits

bone growth and mineralization (figure 2) [43,69,70]. P2X7

receptors have trophic regulatory roles in bone formation

and resorption [71,72]. Osteoblasts activated by P2X7 recep-

tors show enhanced differentiation and bone formation [73],

whereas P2X7 receptor activation of osteoclasts evokes

apoptosis and bone resorption [74–76].

(c) Vascular remodelling in atherosclerosis and
post-angioplasty restenosis

ATP and UTP acting via P2Y2 receptors cause proliferation of

vascular smooth muscle cells. Proliferation of endothelial

cells is produced by ADP acting via P2Y1 receptors. Adeno-

sine via A2 receptors mediates inhibition of smooth muscle

proliferation but stimulation of endothelial cell proliferation

(figure 3) [23]. This suggests that the increase in vascular

smooth muscle and endothelial cells in both atherosclerosis

and hypertension may be mediated by the trophic actions
of purines and pyrimidines released from nerves and endo-

thelial cells [77–79] and in post-angioplasty restenosis [80].

P2Y4 receptors appear to be regulators of angiogenesis [81].

DNA synthesis and migration of vascular endothelial cells

in vasa vasorum is increased by ATP in diseased pulmonary

vessels [82]. Microvascular disease is characterized by an

increased wall–lumen ratio in diabetic patients. This is prob-

ably because of an increase in vascular smooth muscle cells

leading to higher rates of restenosis after angioplasty. Release

of ATP, induced by high glucose, stimulates vascular smooth

muscle cell growth via P2Y receptors [83]. An unusual type of

long-term purinergic signalling is the evidence that at a criti-

cal concentration ATP, acting on both erythrocytes [84] and

endothelial cells [85], leads to increase in ATP release into

the circulating blood for several hours.
(d) Skin
Stratified squamous epithelia in rat skin as well as cornea,

oesophagus, soft palate, vagina and tongue showed heavy

immunostaining of the P2X5 receptor associated with cell

differentiation in the spinous and granular cell layers, but

not in basal cuboidal outer layers. There was heavy immu-

nostaining of P2X7 receptors in the outer layer, associated

with apoptotic cell death [86]. There is rapid turnover of

the epithelium of the small intestine. P2X5 receptors are

expressed on the narrow ‘stem’ of villus goblet cells, while

P2X7 receptor immunoreactivity is seen only on the
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Figure 4. Double-labelling of P2Y1 and P2Y2 receptors with markers of proliferation shows colocalization within a subpopulation of basal and parabasal keratinocytes.
Double-labelling of P2X5 receptors with markers of differentiated keratinocytes shows colocalization within the stratum spinosum, and double-labelling of P2X7 receptors
with markers of apoptosis in human leg skin shows colocalization within the stratum corneum. (a) Ki-67 immunolabelling (a marker for proliferation) stained the nuclei
(green) of a subpopulation of keratinocytes in the basal and parabasal layers of the epidermis. P2Y1 receptor immunostaining (red) was found in the basal layer on cells
also staining for Ki-67. (b) PCNA immunolabelling (a marker for proliferation) stained the nuclei (green) of a subpopulation of keratinocytes. These nuclei were often
distributed in clusters and found in the basal and parabasal layers of the epidermis. P2Y2 receptor immunostaining (red) was also expressed in basal and parabasal
epidermal cells. (c) P2X5 receptor immunostaining (red) showed overlap (yellow) with cytokeratin K10 (green), an early marker of keratinocyte differentiation. P2X5

receptors were present in the basal layer of the epidermis up to the midgranular layer. Cytokeratin K10 was distributed in most suprabasal keratinocytes. The stratum
basale stained only for P2X5 receptors, indicating that no differentiation was taking place in these cells. The colocalization of P2X5 receptors and cytokeratin K10 appeared
mainly in the cytoplasm of differentiating cells within the stratum spinosum and partly in the stratum granulosum. Note that the stratum corneum also stained for
cytokeratin K10, which labelled differentiated keratinocytes, even in dying cells. (d ) P2X5 receptor immunostaining (red) showed overlap (yellow) with involucrin
(green). P2X5 receptors were present in the basal layer of the epidermis up to the midgranular layer. Note that the pattern of staining with involucrin was similar
to that seen with cytokeratin K10, except that cells from the stratum basale up to the midstratum spinosum were not labelled with involucrin, which is a late
marker of keratinocyte differentiation. (e) TUNEL (green) labelled the nuclei of cells at the uppermost level of the stratum granulosum and P2X7 antibody (red)
mainly stained cell fragments within the stratum corneum. ( f ) Anti-caspase-3 (green) colocalized with areas of P2X7 receptor immunostaining (red) both at the junction
of the stratum granulosum and within the stratum corneum. Areas of colocalization were yellow. Note that the differentiating keratinocytes in the upper stratum
granulosum were also positive for anti-caspase-3. Scale bars (a – d ) 30 mm and (e,f ) 15 mm. (Reproduced from [88], with permission.)
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membranes of the enterocytes and goblet cells at the tip of the

villus, where cells are undergoing apoptosis [87].

P2X5, P2X7, P2Y1 and P2Y2 receptor subtype expression

was studied in healthy human epidermal keratinocytes in

relation to markers for proliferation (PCNA and Ki-67),

differentiation (cytokeratin KIO and involucrin) and apop-

tosis (TUNEL and anticaspase-3) [88]. P2Y1 and P2Y2

receptors were immunoreactive in basal and parabasal

keratinocytes. Expression of P2X5 receptors within the stra-

tum spinosum and P2X7 receptors in the stratum corneum

was associated with cell differentiation (and subsequent

anti-proliferation) and apoptotic cell death, respectively

(figure 4). Functional experiments on cultured keratinocytes

showed an increase in cell numbers in response to the P2Y1

receptor agonist 2-methylthio ADP and the P2Y2 receptor

agonist UTP. By contrast, there was a significant decrease

in cell numbers with the P2X5 receptor agonist ATPgS

and the P2X7 receptor agonist 20(30)-O-(4-benzoylbenzoyl)

ATP. It was also shown that P2Y1 receptors in the basal

layer of the developing human fetal epidermis were associ-

ated with proliferation [89]. P2X5 receptors, predominantly

in the basal and intermediate layers, were associated with

differentiation, while P2X7 receptors in the periderm were

associated with apoptotic cell death.

Purinergic signalling is involved in wound healing. In

regenerating epidermis of denervated wounds, P2Y1 receptor

expression was increased in keratinocytes, while P2Y2 recep-

tor expression was decreased [90]. Nerve growth factor (NGF)

treatment of denervated wounds reduced expression of P2Y1

receptors and increased expression of P2Y2 receptors. NGF

treatment enhanced both P2X5 and P2Y1 receptors in kerati-

nocytes in innervated wounds. In all experimental wound

healing processes, P2X7 receptors were absent.
Human anagen hair follicles express P2Y1, P2Y2 and P2X5

receptors [91]. P2Y1 receptors were present in proliferating

cells in the outer root sheath and bulb, while P2X5 receptors

were associated with differentiation of the inner and outer

root sheaths and medulla. P2Y2 receptors were found in

cells at the edge of the cortex/medulla, while P2X7 receptors

were not present.
(e) Cancer
Analysis of the purinergic receptor subtypes involved in the

development of tumours in the prostate [92], bladder [93],

melanoma [94,95], breast [96–98] and other organs has

been described [99,100]. P2Y1 and P2Y2 receptors were

expressed and involved in cell proliferation; P2X5 receptors

were involved in differentiation (and were therefore antipro-

liferative), while P2X7 receptors were involved in cell death in

many tumours (figure 5). However, P2X7 receptors have been

shown to mediate both proliferation of cancer cells and apop-

totic cell death [101]. It may be that low concentrations of

released ATP promote proliferation, while high concen-

trations lead to cell death. In human melanomas, functional

P2X7 receptors are expressed that mediate apoptosis [94],

while P2Y1 and P2Y2 receptor agonists cause a decrease

and increase in cell numbers, respectively [95]. In human

squamous cell carcinoma, P2Y2, P2X5 and P2X7 receptors

appear to be associated with proliferation, differentiation

and cell death, respectively [102].

Using the HT-1376 high grade bladder cancer cell line,

P2X5 and P2Y11 receptors mediated the anti-neoplastic effects

of ATP, while P2X7 receptors mediated apoptotic cell death

[93]. Cell lines of hormone-refractory prostate cancer

showed similar results [103]. ATP reduced the in vivo
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growth of advanced hormone-refractory prostate cancer

implanted into mice [104]. Clinical trials have demonstrated

that systemic administration of ATP may have beneficial

effects (prolongation of survival and reduced cachexia) in

lung cancer patients [100].
4. Second messenger mechanisms and
transcription factors involved in short- and
long-term purinergic signalling

The second messenger mechanisms involved in short-term

purinergic signalling have been analysed in a number of

studies for P2X ion channel receptors [105–109]. Occupation

of both P2X and P2Y receptors leads to an increase in intra-

cellular Ca2þ, P2X receptors from extracellular sources and

P2Y receptors from intracellular sources [5,110]. It was

shown that extracellular ATP activates the P2X channel tri-

meric structure by binding the three intersubunit-binding

sites, which leads to conformational rearrangements that
are transferred to transmembrane helices linked to ATP-

binding domains by b strands [111]. Coupling of the P2Y

receptor subtypes to specific G proteins was initially inferred

from indirect evidence from movement of intracellular levels

of IP3, calcium, cyclic AMP (cAMP) and determination of

pertussis toxin sensitivity. Direct evidence followed by

measuring the effect of ADP and GTP hydrolysis in vesicles

reconstituted with P2Y1 and either Gaqb1g2 or Ga11b1g2

[112]. G-protein-coupled P2Y receptors also modulate the

activity of voltage-gated ion channels in the cell membrane

through the activity of activated G proteins (see [113] for a

detailed analysis).

The transcription factors involved in long-term trophic

signalling are more complex, as indicated in figure 6. A role

for calcium influx in cell proliferation has been proposed

[114]. External calcium concentration is important for calcium

channel function and it also regulates calcium sensing recep-

tor activity. Activation of the P2Y11 receptor by ATP, for

example, leads to a rise in cAMP and in IP3 and cytosolic

calcium, whereas activation by UTP was shown to produce

calcium mobilization without IP3 or cAMP increase [115].
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5. Conclusion
Trimeric P2X ion channel receptors largely mediate short-

term purinergic signalling, although there are examples of

P2X receptor-mediated long-term signalling. P1 and P2Y

G-protein-coupled receptors are predominantly involved in

long-term (trophic) purinergic signalling, but there are also

examples of mediation of short-term events. Examples of

both types of purinergic signalling are explored and the intra-

cellular translational mechanisms involved discussed.
Knowledge of the underlying mechanisms involved in both

short- and long-term purinoceptor-mediated signalling will

help in the development of purinergic drugs for therapeutic

purposes.
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