
rstb.royalsocietypublishing.org
Review
Cite this article: North RA. 2016 P2X

receptors. Phil. Trans. R. Soc. B 371: 20150427.

http://dx.doi.org/10.1098/rstb.2015.0427

Accepted: 23 March 2016

One contribution of 15 to a Theo Murphy

meeting issue ‘Evolution brings Ca2þ and

ATP together to control life and death’.

Subject Areas:
biochemistry, physiology, structural biology,

neuroscience, biophysics

Keywords:
adenosine 50-triphosphate, ion channel,

purinergic signalling

Author for correspondence:
R. Alan North

e-mail: r.a.north@manchester.ac.uk
& 2016 The Author(s) Published by the Royal Society. All rights reserved.
P2X receptors

R. Alan North

Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK

RAN, 0000-0001-9783-1094

Extracellular adenosine 50-triphosphate (ATP) activates cell surface P2X and

P2Y receptors. P2X receptors are membrane ion channels preferably per-

meable to sodium, potassium and calcium that open within milliseconds of

the binding of ATP. In molecular architecture, they form a unique structural

family. The receptor is a trimer, the binding of ATP between subunits causes

them to flex together within the ectodomain and separate in the membrane-

spanning region so as to open a central channel. P2X receptors have a

widespread tissue distribution. On some smooth muscle cells, P2X receptors

mediate the fast excitatory junction potential that leads to depolarization

and contraction. In the central nervous system, activation of P2X receptors

allows calcium to enter neurons and this can evoke slower neuromodulatory

responses such as the trafficking of receptors for the neurotransmitter gluta-

mate. In primary afferent nerves, P2X receptors are critical for the initiation

of action potentials when they respond to ATP released from sensory cells

such as taste buds, chemoreceptors or urothelium. In immune cells, activation

of P2X receptors triggers the release of pro-inflammatory cytokines such

as interleukin 1b. The development of selective blockers of different P2X recep-

tors has led to clinical trials of their effectiveness in the management of cough,

pain, inflammation and certain neurodegenerative diseases.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Beginnings of the field
The study of the proteins that came to be known as P2X receptors has three dis-

tinct origins. The earliest was the description by Burnstock & Holman [1,2] of

the junction potentials (ejps) recorded with glass microelectrodes from smooth

muscle cells of the guinea pig vas deferens. By analogy with the similar depolar-

izations observed in skeletal muscle (endplate potentials), the inference was that

the transmitter released from the nerve briefly increased the permeability of

the smooth muscle membrane to cations. Noradrenalin was thought to be the

transmitter released from the sympathetic nerves, a conclusion buttressed

by the finding in 1970 that pretreatment with 6-hydroxydopamine to destroy

sympathetic nerves abolished the ejp [3].

By 1978, evidence was becoming compelling that adenosine 50-triphosphate

(ATP) was the sympathetic transmitter in the bladder [4] and the use of the ana-

logue ab-methylene-ATP (abmeATP) as a desensitizing blocker extended this

conclusion to the vas deferens [5]. In 1985, Burnstock & Kennedy [6] characterized

such actions of ATP, which were mimicked and/or blocked by abmeATP, as

involving P2X receptors. These were distinguished from P2Y receptors, at

which 2-methyl-thio-ATP was a more effective agonist and activation of which

typically led to smooth muscle relaxation. It is important to recognize that

these studies on the vas deferens and bladder had an intrinsically physiological
context, in the sense that they were directed at understanding the effects of ATP

released from nerve cells, specifically post-ganglionic sympathetic nerves.

The other two origins of P2X receptors were more pharmacological, in the sense

that they involved studies of the action of exogenous ATP. One was the obser-

vation that ATP caused the release of histamine from mast cells and that this

was associated with an increase in permeability of the mast cell membrane [7].

The most effective form of ATP appeared to be ATP42. This tetrabasic form of
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the molecule forms only a small fraction of the total ATP in

physiological solutions, most being complexed as MgATP or

CaATP. The permeability increase was monitored as the release

of 32P-labelled intermediary metabolites such as phosphatidyl

inositol following pre-loading of the cells with 32P inorganic

phosphate, but it could also be followed as the uptake of fluor-

escent dyes such as ethidium or propidium [8]. Several other

cells types were found that responded to ATP42, including

macrophages, neutrophils, gland cells and endothelium, and

the receptor involved became called P2Z (reviewed in [9]).

The third original approach was electrophysiological: in

1983, three separate groups studied the action of exogenous

ATP on membrane potential or currents. Recording from sen-

sory neurons cultured from rat dorsal root ganglia, Krishtal

and co-workers [10] showed that ATP (1–100 mM) evoked

an inward membrane current within milliseconds of its

application. This resulted from an increase in conductance

to cations. Kolb & Wakelam [11] recorded the single channel

currents elicited by application of ATP (10 mM) to chicken

muscle cells, which had properties indicating an increase in

conductance to sodium and potassium ions. Later that year,

Jahr & Jessell [12] confirmed the findings of Krishtal et al.
and further distinguished the rapidly desensitizing depolar-

ization of rat dorsal root ganglion cells induced by ATP

from the more sustained depolarization observed in neurons

cultured from the dorsal horn of the spinal cord.

More detailed biophysical characterization of ATP-

induced currents followed, for smooth muscle [13], sensory

neurons [14,15], pheochromocytoma cells [16] and locus coer-

uleus neurons [17], and three papers presented additional

evidence for synaptic transmission mediated directly by

ATP [18–20]. On the other hand, the lack of selective and

potent antagonists hampered any conclusive demonstration

of the physiological function of ATP-operated P2X receptors.
2. Following cDNA cloning
The decade beginning in 1983 was a period in which cDNAs

were isolated for almost all membrane ion channels [21,22]

and P2X receptors joined this group in 1994. A team at the

Glaxo Institute for Molecular Biology in Geneva [23] identified

a cDNA encoding the P2X1 receptor by injecting oocytes with

progressive fractions of a cDNA expression library made from

RNA extracted from the rat vas deferens. A similar approach

starting with the RNA from PC12 cells was used by Brake

et al. [24] to clone the P2X2 receptor. The five further members

of the family were identified by homology-based approaches

from a wide range of tissues [25] and the seven mammalian

genes were subsequently identified. The properties of the

P2X7 receptor, most notably its relative low sensitivity to ATP

and the permeability to larger molecular weight dyes, indicated

that it corresponded to the P2Z receptor named by Gordon in

1986 [9]. It was found that P2X receptor genes were widely

expressed throughout vertebrates and lower eukaryotic organ-

isms, but unlike several other ion channels they have not been

found in prokaryotes. The genes can be identified in green

algae, which represent the earliest separation of animals from

plants ([26], see also [27]). In the slime mould Dictyostelium
discoides, P2X receptors have a predominantly intracellular

distribution and function [28,29].

Many inferences about molecular structure became poss-

ible as a result of the expression of cDNAs, particularly when
biophysical measurements were combined with mutagenesis.

It was immediately clear that each P2X receptor subunit had

two membrane-spanning domains (TM1 and TM2), with intra-

cellular N- and C-terminus, and that most of the protein was

located as a large ectodomain. Several lines of evidence indi-

cated that the functional protein was a trimer: indeed, three

ATP-binding sites had been suggested by Bean [14] on the

basis of his ATP dose–response curves from bullfrog sensory

neurons. This evidence included biochemical approaches

using blue native polyacrylamide gel electrophoresis [30] and

functional approaches with co-expression and concatena-

tion of subunits carrying reporter mutations [31–35]. The

demonstration that P2X receptors were trimers set them in

clear distinction from the tetrameric glutamate-gated ion chan-

nels and the pentameric nicotinic superfamily (which also

includes channels gated by glycine, g-aminobutryic acid and

5-hydroxytryptamine; [22]). These approaches also showed

that functional channels could form as hetero- or homo-trimers

(e.g. P2X2/3 and P2X1/5 receptors; [25]).

The P2X receptor genes contain 10–12 introns and are

found on five chromosomes [25]. The genes for P2X1 and

PX5 receptors, and for P2X4 and P2X7 receptors, are adjacent:

this presumably reflects relatively recent duplication. The only

channelopathy described is a loss-of-function mutation in the

P2X2 receptor that results in hearing loss in Chinese [36] and

Italian [37] families. Other efforts to associate single nucleotide

polymorphisms with disease propensity in humans have

revealed several but rather weak associations: these have

been comprehensively reviewed for the P2X7 receptor [37,38].

Determination of the distribution of the P2X receptors

also followed the molecular cloning, at either the RNA or

protein level ([39–42], see also [25]). These studies indicated

that P2X receptors were much more widely expressed

through vertebrate tissues than had been previously antici-

pated on the basis of functional studies. Notable examples

were the predominant expression of P2X2, P2X4 and P2X6

subunits in the central nervous system, the abundance of

P2X4 and P2X7 receptors in glandular tissue and immune

cells and the very limited distribution of P2X3 subunits in a

subset of sensory neurons involved in taste, bladder filling,

baroreception and certain modalities of pain [25,43].

It has become clear that ATP does not have any widespread

direct role as a fast neurotransmitter in the central nervous

system [43,44]. P2X receptors are found on glia and neurons.

On astrocytes in mouse cortex, the predominant form is a

P2X1/P2X5 heteromer [45], whereas microglia express mostly

the P2X7 receptor [40,46]. On neurons in the hippocampus,

P2X4 receptors are located at the periphery of the post-synaptic

density [47]. Recent evidence suggests that ATP released from

astrocytes can activate these receptors and lead to a reduction

in the trafficking of a-amino-3-hydroxy-5-methylisoxazole-4-

propionate (AMPA) receptors to the synapse [48]. The P2X4

receptor has a relatively high calcium permeability [49]

which, unlike the case of the NMDA receptor, allows calcium

entry at both hyperpolarized and depolarized membrane

potentials. This calcium entry appears to inhibit AMPA

receptor trafficking by a mechanism involving calmodulin-

dependent kinase II and/or a calcium-dependent phosphatase

[48]. A wider role for P2X receptors in the operation or traffick-

ing of other ion channels has long been suspected [50–52] and is

now beginning to be worked out in molecular detail [53–55].

In the peripheral nervous system, important new roles for

P2X receptors in afferent signalling have been established.



rstb.royalsocietypublishing.org
Phil.Trans.R.

3
ATP is released from chemosensing cells to activate P2X recep-

tors in terminals of the carotid sinus nerve [56]. ATP release by

taste buds is the first step in all modalities of taste sensation:

the ATP activates P2X2/P2X3-subunit-containing receptors

on the gustatory nerve [57]. An analogous signalling role

from urothelium to primary afferent nerves has been inferred

for sensing bladder distension [58].

Release of inflammatory cytokines by ATP was well

known before the cDNA cloning, but the expression of

P2X7 receptors on a wide range of immune cells has

prompted an intensive study of their role in inflammation

[59,60]. The availability of mice lacking P2X7 receptors, as

well as the development of a range of antagonists, is now

documenting roles for ATP signalling in skin [61], bone

[62,63], glandular epithelium [64] and cancer cells [65].
Soc.B
371:20150427
3. Molecular modus operandi
The determination of the structure of a truncated zebrafish

P2X4 receptor by X-ray crystallography (closed state [66];

open state and closed states [67]) essentially confirmed the

inferences based on 15 years of work of mutagenesis combined

with functional expression [68,69]. Of course, it achieved much

more than that. It provided an immediate structural view of a

novel family of membrane proteins, in which the pore-forming

region extends to include the epithelial sodium channel

(ENaC) and acid-sensing ion channel (ASIC) [70]. It indicated

a new type of gated pore formation in biological membranes.

It explained how ATP was a selective agonist without

the requirement for hydrolysis [71]. It provided the atomic

template for drug development (see reviews [68,72,73]).

Each protomer of the truncated P2X receptor resembles a

dolphin [66]. The tail flukes are missing but would be posi-

tioned inside the cell, with the posterior part of the body

(the peduncle) traversing the membrane, and the bulk of

the body with dorsal fin, left and right flippers, head and

beak protruding into the extracellular solution. The contacts

with ATP are provided by eleven amino acids, four from

one subunit and seven from another [67] (figure 1). The bind-

ing of ATP results in the head domain of one dolphin subunit

being pulled downwards toward the left flipper of the

adjacent subunit (figure 1). This torsions the body region

outwards so as to increase the separation between the three

subunits, opening three lateral portals through which ions

can enter the central vestibule. It also pulls apart the six trans-

membrane domains, of which the three TM2 line the central

axis of the permeation pathway (figure 1).

These movements can be readily deduced by a comparison

of the crystal structures of the closed [66] and open (ATP-bound)

[67] states, and they are strongly supported by several functional

approaches. For example, disulfide locking of pairs of engin-

eered cysteine residues has provided direct evidence for the

approximation of amino acid residues [32,77–84]. The open–

closed transition of the receptor can also be driven by light in

the complete absence of ATP, when a light-sensitive azobenzene

molecule is incorporated into the receptor by attachment to

cysteine residues in two different subunits [85,86]. The cis–
trans isomerization of the azobenzene by 440 nm irradiation

pushes apart residues (P329C) in two adjacent subunits to

open the channel, and the trans–cis conformational change at

360 nm conversely closes the channel [86]. A third application

of cysteine substitution has been made by attaching lipophilic
side chains at a position likely to move through the outer lipid

leaflet of the membrane. Thus, in the P2X2[I328C] receptor,

the addition of a propyl-methanethiosulfonate is as effective

to open the channel as ATP itself [87].

From the structural point of view, the zebrafish P2X4 recep-

tor that was used for X-ray crystallography lacks both the

intracellular N- and C-terminus. Although such truncated mol-

ecules do form functional channels [66], it is known that the

parts of these termini that are close to the transmembrane

domains contain highly conserved short amino acid sequences

that are important determinants of normal expression and func-

tion. These are YXTX[K/R] before TM1, and YXXXK after TM2.

It is not difficult to imagine the folding of six YXXXK domains

(two from each subunit) so as to form a stable ‘hanging

basket’ in the cytoplasm internal to the inner opening of the per-

meation pathway, stabilized perhaps by interactions between

the positive lysine side chains and the p electron clouds of the

Tyr residues. Currents evoked by ATP at P2X1 receptors show

rapid desensitization (within tens of milliseconds), whereas cur-

rents at P2X2 receptors are sustained for several seconds.

Transfer of the protein segments immediately before TM1 has

profound effects on this desensitization [88]. Similarly, deletion

of a cysteine-rich region that is found after TM2 only in the P2X7

receptor has effects on the time course of the ATP-induced cur-

rent as well as on the passage of large fluorescent dyes through

the P2X7 channel [89]. There will be much more to learn from a

crystal structure of the holoprotein.

The present open channel structure provides a pathway

through the membrane for small cations. In the zebrafish

P2X4 receptor the Ca atoms of the alanine (A347) residues lie

on a circle with diameter of 1.2 nm [67], and the same is true

for S342, which lies at the narrowest part of the pore in

models of the rat P2X7 receptor [90]. However, the activated

rat P2X7 receptor allows the permeation of dyes as large as sul-

forhodamine methane thiosulfonate, which has dimensions of

0.90� 1.40 � 1.65 nm [90]. This implies that some P2X recep-

tors can also adopt conformations with a wider permeation

pathway. The ASIC also forms a permeation pathway by obli-

quely intersecting TM2 segments. It has been shown to

exhibit two open states, one with a wider permeation pathway,

depending on the extracellular pH [91].
4. Therapeutic exploitation
P2X7 receptors have been the most intensively investigated

and many pharmaceutical companies have synthesized

small molecules that are potent and selective blockers of

the human receptor [92]. These include Abbott, Actelion, Affec-

tis, AstraZeneca, Evotec, GlaxoSmithKline, Janssen, Johnson

and Johnson, Merck, Neurogen, Nissan Chemical, Pfizer,

Roche and Schering [92,93]. Because the activation of P2X7

receptors by ATP is a key step in the release of inflammatory

cytokines from microglia primed with bacterial lipopolysacchar-

ide [94], P2X receptors have long been considered as possible

therapeutic targets in inflammatory pain [95,96]. Initial hopes

that they may have efficacy were disappointed in Phase IIb

trials in rheumatoid arthritis [97,98]. Ongoing studies include

preclinical work using animal models of neuropsychiatric and

neurodegenerative disease [38].

P2X3 receptors have a very limited distribution on primary

afferent fibres and they have been targeted for visceral pain [99]

and, more recently, for the treatment of chronic cough. A P2X3
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Figure 1. P2X receptor structure, the ATP-binding site and the permeation pathway. (a) Assembly of P2X2 receptors from three subunits, depicted in closed (left)
and open (right) states. Upper, middle and lower panels show one, two and three subunits, respectively. (b) Cross-sections of open and closed rat P2X2 receptors at
the level of the residues indicated, the Cb atoms of which are shown as spheres. Number in lower right of each panel is the diameter of the circle (in Å), passing
through the three Cb atoms. D349 viewed from below, others viewed from above. (c) Key residues in the ATP-binding pocket, in open and closed configurations.
Two subunits depicted. (d ) ATP molecule positioned in binding pocket. The U-shape of the triphosphate chain curls around the nitrogen atom of K69. (e) The lateral
portal between two subunits (blue and yellow; pink subunit visible through the portal). Key residues on the edge of the portal are indicated. ( f ) Schematic to
illustrate iris-like movement of TM2 domains. Molecular models created in Modeller 9v7 [74] using 4DW0 (closed) and 4DW1 (open) as templates, energy minimized
using MolProbity [75] and displayed in Chimera 1.6 [76].
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receptor antagonist from Afferent Pharmaceuticals (AF-219)

was an effective antitussive in a randomized, double-blind,

placebo-controlled phase 2 study [100,101]. One confounding

factor with such trials of P2X3 receptor antagonists will be

the difficulty in conducting ‘blind’ trials. ATP is a transmitter

released by taste buds and it activates P2X3-subunit-containing
receptors on gustatory nerves [57], and all the patients in the

trial who took AF-219 reported disturbance of taste [99].

P2X1 receptors were first identified in the vas deferens

and mice lacking the receptor have no ejps and impaired eja-

culation [102]. Noradrenalin that is also released from

sympathetic nerves contracts the vas deferens by activating
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a1A adrenoceptors, but without membrane depolarization.

The possibility of further exploiting these effects in the devel-

opment of a male contraceptive has recently been boosted by

the demonstration that mice lacking both P2X1 receptors and

a1A receptors are completely infertile [103].
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