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Vitamin D, reactive oxygen species and
calcium signalling in ageing and disease

Michael J. Berridge

Babraham Institute, Babraham, Cambridge CB22 3AT, UK

Vitamin D is a hormone that maintains healthy cells. It functions by regulat-

ing the low resting levels of cell signalling components such as Ca2þ and

reactive oxygen species (ROS). Its role in maintaining phenotypic stability

of these signalling pathways depends on the ability of vitamin D to control

the expression of those components that act to reduce the levels of both Ca2þ

and ROS. This regulatory role of vitamin D is supported by both Klotho and

Nrf2. A decline in the vitamin D/Klotho/Nrf2 regulatory network may

enhance the ageing process, and this is well illustrated by the age-related

decline in cognition in rats that can be reversed by administering vitamin

D. A deficiency in vitamin D has also been linked to two of the major dis-

eases in man: heart disease and Alzheimer’s disease (AD). In cardiac cells,

this deficiency alters the Ca2þ transients to activate the gene transcriptional

events leading to cardiac hypertrophy and the failing heart. In the case of

AD, it is argued that vitamin D deficiency results in the Ca2þ landscape

that initiates amyloid formation, which then elevates the resting level

of Ca2þ to drive the memory loss that progresses to neuronal cell death

and dementia.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Introduction
A large number of cellular processes are regulated by calcium (Ca2þ). An impor-

tant component of Ca2þ signalling is the InsP3/Ca2þ signalling pathway, which

has two main operational modes. It functions either as a primary signalling path-

way or it can operate as a modulatory signal. Its primary role is evident mainly in

non-excitable cells where it generates the Ca2þ signals to control processes as

diverse as fertilization, proliferation, metabolism, secretion and smooth muscle

contraction. In excitable cells, the primary Ca2þ signal depends on the entry of

Ca2þ through voltage-operated channels and the release of Ca2þ by ryanodine

receptors (RYRs) on the internal stores. This primary Ca2þ pathway regulates

processes such as contraction in the heart or memory formation in neurons.

The InsP3/Ca2þ signalling pathway provides a modulatory signal that can

induce subtle changes in the generation and function of this primary Ca2þ

signal. In this review, I will argue that subtle changes in the nature of this

modulatory role of the InsP3/Ca2þ signalling pathway may be responsible

for the onset of two major human diseases: Alzheimer’s disease (AD) and

cardiovascular disease.

Both cardiac disease and AD are age related and what is remarkable is their

very slow progression. Most individuals who develop these diseases are com-

pletely unaware that the disease is developing, and it is this aspect that may

be explained by the subtle modulatory activity of the InsP3/Ca2þ signalling

pathway. It will be argued that one of the main causes of the alteration in

this modulatory pathway is vitamin D deficiency that causes the small altera-

tions in the Ca2þ signalling pathway responsible for the onset of these two

diseases [1–3]. All this evidence raises a major question concerning what it is

about vitamin D that makes it such an important component of a healthy

life. Any hypothesis as to how vitamin D deficiency might contribute to disease

has to take into account a possible relationship between ageing and vitamin D

deficiency. There is increasing evidence that vitamin D acts by maintaining the
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Figure 1. The main reactive oxygen species (ROS) in cells are superoxide ðO��2 Þ, hydrogen peroxide (H2O2) and peroxynitrite (ONOO2). The dashed lines represent
the many interactions that operate between the Ca2þ and redox signalling pathways. An increase in Ca2þ can promote ROS formation by entering the mitochondria
to form O��2 that is converted into H2O2 by SOD2. Ca2þ can also stimulate the nitric oxide synthase (NOS) that forms NO that interacts with O��2 to form ONOO2.
In a reciprocal way, an increase in cytosolic ROS can markedly enhance Ca2þ signalling by either increasing the activity of various channels such as the InsP3Rs
and RYRs or by inhibiting the PMCA pump.
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integrity of cell signalling pathways such as those regulated

by Ca2þ and reactive oxygen species (ROS) [1–3]. It will be

argued that low vitamin D levels result in an increase in

the activity of these two signalling pathways that not only

act to accelerate the ageing process but may also set the

stage for the onset of a large number of diseases.
2. Integrated calcium and redox signalling
pathways

A large number of cellular processes are regulated by Ca2þ

signalling pathways often operating in conjunction with the

redox signalling pathway [1,2]. What is remarkable about

these two signalling systems is the way they interact with

each other [4] (figure 1). When Ca2þ builds up within the mito-

chondrion, it increases mitochondrial metabolism resulting in

an increased formation of superoxide ðO�2 Þ. Another action of

Ca2þ is to stimulate nitric oxide synthase (NOS) to increase

the formation of NO that contributes to the generation of

peroxynitrite (ONOO2). Similarly, ROS can enhance Ca2þ sig-

nalling. For example, ROS sensitizes both the RYRs [5–7] and

the InsP3Rs [8] to increase the release of Ca2þ from the internal

store. The expression of Bcl-2, which regulates Ca2þ signalling

by controlling Ca2þ release by the InsP3 receptors [9] and RYRs

[10,11], is reduced by ROS [12]. ROS can activate a number

of TRP channels that gate Ca2þ (e.g. TRPM2, TRPA1 and

TRPV1) [13].
The reason for concentrating on these two pathways is

because the expression of many of the genes responsible

for regulating them is controlled by vitamin D [1,2]. Any

deficiency in vitamin D will result in an alteration in how

they operate, and this can have profound consequences for

many different cellular processes and may be responsible for

triggering a number of the diseases that have been linked to

vitamin D deficiency.
3. Vitamin D regulation of the Ca2þ and redox
signalling pathways

The active component of vitamin D is 1a,25-dihydroxyvitamin

D3 [1a,25(OH)2D3] that is formed by a series of reactions that

begin in the skin where sunlight converts 7-dehydrocholesterol

to vitamin D3 (cholecalciferol) (figure 2). The latter is trans-

ferred to the liver where a hydroxyl group is added to the

C-25 position by a vitamin D-25 hydroxylase (encoded by the

CYP27A1 gene) to form 25-hydroxyvitamin D3 [25(OH)D3]

that is the immediate precursor for active vitamin D. This

25(OH)D3 is carried in the blood to enter multiple cell types

where a 25(OH)D3-1a-hydroxylase (encoded by the CYP27B1
gene) adds another hydroxyl group to the 1 position to form

the active hormone 1a,25(OH)2D3, which will be referred

to hereafter as vitamin D, that functions to regulate many

different cellular processes [14].

Vitamin D can act in two ways. Firstly, it has non-genomic

actions where it alters the activity of various signalling
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pathways. Secondly, it has a genomic action that is mediated by

its binding to the vitamin D receptor (VDR), which interacts

with the retinoid X receptor (RXR) before binding to the vita-

min D response element (VDRE) located on a large number

of vitamin D-sensitive target genes (figure 2). Two of the

important genes that are activated by vitamin D are Nrf2 and

the anti-ageing gene Klotho, both of which have multiple

roles in maintaining the integrity of cellular signalling systems

(figure 2). Many of the genes that are controlled by the vitamin

D/Klotho/Nrf2 regulatory network function to maintain Ca2þ

and redox homeostasis. For example, vitamin D increases the

expression of Ca2þ pumps, exchangers and buffers to maintain

low levels of Ca2þ. In addition, vitamin D together with Klotho

and Nrf2 all increase cellular antioxidants to maintain the

normal reducing environment within the cell [15,16].

Vitamin D may also play a significant role in regulating the

balance between autophagy and apoptosis [17,18]. This ability

of vitamin D to promote autophagy over apoptosis may depend

on its ability to regulate Ca2þ signalling that plays a significant

role in controlling autophagy [19,20]. Subsequent studies

revealed that the InsP3/Ca2þ signalling pathway plays a promi-

nent role in regulating autophagy [21–23]. Elevation in various

pathological aggregates such as amyloid, tau, a-synucleins

and mutant Huntington fragments, which contribute to neuro-

degenerative disease such as AD, Parkinson’s disease and

Huntington’s disease, may accumulate because of a decline in

autophagy due to an alteration in Ca2þ signalling that occurs

when vitamin D is deficient.

Another important action of vitamin D is to control the

epigenetic landscape of multiple gene promoters to maintain
the transcription activity of all the genes that function in its

regulatory network [24]. Vitamin D influences the epigenetic

landscape by controlling both the acetylation and methyl-

ation states of multiple gene promotor regions. The VDR/

RXR dimer recruits histone acetyltransferases (HATs) such

as p300/CBP and steroid receptor coactivators 1 and 2

(SRC1 and SRC2) that carry out the acetylation reactions

that open up the chromatin structure to facilitate transcription

so as to maintain phenotypic stability (figure 2).

Vitamin D can also regulate phenotypic stability by regu-

lating demethylation. Many of the genes regulated by

vitamin D are silenced by methylation of CpG islands located

in their promotor regions [25]. For example, the decline in

SERCA2a activity in cardiovascular disease may be caused

by hypermethylation of its promotor region [26]. Expression

of the Klotho gene, which acts together with vitamin D to

regulate phenotypic stability, is silenced by methylation

[27,28]. Such hypermethylation of promotor regions increases

during ageing and is evident in many of the diseases such as

cancer, cardiovascular and neurodegenerative diseases [29].

For example, hypermethylation of promotors in GABAergic

neurons may contribute to the phenotypic remodelling

responsible for schizophrenia and bipolar disorder [30].

Vitamin D modulates methylation by inducing the expression

of a number of key DNA demethylases such as Jumonji

domain-containing protein 1A and 3 (JMJD1A, JMJD3) and

lysine-specific demethylase 1 and 2 (LSD1, LSD2) that

contributes to its ability to maintain phenotypic stability [31].

This ability of vitamin D to modulate the epigenetic land-

scape is in keeping with its proposed role in maintaining
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phenotypic stability, and this may explain why vitamin D

deficiency has been linked to both ageing and so many of

the age-related diseases.
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4. Vitamin D and ageing
There is increasing evidence that vitamin D may play an

important role in the process of ageing. For example, the

decline in cognition that occurs normally in older adults

has been linked to vitamin D deficiency [32–35]. The ability

of human skin to synthesize vitamin D declines with age

[36], and this may account for the decline in the level of vita-

min D and Klotho during ageing. Vitamin D and Klotho

deficiency may contribute to the ageing process through dys-

regulation of the Ca2þ and redox cell signalling pathways.

Nrf2 may also act to regulate longevity [37]. Dysregulation

of Ca2þ signalling, which is closely linked to mitochondrial

dysfunction and ROS formation, has been implicated in

ageing [38,39]. In ageing striatal neurons, there is a marked

decline in the expression of Bcl2 [38], which would contribute

to the dysregulation of Ca2þ, because one of its functions is to

inhibit the InsP3Rs [9] (figure 1).

There has long been an interest in the possibility that

alterations in the cellular redox balance [40,41] and Ca2þ sig-

nalling [42] might be responsible for ageing [43]. The way in

which vitamin D deficiency and a concomitant decline in

both Klotho and Nrf2 function contributes to many diseases

may be explained through the ability of these custodial

systems to maintain the stability of the redox and Ca2þ sig-

nalling systems described earlier [2]. For example, during

ageing, there is a decline in the capacity of cells to maintain

NAD(P)H levels in neurons [44,45], and this accounts for a

decline in the levels of glutathione (GSH), which is essential

to maintain low redox levels [46]. Such a decline in GSH

results in a selective decline in the activity of GABAergic

neurons in the hippocampus and could contribute to schizo-

phrenia [47]. Vitamin D acts to maintain the expression of the

Nrf2 antioxidant pathway [48]. There is a marked decline in

the level of Nrf2 in the AD brain compared with age-matched

controls [49]. Genetic ablation of the VDR results in prema-

ture ageing in mice suggesting that vitamin D can maintain

normal physiological ageing [50].

Some of the most convincing evidence that vitamin D

deficiency contributes to the ageing process has emerged

from studies on the decline of memory in ageing rats. When

considering memory mechanisms, it is important to point

out that the ageing process does not affect long-term mem-

ories, but it induces a slow and progressive deterioration in

the formation and retention of new memories [51]. This initial

age-related decline in working memory is very subtle and has

been linked to small changes in both the Ca2þ and redox sig-

nalling pathways [51–53]. An alteration in Ca2þ signalling has

been linked to ageing in the brain [54–58]. The early loss of

memory is caused by a number of subtle changes such as an

elevation in the resting level of Ca2þ [56] and an increase in

the expression of the CaV1.2 L-type Ca2þ channel [58], which

is one of the proteins that is normally down-regulated by vita-

min D (figure 2). Such changes may also depend on a decrease

in the neuronal Ca2þ buffers and a decline in the mechanisms

responsible for extruding Ca2þ from the cytoplasm [59].

Enhancing the intracellular buffering capacity markedly

enhanced the learning capacity of aged rats [60].
At the electrophysiological level, the loss of memory

during ageing has been linked to the progressive increase

in the amplitude of the slow after hyperpolarization (sAHP)

[52,61]. This sAHP is caused by increased fluxes of Ca2þ

through CaV1.2 L-type voltage-gated channels, which are

known to be elevated during ageing [58], and the RYRs

resulting in abnormally high Ca2þ transients that activate

SK potassium channels to hyperpolarize the membrane

[51,55,57]. This sAHP reduces working memory in two

ways. Firstly, the hyperpolarization reduces the spiking

activity necessary for memory formation through long-term

potentiation (LTP). Secondly, the increase in Ca2þ stimulates

calcineurin to induce the long-term depolarization (LTD) that

erases memories [52].

One of the interesting aspects of this dysregulation is

that the relatively subtle elevation in the sensitivity of the

Ca2þ signalling pathway appears to be driven by an increase

in the oxidative state of the neurons [62]. In ageing mice,

there is a marked increase in oxidative stress that contributes

to a reduction in memory formation [63]. The enhanced ROS

levels may increase sAHP by sensitizing the RYRs (figure 1).

This would seem to be the case because the sAHP can be

reversed by treating neurons with dithiothreitol (DTT) [64].

Similarly, a decrease in ROS could also contribute to the

increase in cognition observed in ageing rats following treat-

ment with the anti-inflammatory drug montelukast that is

used normally to treat asthma [65]. The dysregulation of both

Ca2þ and ROS signalling that is responsible for development

of the sAHP during ageing seems to depend on vitamin D

deficiency. The vitamin D/Klotho/NRF2 regulatory system

can prevent the dysregulation of the Ca2þ and ROS signalling

responsible for the sAHP through multiple mechanisms.

For example, vitamin D suppresses the expression of the

CaV1.2 L-type Ca2þ channel [66] that initiates the Ca2þ signal

that induces the sAHP, and it also maintains the expression

of PMCA and NCX1, which extrude Ca2þ from the cell.

Klotho acts to stimulate the Naþ/Kþ-ATPase responsible for

maintaining the Naþ gradient necessary for Ca2þ extrusion

by NCX1. Finally, NRF2 increases the expression of many anti-

oxidants that ensure that ROS levels are kept low, which will

prevent the sensitization of the RYRs that are triggering the

sAHP and memory erasure.

Such a conclusion is strongly supported by the obser-

vation that vitamin D can reverse the Ca2þ-dependent

processes responsible for the age-related decline in memory

[67]. What is more significant is that vitamin D can enhance

hippocampal synaptic function, and more significantly, it

could prevent the decline in cognition [68].

The fact that vitamin D deficiency brings about a dysregu-

lation of both the Ca2þ and redox signalling pathways during

ageing has raised an interesting possibility that it could also

contribute to the initiation of age-related diseases [2].
5. The vitamin D/Klotho/Nrf2 regulatory network
and disease

While most attention has been focused on establishing a link

between vitamin D deficiency and disease, there is little infor-

mation as to what the mechanism might be. To answer this

question, I have developed a phenotypic stability hypothesis

that is based on the idea that vitamin D may play an essential

role through its ability to maintain both the redox and Ca2þ
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signalling pathways as described earlier [1,2]. A decline in the

activity of the vitamin D/klotho/Nrf2 regulatory network

has been linked to many diseases. Roselli & Caroni [69]

have emphasized the importance of studying the early precli-

nical phases of neurodegenerative diseases. AD is a case in

point in that the preclinical phase can last for many years

before the disease is diagnosed. The following conceptual

framework attempts to explain what might drive the early

preclinical disease development and how this may be related

to the ageing process. The basic idea is that there is a slow but

progressive dysregulation of the Ca2þ and redox signalling

pathways resulting from a deficiency in vitamin D [1,2].

It will be argued that this dysregulation results in an altera-

tion in the modulatory activity of the InsP3/Ca2þ signalling

pathway, and this creates subtle alterations in the normal

cellular signalling pathway resulting in the onset of disease.

To understand why such subtle alterations occur can lead

to various disease states, it is important to consider the way

the Ca2þ signalling system is organized in each specific cell

type to provide either primary or modulatory signals.
0434
(a) Cardiovascular disease
Vitamin D deficiency has been linked to hypertension and

cardiovascular disease [70–76]. The ability of vitamin D to

protect the cardiovascular system may depend on its ability

to maintain the stability of the ROS and Ca2þ signalling sys-

tems, which are known to be dysregulated in hypertension,

cardiac hypertrophy, congestive heart failure (CHF) and

atrial arrhythmias.

One of the main causes of cardiac hypertrophy and

CHF is hypertension. The renin–angiotensin system (RAS)

plays a major role in regulating blood pressure. One of the

primary actions of vitamin D is to curb RAS to prevent

the hypertension that is a major risk factor for heart dis-

ease [77]. Vitamin D regulates the secretion of renin by

renin-producing granular cells, which is controlled by

the cyclic AMP signalling pathway. Vitamin D acts by pre-

venting the cyclic AMP response element-binding protein

(CREB) from binding to the renin gene promotor [78].

In mice, deletion of either the enzyme 25(OH)D 1a-

hydroxylase or the VDR resulted in an increase in the

renin–angiotensin system, hypertension and the onset of

cardiac hypertrophy [79–81]

In patients with type 2 diabetes, the associated hyperten-

sion was improved following vitamin D supplementation

[82]. The excessive release of renin and the resulting increase

in angiotensin II can have multiple effects on some of the key

components of the cardiovascular system. One of the actions

of angiotensin II is to increase the formation of endothelin-1

(ET-1), which is a potent vasoconstrictor and thus contributes

to angiotensin II-induced hypertension [83,84].

The changes in Ca2þ signalling in ventricular cardiac cells,

which result in hypertrophy and CHF, are relatively minor.

There is a small increase in the amplitude of the Ca2þ transi-

ent that occurs during each heartbeat. This amplification of

each transient is caused by an increase in the activity of

InsP3/Ca2þ modulatory signalling pathway, which is

driven by the increased levels of angiotensin II and ET-1

[85]. In the presence of these two hormones, there are

subtle changes in the spatial properties of the individual

Ca2þ transients. It was proposed that the increase in InsP3

acts on perinuclear InsP3R2s to create a nuclear Ca2þ signal
responsible for driving the transcriptional processes that

initiate hypertrophy [86] (figure 3). There is now considerable

experimental evidence to show that activation of InsP3Rs can

indeed function to induce the nuclear Ca2þ transients that

activate the transcriptional events responsible for the onset

of hypertrophy [87–93]. One of the genes that is activated

is ITPR2 that codes for the InsP3R2 that is responsible for

the nuclear Ca2þ signal that drives hypertrophy [94]. In car-

diomyoctes, miR-133a acts to inhibit the expression of

InsP3R2 [95]. Down-regulation of miR-133a accounts for an

increase in the level of the InsP3R2s, and this is a major

contributory factor for the onset of cardiac hypertrophy.

Vitamin D deficiency contributes to the onset of hypertro-

phy by increasing the Ca2þ and redox signalling pathways.

For example, there is a decrease in the expression of both

SERCA and phospholamban (PLN) that contributes to an

increased Ca2þ transient amplitude and a decline in the

recovery phase [96]. Vitamin D deficiency will also result in

an increase in ROS levels that then enhances the Ca2þ signal-

ling events that initiate the processes of hypertrophy that

results in CHF [97,98]. The angiotensin II and ET-1 not only

act to increase Ca2þ, but they also increase ROS levels by sti-

mulating NOX at the plasma membrane [99–101] (figure 3).

ROS acts by increasing the activity of the ion channels

(NaV1.5 sodium channel, CaV1.2 channels and RYR2) and

pumps (SERCA) that contribute to the Ca2þcycling events that

occur during each heartbeat. In addition, ROS can also act

indirectly by increasing the activity of protein kinases such as

PKA and CaMKIIdc that act normally to regulate cardiac activity

[101]. These increased ROS and Ca2þ signalling processes

contribute to the alterations in gene transcription that result in

hypertrophy [98]. The cardiac hypertrophy in spontaneously

hypertensive rats is reduced by vitamin D [102], and vitamin

D supplementation can also markedly improve the outcome of

patients suffering from heart failure [74,103].
(b) Alzheimer’s disease
AD is another example of a major human disease where the

initial change is so subtle that it can go undiagnosed for long

periods. The initial symptoms are a decline in working

memory, which closely resemble those that occur in ageing

as described earlier. The onset of AD depends on the accumu-

lation of extracellular b-amyloid (Ab) deposits that disrupt

neuronal signalling pathways to reduce cognition. The Ca2þ

hypothesis considers that the loss of memory depends on an

up-regulation of neuronal Ca2þ signalling [104–109]. When

Ca2þ is measured in the spines and dendrites of cortical pyra-

midal neurons of transgenic mice, there was a higher than

normal resting level in those neurons located close to amyloid

deposits [110]. Similarly, the resting level of Ca2þ in the cortical

neurons of 3xTg-AD animals was 247 nmol l21, which was

twice that found in the non-Tg controls (110 nmol l21) [111].

Such evidence of a persistent elevation in the resting level of

Ca2þ led to the suggestion that it may continuously activate

LTD to explain why memories are erased shortly after they

are formed [112,113].

The relatively small elevation in the resting level of Ca2þ

does not alter the overall function of the brain. Information

from the sensory organs can still be processed, new memories

can be formed, but they are not retained because the persistent

elevation in Ca2þ erases them shortly after they are formed.

A number of mechanisms have been proposed to explain the
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elevation of intracellular Ca2þ levels by the Ab protein

[114,115]. Many of these mechanisms depend on the InsP3/

Ca2þ signalling pathway [116–119]. Ab can bind to the cellular

prion protein (PrPC), which is coupled to mGluR5 that

increases InsP3 formation and Ca2þ release [117] (figure 4).

The formation of InsP3 is also increased by Ab acting on the

calcium-sensing receptor (CaSR) [118]. Phospholipase Ch1

(PLCh1), which is activated by Ca2þ, may contribute to

the dysregulation of Ca2þ signalling by amplifying these

Ab-dependent elevations in Ca2þ [119]. Activation of the

mGluR5 receptor by the Ab protein has been shown to enhance

the process of LTD responsible for memory loss [120]. The sig-

nificance of InsP3R activation in the pathogenesis of AD has

also emerged from studies on the effects of presenilin

mutations. In familial Alzheimer’s disease (FAD), presenilin

mutations enhance the activity of InsP3Rs resulting in an

increase in Ca2þ signalling in both human cells and mouse

neurons [121,122]. In a mouse model of AD, which had

mutations in presenilin, the AD symptoms were reversed

following a reduction in the expression of the InsP3R, thus

supporting the notion that the InsP3/Ca2þ signalling pathway

plays a significant role in disease pathogenesis [122].

There are an increasing number of studies indicating that

a deficiency in vitamin D may contribute to the onset of AD

[123–128]. The level of vitamin D in AD patients is lower

than that in controls [129]. Enhanced dietary vitamin D

intake lowered the risk of developing AD in a study of

older women [130]. VDR polymorphisms have been asso-

ciated with age-related decline in cognition and are also a
risk factor for AD [126,131,132]. Since AD seems to be

caused by abnormal elevations in Ca2þ, it is reasonable to

propose that the deleterious effect of vitamin D deficiency

may be explained by a decrease in its normal role as a custo-

dian of Ca2þ and ROS homeostasis. Similarly, a decrease in

ROS could also contribute to the increase in cognition

observed in ageing rats following treatment with the anti-

inflammatory drug montelukast that is used normally to

treat asthma [65].

Vitamin D may prevent the onset of AD by regulating a

number of processes. Firstly, vitamin D can increase the

expression of the multidrug resistance protein 1 (MDR1)

gene that codes for the P-glycoprotein (P-gp), which is an

efflux transporter that acts to reduce the accumulation of

Ab [133]. Secondly, vitamin D may act to control the

expression of those toolkit components responsible for main-

taining low ROS and Ca2þ levels. For example, vitamin D

stimulates the expression of Ca2þ pumps and exchangers

(PMCA and NCX) and Ca2þ buffers such as calbindin (CB)

and parvalbumin (figure 4). The expression of neuronal CB

is known to be reduced in AD [134]. Mice expressing

mutant APP also display a decline in the level of CB

especially in the dentate gyrus region of the hippocampus,

which functions in learning and memory [135]. Vitamin D

can curb the influx of external Ca2þ by reducing the

expression of L-type voltage-sensitive channels, which are

markedly elevated in rat hippocampal neurons [66].

Many of the deleterious effects of vitamin D deficiency

in AD may depend on a decline in the expression of
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its two collaborators Nrf2 and klotho. Nrf2 levels are

markedly reduced in the brain of patient with AD [49].

Vector-mediated expression of Nrf2 in the hippocampus of

AD transgenic mice resulted in a marked improvement in

cognition [135]. One of the main functions of Nrf2 is to main-

tain the cellular level of the redox buffer GSH [136], which is

a critical factor in preventing AD [44]. The level of Bcl-2,

which inhibits the ability of InsP3 to activate the InsP3 recep-

tors [9] and the RYRs [10,11] (figure 1), is maintained by Nrf2

and Klotho, thereby reducing the level of Ca2þ. The ability of

Bcl-2 to reduce the symptoms of AD in transgenic mice

[137,138] may be explained by this reduction in the activity of

both the InsP3R and RYRs. Klotho may also play a role in

AD, because its levels in the CSF of patients with AD are

lower than those in age-matched controls [139]. In the

senescence-accelerated mouse prone-8 (SAMP8) mouse, a

decline in the expression of klotho has been linked to symptoms

of AD, including a decline in cognition and an accumulation of

amyloid-b1–42 [140].

It is clear that dysregulation of the vitamin D/klotho/Nrf2

regulatory network results in a decline in cell signalling stab-

ility that results in the elevated neuronal Ca2þ and ROS

levels that seem to responsible for the onset of AD. Such a

mechanism suggests an interesting explanation for the

sporadic nature of AD. Despite it being referred to as an

age-related disease, not everyone who ages develops AD. So

what is it that triggers the onset of sporadic AD? One possi-

bility is that it is induced in those individuals who are
deficient in vitamin D and thus have abnormally elevated

levels of Ca2þ that may initiate the formation of the pathologi-

cal Ab oligomers [2,3]. This possibility is supported by the fact

that Ca2þ acts to stimulate the formation of Ab (figure 4)

[57,107,141–145]. Inhibiting the RYR2 with dantrolene that

reduces their release of Ca2þ was found to markedly reduce

the formation of Ab [145]. Such Ca2þ-induced increases in

amyloid formation then initiates a positive feedback loop,

because it is followed by Ab-induced Ca2þ signalling and it

is this Ab/Ca2þ positive feedback loop that may be respon-

sible for the onset of AD [146]. Such a scenario is entirely

consistent with the fact the vitamin D deficiency is such a

strong risk factor for AD.
6. Conclusion
The phenotypic stability of the interacting Ca2þ and ROS sig-

nalling pathways is maintained by vitamin D. It is argued

that a deficiency in vitamin D results in an elevation in both

the ROS and Ca2þ signalling pathways that may contribute

to the process of ageing. An example of this is the age-related

decline in the cognition of rats that can be reversed by admin-

istering vitamin D. Such deficiencies in vitamin D may also set

the stage for the onset of both heart disease and AD.
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