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We develop a general thermodynamic framework
to investigate multicaloric effects in multiferroic
materials. This is applied to the study of both
magnetostructural and magnetoelectric multiferroics.
Landau models with appropriate interplay between
the corresponding ferroic properties (order para-
meters) are proposed for metamagnetic shape-
memory and ferrotoroidic materials, which,
respectively, belong to the two classes of multiferroics.
For each ferroic property, caloric effects are quantified
by the isothermal entropy change induced by the
application of the corresponding thermodynamically
conjugated field. The multicaloric effect is obtained
as a function of the two relevant applied fields in
each class of multiferroics. It is further shown that
multicaloric effects comprise the corresponding
contributions from caloric effects associated with each
ferroic property and the cross-contribution arising
from the interplay between these ferroic properties.

This article is part of the themed issue ‘Taking the
temperature of phase transitions in cool materials’.

1. Introduction
Any material thermally responds to changes in its
properties induced by application or removal of an
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external field. The reversible component of this response provides the basis for the caloric
properties. In general, caloric effects are quantified by the response corresponding to isothermal
and adiabatic variations of the field. In the first case, the response is given by the heat exchanged
with the surroundings that results in a change of the entropy of the material, whereas, in the
second, it is measured by the corresponding change of temperature [1]. Among the different
caloric properties, the magnetocaloric effect is a well-known phenomenon that has been widely
used for low-temperature cryogenic applications. The discovery of a giant magnetocaloric
response close to room temperature in Gd5(SixGe1−x)4 [2] has opened the route to propose
the magnetocaloric effect as an actual alternative to vapour-compression technology for room-
temperature refrigeration. More recently, materials that display large mechano- and electrocaloric
effects have also been developed [3]. In general, solid-state refrigeration technologies based
on caloric effects are expected to contribute to reducing global energy consumption and
minimizing the use of ozone-depleting and greenhouse chemicals that are unavoidable in present
refrigeration technologies.

Ferroic materials, such as ferroelastic, ferroelectric and ferromagnetic, are expected to show
a large caloric response near the phase transition at which the ferroic property spontaneously
emerges. Depending on symmetry-dictated conditions and possible coupling of the ferroic
property to secondary parameters, this transition is either continuous or first order. The last case
is especially interesting, because, then, the transition can be field induced and a giant caloric
response is expected when the transition latent heat is large [4]. In this paper, we are mainly
interested in the case of multiferroics with two or more coupled ferroic properties, which enables
cross-response to multiple fields [5]. Therefore, this class of systems offers us new possibilities
as multifunctional materials. In particular, they have been envisaged as materials susceptible
to display multicaloric effects, which means that caloric effects associated with each kind of
ferroicity are expected to occur in an interdependent manner. The cross-effect is enhanced in
those multiferroics where the two (or more) ferroic orders emerge simultaneously, which requires
a strong interplay (i.e. coupling) between different ferroicities.

Among the class of multiferroic materials, here we will consider the magnetostructural and
magnetoelectric families. The former may display simultaneous ferroelastic and ferromagnetic
orders, whereas the latter (usually simply known as multiferroics) display ferroelectric and
ferromagnetic orders. We will pay special attention to metamagnetic shape-memory alloys [6],
which constitute an interesting class of magnetostructual multiferroics, and to ferrotoroidic
systems, in which the ordering of toroidal moments leads to an intrinsic antisymmetric
magnetoelectric interplay [7].

The paper is organized as follows. In §2, we discuss recent experimental results that show the
relevance of the interplay between different properties in multiferroic materials for the caloric
response. In §3, we summarize the main thermodynamic results describing multicaloric effects.
In §4, we study multicaloric effects within the framework of the Landau approach. This method
is applied to the study of multicaloric effects in metamagnetic shape-memory and ferrotoroidic
materials described by appropriate Landau free energies taken as examples of magnetostructural
and magnetoelectric multiferroics. Finally, in §5, we summarize the main results and conclude.

2. Review of experimental results
In order to avoid ambiguities, we will start with a reminder of the accepted definition of a
multicaloric material as proposed by Moya et al. [4]. According to these authors, a multicaloric
material is one that can support more than one type of caloric effect. Therefore, we assume
that multicaloric effects occur if more than one type of caloric effect can be driven either
simultaneously or sequentially in a given system. In this paper, we are essentially interested in the
case where the diverse caloric effects do not occur independently of each other but rather where
the cross-response effects arising from the interplay between the different properties influence the
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caloric response associated with a given property. These effects are indeed expected to occur in
both magnetostructural and magnetoelectric multiferroic materials.

Many materials have proven to support more than one caloric effect. Actually, most of the
prototypical magnetocaloric materials such as Gd–Si–Ge [8], La–Fe–Si [9], Fe–Rh [10] and NiMn-
based Heusler alloys [11,12] have been recently reported to display interesting mechanocaloric
(either baro- or both baro- and elastocaloric) effects. Electrocaloric materials are also known
to display elasto- [13] or barocaloric effects [14]. In some cases, the elastocaloric response in
these materials has even been shown to display a larger strength than the primary electrocaloric
effect [15].

Besides the previously mentioned and similar reported results, to date relatively few research
efforts have been devoted to the study of multicaloric cross-response in multiferroic materials.
Some important results are the following. The influence of an applied hydrostatic pressure on
the magnetocaloric effect in MnAs [16], Gd5Si2Ge2 [17] and hydrogenated LaFeSi has been
shown to occur as a result of volume changes arising from magnetostructural interplay. The
influence of pressure produces quite diverse effects in magnetocaloric materials. While in MnAs
the magnetocaloric effect increases with pressure, in Gd5Si2Ge2 it decreases, because application
of pressure makes the magnetostructural transition from the monoclinic to orthorhombic phase
to approach the Curie temperature of the monoclinic phase. At a given pressure of 6 kbar, both
transitions merge into a single one, which becomes of second order. Above this pressure, the
magnetocaloric effect remains pressure independent, showing the features of the magnetocaloric
effect associated with a second-order transition. In the case of La(FeSi)13Hx compounds, it has
been reported [18] that, while the magnetocaloric effect decreases under an applied pressure
in LaFe11.57Si1.43 (LaFeSi), it is instead enhanced in the LaFe11.57Si1.43H1.64 hydride. In both
LaFeSi and LaFeSi-hydride, the magnetostructural transition is shifted to lower temperatures by
increasing the applied pressure. The different effect of pressure on the magnetocaloric response
seems to be a consequence of the fact that, while the magnetization change at the transition
strongly decreases by application of pressure in LaFeSi, it is almost pressure independent in
the hydrides.

Pressure experiments reported by Caron et al. [19] in hexagonal Ni2In-type Mn1xCrxCoGe
compounds reveal that pressure is able to tune the temperature at which the magnetostructural
phase transition occurs. However, the magnitude of the magnetocaloric effect is almost insensitive
to the applied pressure. Samanta et al. [20] have studied similar MnNiSi-based compounds.
They took advantage of the fact that the magnetovolume interplay can be strongly enhanced by
isostructurally alloying 46% of MnNiSi with 54% MnFeGe. In the resulting system, application of
a moderate pressure of about 2.5 kbar enables doubling of the isothermal magnetic field-induced
entropy change, owing to a huge volume change of 7% taking place at the magnetostructural
transition undergone by the compound close to room temperature.

This effect of pressure on the magnetocaloric properties of the Heusler NiCoMnSb alloy has
been reported in [21]. In this system, the magnetocaloric effect is inverse and application of a
magnetic field shifts the martensitic transition to lower temperatures. However, pressure has an
opposite effect and, thus, application of pressure decreases the magnitude of the magnetic field-
induced entropy change. The effect is however very sensitive to the composition. For instance,
under application of a magnetic field of 5 T, the induced entropy change decreases from 33
to 16 J kg−1 K−1 by application of 8.5 kbar in Ni46Co4Mn38Sb12, whereas it changes from 41.4
to 33 J kg K−1 in Ni45Co5Mn38Sb12 for the same pressure variation. The authors claim that, by
adjusting the Co concentration and applying suitable pressure, a large magnetocaloric effect can
be tuned over a large temperature range around room temperature, which improves the potential
refrigerant capacity of the system.

In figure 1, we show, for the above-discussed materials, the dependence of the maximum of
the entropy change (absolute value, |�Smax(0 → B = 5 T)|) on the applied pressure obtained under
isothermal application of a magnetic field of 5 T. Taking into account that the obtained behaviour
is linear to a reasonably good approximation, in relation to the magnetocaloric response, the
strength of the magnetovolume interplay can be measured by the rate of change of the induced
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Figure 1. Maximum value of the entropy change, �Smax, obtained by isothermal application of a magnetic field of 5 T as
a function of the hydrostatic pressure.

entropy change at a given applied field with pressure, d[|�Smax(0 → B = 5 T)|]/dp. We have
obtained a very large value of approximately 18 J (K kg kbar)−1 for the MnNiSi-based compound,
approximately 2 J (K kg kbar)−1 for LaFeSi-hydride and negative low values, approximately
−1.8 J (K kg kbar)−1, for the remaining compounds.

In the case of Heusler alloys, the influence of a magnetic field on the elastocaloric effect induced
by the application of uniaxial compressive stress has been reported in [22]. In spite of the fact that
only relatively low stresses (about 10 MPa) were applied owing to poor mechanical properties
characteristic of this class of materials, results provide evidence for a significant elastocaloric effect
associated with the large entropy change at the magnetostructural phase transition undergone by
the material. Interestingly, application of a magnetic field below 1 T was found to increase the
elastocaloric relative cooling power by about 20%. Similarly, the effect of an applied electric field
on the elastocaloric response of ferroelectric Pb(Mn1/3Nb2/3)O3–32PbTiO3 single crystals induced
by uniaxial compressive stress has been reported in [23]. The effect has been found to be quite
small. More interesting seems to be the enhancement of the electrocaloric effect associated with
an applied uniaxial compressive stress.

The possibility of electric control of the magnetocaloric effect (or, conversely, magnetic
control of the electrocaloric effect) in strain-mediated extrinsic multiferroic systems has been
foreseen by Moya et al. [24]. With this aim, they studied the extrinsic magnetocaloric effect in
ferromagnetic La0.7Ca0.3MnO3 manganite grown on ferroelectric–ferroelastic BaTiO3 substrates
owing to strain-mediated feedback associated with its first-order structural phase transition.
On the other hand, inspired by the large magnetoelectric coupling arising from transferred
stress in FeRh/BaTiO3 heterostructures that enables the magnetic first-order transition in FeRh
to be modified [25], Gong et al. [26] prepared ribbons of Ni44Co5.2Mn36.7In14.1 (NiCoMnIn)
combined with La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) substrate to investigate
the effect of electric field on the magnetocaloric effect in NiCoMnIn. This material is a well-known
Heusler shape-memory alloy undergoing a magnetostructural transition that displays an inverse
magnetocaloric effect and the heterostructural films of PMN–PT enable the necessary strain to be
induced that can tune the magnetocaloric effect by application of an electric field. The obtained
results, while not spectacular, clearly demonstrate that the magnetocaloric effect can be controlled
by the applied electric field.
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More recently, good multicaloric properties have been predicted in laminated multiferroic
composites designed with layers of Gd and Hf0.2Zr0.8O2, which are, respectively, good
magnetocaloric and electrocaloric materials with almost the same Curie transition temperatures
as the corresponding ferromagnetic and ferroelectric phases [27].

To the best of our knowledge, no similar studies have been performed so far in intrinsic
magnetoelectric multiferroics, probably because few exist in Nature or have been synthesized
in the laboratory.

Finally, it is worth pointing out that multicaloric effects have also been studied from first-
principle calculations. It has been shown that this is a method to find efficient mechanisms leading
to an enhancement of interplay between ferroic properties that could provide new routes for
designing new multiferroic materials with optimal multicaloric effects [28,29].

In general, results demonstrating the influence of interplay (i.e. coupling) between ferroic
properties are interesting not only because they enable information to be gained on the
mechanisms at the origin of interplay, but also because the possibility of inducing large thermal
effects by combining diverse external fields may open up a new strategy for improving the
efficiency of solid-state cooling devices. In §3, we establish the thermodynamic basis that enables
a quantitative study of cross-response caloric effects.

3. Thermodynamics
For the sake of generality, let us consider a multiferroic material characterized by n
(not independent) ferroic properties (or generalized displacements) {xi} with corresponding
thermodynamically conjugated fields (or generalized forces) {Yi}. Pairs of these variables can be
magnetization and magnetic field, polarization and electric field, or strain and stress. Variables in
each pair have the same tensorial order, so that the tensorial product Yi · xi is a scalar (with units
of energy density). The two relevant caloric responses are the isothermal and adiabatic responses

to an applied field Yj measured, respectively, by ξ
j
T = (∂S/∂Yj)T and ξ

j
S = (∂T/∂Yj)S, where S

and T are entropy and temperature, respectively, and the derivatives are computed keeping
the fields {Yk �=j} constant. Using Maxwell relations,1 these response functions can be written as

ξ
j
T = (∂xj/∂T){Yi} and ξ

j
S = −(∂xj/∂S){Yi}. It is then straightforward to see that ξ

j
T = −Cξ

j
S/T, where

C = T(∂S/∂T){Yi} is a heat capacity. In the case of the magnetocaloric effect, the relevant response
function is ξm

T = (∂m/∂T)B, where m and B are the magnetization and magnetic field, respectively.
For the electrocaloric effect, the corresponding relevant quantities are polarization, p, and electric
field, E, whereas strain, ¯̄ε, and stress, ¯̄σ , are the relevant variables in the case of the mechanocaloric
effect. Note that for magneto- and electrocaloric effects these variables are vectors, whereas they
are second-rank tensors in the case of the mechanocaloric effect.

Changes of entropy and temperature associated with a finite variation of the field are

obtained by integration of ξ
j
T or Cξ

j
T/T, respectively. Usually, the field is assumed to change

only in magnitude. Nevertheless, it is worth pointing out that the study of magnetocaloric effect
associated with field rotation in highly anisotropic magnetic materials has recently attracted some
interest [30,31]. However, we will not consider here such situations and, in what follows, we will
discuss only caloric and multicaloric effects associated with changes of magnitude of the fields.

Although not imposed by thermodynamics, the response functions ξ
j
T are in general negative,

because ferroic properties are expected to reach a maximum value in the ground state. Therefore,
in general, the entropy decreases when a field is applied isothermally while temperature increases
when it is applied adiabatically. This corresponds to conventional caloric effects. Nevertheless,

in some regions of the space of thermodynamic parameters, ξ
j
T can be positive and, then, the

caloric effect is denoted inverse, which means that entropy increases when the field is applied
isothermally, whereas temperature decreases when it is applied adiabatically. This behaviour can

1Maxwell relations are a consequence of the fact that the generalized vector for {yi} is conservative.
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occur near a phase transition owing, for instance, to specific features of the interplay between
ferroic properties, or associated with frustration effects, or a combination of both [6,32].

Let us now discuss multicaloric effects induced by application of more than one field. We
summarize here the thermodynamic development published in [33]. For the sake of practical
applications, we consider systems with two ferroic properties x1 and x2 with thermodynamically
conjugated fields Y1 and Y2, respectively. Assuming that the system responds isotropically to the
applied fields, the change of entropy induced by isothermal changes of the magnitude of both
fields can be expressed as

�S[T, (0, 0) → (Y1, Y2)] = �S[T, (0, 0) → (Y1, 0)] + �S[T, (Y1, 0) → (Y1, Y2)], (3.1)

where, if, for instance, x and Y are vectors, x will be the projection of x in the direction of the
applied field, while if they are tensors, then x corresponds to the same combination of tensor
elements as in Y.

In the expression (3.1), the first term on the right-hand side is simply the entropy change that
quantifies the caloric effect associated with the ferroic property x1. The second term can be written
as the sum of terms that measure the caloric effect associated with the induced change of the
property x2 and a caloric cross-response contribution. That is,

�S[T, (Y1, 0) → (Y1, Y2)] = �S[T, (0, 0) → (0, Y2)]

+
∫Y1

0

∂

∂Y′
1

[�S(T, (Y′
1, 0) → (Y′

1, Y2))] dY′
1. (3.2)

After some straightforward calculation, the cross-response contribution can be expressed as
∫Y1

0

∂

∂Y′
1

[�S(T, (Y′
1, 0) → (Y′

1, Y2))] dY′
1 =

∫Y1

0

∫Y2

0

∂χ12

∂T
dY2 dY1, (3.3)

where χ12 (=χ21) is the cross-susceptibility that quantifies the response of x1 (x2) to the non-
conjugated field Y2 (Y1). Therefore, in the presence of interplay between both ferroic properties,
the multicaloric effect is not the simple sum of the caloric effects associated with each one
independently. The lack of additivity is controlled by the temperature dependence of the
cross-susceptibility.2

It is worth pointing out that in some cases it is useful to decompose the pure caloric
terms �S[T, (0, 0) → (Y1, 0)] and �S[T, (0, 0) → (0, Y2)], as the sum of contributions, respectively,
associated with the properties x1 and x2. The following result is obtained after some calculation:

�S[T, (0, 0) → (Y1, 0)] = �S[T, Y2 = 0, x1(0) → x1(Y1)] + �S[T, Y2 = 0, x2(0) → x2(Y1)]

= −
∫ x1(Y1)

x1(0)

(
∂Y1

∂T

)
T,x2

dx1 −
∫ x2(y1)

x2(0)

(
∂Y1

∂T

)
T,x1

dx2, (3.4)

and a similar equation for the entropy change induced by the application of field Y2. Note that
the second term on the right-hand side of equation (3.4) only vanishes when there is no interplay
between the properties x1 and x2.

4. Landau approach
In this section, we aim to apply the thermodynamic formalism summarized in §3 to the study of
multicaloric effects near phase transitions of a system described by two ferroic properties within
the framework of the Landau approach. Ferroic properties are convenient order parameters,
which will be assumed to be one-component (scalar)-order parameters. This is consistent with

2Note that in §2 we have quantified the effect of the magnetovolume interplay on the magnetocaloric effect through the
derivative of the magnetic field-induced entropy change with respect to pressure. This is the derivative that appears in the
second term on the right-hand side of equation (3.2), which gives the contribution to the caloric effect from the interplay
between the two ferroic properties.
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the isotropy assumption made in §3. The free energy function will contain pure contributions
associated with each ferroic property and a term accounting for their interplay. That is,

F = F1(T, x1) + F2(T, x2) + F12(T, x1, x2). (4.1)

Within the Landau theory, near a phase transition, these contributions are expressed as series
expansions of the order parameters. To ensure that the free energy function is invariant
under the symmetry operations of the system, only terms allowed by symmetry must
be included in the expansion. Expansion coefficients are material dependent and explicitly
bring in the dependence on temperature. The approach is phenomenological and its natural
combination with the thermodynamic formalism provides a powerful method to study the
behaviour of thermodynamic quantities near phase transitions. The presence of external fields
thermodynamically conjugated to the order parameters (ferroic properties) can be taken into
account by introducing Gibbs-like free energies through the Legendre transforms, G1 = F1 −
Y1x1 and G2 = F2 − Y2x2. Then, the equilibrium values of the ferroic properties at a given
temperature in the presence of applied fields are obtained from minimization of G = G1 + G2 +
F12. Usually, temperature dependence is assumed only in the lowest-order quadratic terms of
F1 and F2, imposing that the high-temperature susceptibilities associated with properties x1
and x2 satisfy Curie–Weiss dependence. That is, it is assumed that (∂2F1/∂x2

1)x1=0 = χ−1
1 (T) =

a1(T − Tc1 ) and (∂2F2/∂x2
2)x2=0 = χ−1

2 (T) = a2(T − Tc2 ), where Tc1 and Tc2 are limits of stability of
pure high-temperature phases 1 and 2, respectively. Taking into account that entropy is given by
S = −∂G/∂T, the entropy change induced by isothermal consecutive application of fields Y1 and
Y2 can be expressed as

�S[T, (0, 0) → (Y1, Y2)] = − 1
2 a1[x2

1(T, Y1, Y2) − x2
1(T, 0, 0)]

− 1
2 a2[x2

2(T, Y1, Y2) − x2
2(T, 0, 0)], (4.2)

where the values of the ferroic properties on the right-hand side of (4.2) are the equilibrium
values and thus solutions of ∂G/∂x1 = ∂G/∂x2 = 0 for the indicated values of the fields Y1 and
Y2. Of course, the same entropy change is obtained, regardless of the order of application
of the fields. It is straightforward to see that expression (4.2) is equivalent to the previous
general thermodynamic expression (3.2) and thus provides an alternative procedure to compute
field-induced entropy changes. After some algebra equation (4.2) can be written in the form

�S[T, (0, 0) → (Y1, Y2)]

= − 1
2 a1[x2

1(T, Y1, 0) − x2
1(T, 0, 0)] − 1

2 a2[x2
2(T, 0, Y2) − x2

2(T, 0, 0)]

− 1
2 a1[x2

1(T, Y1, Y2) − x2
1(T, Y1, 0)] − 1

2 a2[x2
2(T, Y1, Y2) − x2

2(T, 0, Y2)]. (4.3)

Note that this expression explicitly takes into account the decomposition considered in equation
(3.4). Actually, the first two terms on the right-hand side correspond to the pure contributions
associated with both ferroic properties and the last two terms quantify the cross-response. Each
one of these two last terms represents the entropy change associated with a given property
keeping the non-conjugated field at a non-zero constant value. Indeed, these terms vanish in the
absence of interplay between ferroic properties.

It is worth pointing out that, when explicit temperature dependence of higher-order
coefficients in the Landau expansion is assumed, equation (4.2) must be replaced by an expression
in the form of an expansion with coefficients given by temperature derivatives of the successive
terms that carry an explicit temperature dependence in the Landau free energy function.

(a) Application to metamagnetic shape-memory alloys
A metamagnetic shape-memory alloy is a material undergoing a martensitic transition with
associated shape-memory properties that exhibits different magnetic orders in the high- (parent)
and low-temperature (martensitic) phases. Usually, the parent phase is ferromagnetic, and there
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is a re-entrance towards a paramagnetic phase3 at the transition which is a consequence of strong
magnetostructural interplay [34]. At a microscopic level, this interplay can be understood as being
the result of the strong sensitivity of the oscillatory exchange coupling of localized magnetic
moments (RKKY-type exchange mediated by the conduction electrons) to small changes in the
distances of the atoms carrying the moments induced by the structural transition, which leads
to a competition between ferro- and antiferromagnetism [35]. Therefore, these materials must
be classified within the family of the magnetostructural multiferroics. The structural transition
is essentially described by a shear mechanism, but also involves a significant volume change.
Lattice Hamiltonians with parameters obtained from ab initio calculations have been proposed
to account for the magnetocaloric properties of this class of materials [36]. In addition, mean
field models have been reported.4 Nevertheless, such models do not take into account the effect
of pressure. In the present model, we assume that the shear, ε, and the magnetization, m, are
primary-order parameters describing the symmetry breaking taking place at the transitions, while
the relative volume change, ω, is a secondary-order parameter coupled to the shear.5 We propose
the following Landau free energy function to study this class of materials:

F(T, ε, m, ω) = Fε(T, ε) + Fm(T, m) + ω2

2D
+ κ1m2ε2 + κ2ωε2, (4.4)

where Fε and Fm are the following expansions that include only even powers of the
corresponding order parameters adequate for a first-order structural transition and for a
continuous ferromagnetic transition, respectively:

Fε = 1
2 aε(T − T0)ε2 − 1

4 bε4 + 1
6 cε6 (4.5)

and

Fm = 1
2 am(T − Tc)m2 + 1

4 βm4. (4.6)

In the previous expansions, all the coefficients are assumed to be positive. The minus sign of the
ε4 coefficient ensures that Fε describes a first-order transition. The term ω2/2D is the elastic energy
associated with volume change and thus D is a compressibility coefficient. The last two terms in
equation (4.4) are isotropic coupling terms between shear and magnetization and between shear
and volume, respectively. It is worth pointing out that, in spite of being permitted by symmetry, a
direct coupling, ωm2, between volume and magnetization is assumed to be negligibly small and
thus not included in the model. This is suggested by the very weak effect of an applied hydrostatic
pressure on the Curie temperature in metamagnetic shape-memory alloys [39]. Note that in the
free energy expansion only the coefficients of the harmonic terms in Fε and Fm depend explicitly
on temperature.6 T0 and Tc are the lower stability limits of the pure paraelastic parent phase and
paramagnetic phase, respectively. Because we will assume that the magnetic transition occurs first
during cooling from high temperature, Tc will correspond to the Curie temperature of the para-
to ferromagnetic continuous transition.

In the presence of external fields coupled to ε, m and ω, a Gibbs-like free energy function, G, is
defined as

G = F − σε − Bm + pω, (4.7)

where σ is the shear stress, B is the magnetic field and p is the hydrostatic pressure.

3This phase is weakly magnetic, and, despite some authors claiming that it is paramagnetic, its actual magnetic order is still
the subject of debate.
4See, for instance, [37,38].

5The coupling between volume and shear is allowed, because shear is a scalar in the present model.

6The remaining terms are not expected to vary rapidly with temperature in the vicinity of the transitions and, hence, are
assumed to be temperature independent.
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After minimization of G with respect to ω and m, the following equations of state are obtained:

ω = −D[p + κ2ε
2] (4.8)

and
m2 − B

βm
= − 1

β
[2κ1ε

2 + am(T − Tc)]. (4.9)

When the first of these equations is substituted in G (equation (4.7)), an effective Gibbs-like free
energy expansion Gε−m with biquadratic coupling between the order parameters ε and m is
obtained. The thermodynamics of this class of Landau model has been studied in detail in [33]. In
the absence of an applied field (B = σ = p = 0), the resulting effective free energy function can be
written as

Fε = 1
2 ãε(T − T̃0)ε2 − 1

4 b̃ε4 + 1
6 cε6, (4.10)

where the re-scaled tilde-parameters are now explicit functions of the parameters κ1 and κ2 given
by ãε(κ1) = aε − 2κ1am/β, T̃0(κ1) = (aεT0 − 2κ1amTc/β)/ãε , b̃(κ1, κ2) = b + 4κ2

1 /β + 2Dκ2
2 = b′(κ2) +

4κ2
1 /β. The temperature of the structural transition is given by

Ts(κ1, κ2) = T̃0(κ1) + 3b̃(κ1, κ2)
16ãε(κ1)c

. (4.11)

In this case (absence of applied field), taking into account equation (4.9), it is expected that, in
the temperature region Ts < T < Tc, m2 = am(Tc − T)/β. For T ≤ Ts, m2 = −[2κ1ε

2 − am(Tc − T)]/β.
It is worth noting that for κ∗

1 = am(Tc − Ts)/2ε2
t , where εt is the strain discontinuity, m vanishes at

the magnetostructural transition. This condition is satisfied along the curve κ2 = κ2(κ∗
1 ) (figure 2).

For values of |κ2| inside the curve (region I), the magnetization decreases but does not vanish at
the structural transition. For values outside the curve (region II), the magnetization remains zero
in a certain temperature range below the structural transition. Therefore, in this last case, a second
magnetic transition (from a high-temperature paramagnetic martensite to a low-temperature
ferromagnetic martensite) occurs at a temperature TcM < Ts. Actually, both situations have been
experimentally observed in metamagnetic shape-memory materials.7 Thus, the model is able
to nicely reproduce the behaviour of magnetization observed in this class of metamagnetic
materials that should occur for specific values of the magnetostructural coupling. In particular, it
reproduces the re-entrance to the paramagnetic state observed in this class of materials. In figure 2,
we show the behaviour of m and ε versus T for particular values of κ1 and κ2 within regions I
and II.8

The entropy change at the magnetostructural transition can be obtained as �St =
−[(∂Feff/∂T)εt − (∂Feff/∂T)ε=0] = −ãεε

2
t /2, where ε2

t = 3b̃/4c. For κ∗
1 values of the magneto-

structural coupling for which m vanishes at the magnetostructural transition, we obtain that �St

depends on the difference between the Curie temperature and the magnetostructural transition as

�St = −1
2

aεε
2
t (κ∗

1 , κ2) + a2
m
β

[Tc(κ2) − Ts(κ∗
1 , κ2)]. (4.12)

Therefore, the absolute value of the transition entropy change is expected to decrease as the
temperature difference between the magnetostructural and the magnetic transition increases.
This is a consequence of the competition between the structural and the magnetic contributions
to the whole entropy change, which are of opposite signs. �St as a function of Tc − Ts can
be computed by solving self-consistently equation (4.12) and the equations defining κ∗

1 and εt.
In figure 3a, �St/�St(0) versus 1 − Ts/Tc (�St(0) = �St at Ts = Tc) obtained from the present
Landau model (the example corresponds to κ2 on the parabolic line separating regions I and II)
is compared with experimental data reported in [41,42] for Ni50MnxIn1−x, Ni45Co5MnxIn1−x and
Ni42.5Co7.5MnxIn1−x metamagnetic shape-memory alloys. Very good agreement is obtained after

7It has been shown that, depending on heat treatments, m goes to zero or remains finite at the structural transition. See,
for instance, [40]. These results can be understood by taking into account that the heat treatment can modify the lattice
distribution of magnetic atoms and thus the magnetostructural interplay.
8Present results have been obtained with aε = 1, am = 1, Tc = 1, T0 = 0.6, b = 1, c = 1 and β = 1.
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Figure 2. (a) Space of interplay parameters κ1–κ2. (b) Examples of magnetization, m, and strain, ε, as a function
of temperature (in reduced units) for particular values of κ1 and κ2 indicated along the two dashed lines plotted
in (a).

re-scaling linearly the vertical and horizontal axes. This re-scaling is assumed in order to take into
account a possible dependence of Tc and �St(0) on κ∗

1 , which may reflect the expected variation
of the Curie temperature and entropy change on alloy composition (see [41]) or their change with
atomic order induced by means of heat treatment (see [42]). The assumed dependence is shown
in figure 3b. Taking into account that Tc − Ts depends on specific interplay conditions, results
prove that the decrease of �St with the difference Tc − Ts is a result of the competition between
the structural and magnetic contributions to the change of entropy. This is in agreement with
the analysis of entropy contributions to the whole transition entropy change recently reported
for the metamagnetic NiMnCoIn shape-memory alloy in [43]. These results have tremendous
consequences for the multicaloric properties of this class of materials, because �St represents to
a large extent the available entropy content in both the mechano- and magnetocaloric effects. As
a criterion, for a given applied magnetic field B, we may assume that the material (defined in
the model by the parameters κ1 and κ2) with optimal caloric properties is the one that maximizes
the product (see [44]) R = �St�T(B), where �T(B) is the shift of the structural transition induced
by the applied magnetic field (obtained by means of the Clausius–Clapeyron equation). Note that
this shift provides a good estimate of the temperature change induced under adiabatic application
of the field and thus R is a good measure of the refrigerant capacity. The product R as a function
of the reduced temperature distance between Curie and structural transitions, 1 − Ts(B)/Tc, along
the line κ1 = 0.1, for selected values of the applied magnetic field is depicted in figure 4. Results
show that, in spite of the decrease of �St, the refrigerant capacity shows a maximum at a given
value of the difference between Tc and Ts.

Now, we are prepared to study multicaloric effects in metamagnetic shape-memory materials.
In the vicinity of the magnetostructural transition, the studied metamagnetic systems are
expected to display elastocaloric, barocaloric and magnetocaloric effects, which should occur
interdependently. As an illustration, we will analyse here the effect of pressure on the
magnetocaloric effect. Therefore, we assume that the external applied stress is zero and compute
the change of entropy induced by isothermal application of a magnetic field at given applied
pressures for a given difference Tc − Ts, which corresponds to specific values of coupling
parameters κ1 and κ2. We obtain

�S(T, 0 → B, p) = − 1
2 aε[ε2(T, B, p) − ε2(T, 0, p)] − 1

2 am[m2(T, B, p) − m2(T, 0, p)], (4.13)
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where ε and m are equilibrium values of the strain and magnetization, respectively, with given
values of the applied magnetic field B and pressure p. It is worth remembering that the effect
of pressure is only relevant when κ2 �= 0 (otherwise, there is no interplay between primary-order
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parameters and volume). There are thus two situations to be considered, κ2 > 0 and κ2 < 0. The
corresponding phase diagram for a given value of κ1 is shown in figure 5a. In the first case (κ2 > 0)
volume decreases at the transition and Ts increases with the applied pressure, whereas in the
second case (κ2 < 0) volume increases and transition temperature decreases. This indicates that
the barocaloric effect should be conventional in the first case, but inverse in the second. Because,
in the region of the magnetostructural transition, the magnetocaloric effect is expected to be
inverse, we will analyse the case κ2 > 0, as the caloric responses to pressure and magnetic field
are expected to compete.

Changes of entropy induced by isothermal application of selected magnetic fields at given
applied hydrostatic pressures are shown as a function of temperature in figure 5b. A significant
magnetocaloric peak occurs in the region of the magnetostructural transition. Note that in this
region the entropy increases when the magnetic field is applied, which confirms the inverse
character of the magnetocaloric effect. Outside the magnetostructural transition region, the
magnetocaloric effect is weak and conventional.

In figure 6a, we show the magnetocaloric peak for a given value of the hydrostatic pressure
in more detail. It is interesting to note that the maximum value of the entropy change decreases
as the applied magnetic field is increased. Because the application of the magnetic field shifts
the magnetostructural transition to lower temperatures, the observed behaviour is consistent
with the previously discussed decrease in the transition entropy with the difference between the
Curie and structural transitions. In figure 6, we show the corresponding structural and magnetic
contributions to the whole magnetocaloric peak. In agreement with reported experimental
studies [43], the present results also indicate that the magnetocaloric effect in the vicinity of
the magnetostructural transition is dominated by the structural contribution to the entropy. In
any case, note that, despite the fact that the magnetostructural transition can be induced by
application of pressure, there is no volume contribution to the entropy change.
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(b) Application to ferrotoroidics
Ferrotoroidics are materials where toroidal moments show cooperative order [7,45]. This
order is expected to spontaneously emerge at a phase transition at which both time and
spatial inversion symmetries are simultaneously broken. Therefore, the transition combines the
symmetry changes characterizing the occurrence of both ferromagnetism and ferroelectricity,
respectively [46]. Consequently, these materials intrinsically belong to the class of magnetoelectric
multiferroics [47]. Here we will consider systems with magnetic-vortex-like structures
characterized by a dipolar toroidal moment.9 These complex structures have been observed in
LiCo(PO4)3 using second harmonic generation [49].

Given a distribution m(r) in a volume v, the magnetic dipolar toroidal moment can be
defined as

t = 1
2

∫
V

[r × m(r)] dV. (4.14)

In the continuum limit, the toroidization τ is then given by the volume density of toroidal
moments. While the natural conjugated field of toroidization is ∇ × B, where B is a magnetic
field, because we are considering only homogeneous macroscopic bodies in thermodynamic
equilibrium, from symmetry considerations, we make the usual assumption that G = E × B,
where E is an electric field, is the appropriate conjugated field [50]. This assumption is in
agreement with recent experiments [51] showing that this field enables external control of the
toroidization. The energy associated with the coupling with the external field will be −G · τ ,
which leads to a polarization, pt = B × τ , and a magnetization, mt = τ × E, induced under the
application of magnetic and electric fields, respectively. These expressions show the intrinsic
(asymmetric) magnetoelectric nature of this class of materials. The fundamental thermodynamic
equation for these materials reads

dU = T dS + p · dE + m · dB, (4.15)

9A long-standing question has been whether the toroidal moment is merely a side effect of antiferromagnetism with vortex-
like alignment of the magnetic moments or whether it is the primary-order parameter in a ferroic phase transition. Recently,
it has been justified that ferrotoroidics belong to the class of primary ferroics. See [48].
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where U is the internal energy and p = pt + pi and m = mt + mi include intrinsic contributions in
addition to terms arising from toroidization.

The entropy change associated with the toroidal contributions of polarization and
magnetization induced by isothermal application of electric and magnetic fields leading to a
toroidal field G = E × B is given by

�S(T, 0 → G = E × B) =
∫E

0

∂pt
∂T

· dE +
∫B

0

∂mt

∂T
· dB

=
∫E

0

(
B × ∂τ

∂T

)
· dE +

∫B

0

(
∂τ

∂T
× E

)
· dB, (4.16)

which can be simply written as

�S(T, 0 → G) =
∫G

0

∂τ

∂T
· dG. (4.17)

In order to develop a Landau model for a ferrotoroidal transition, toroidization must be chosen
as the primary-order parameter but magnetization and polarization must also be included in the
free energy expansion. We follow here the point of view proposed in [52] and take into account
that the symmetries which allow for a macroscopic toroidal moment are the same as those that
give rise to an antisymmetric component of the linear magnetoelectric tensor. Then, the simplest
possible Landau free energy expansion that describes a phase transition between paratoroidic and
ferrotoroidic phases that include the energies associated with the effect of electric and magnetic
fields on polarization and magnetization, and their coupling to toroidization, should have the
following form:

F(T, τ , p, m) = 1
2 aτ (T − T0

c )τ 2 + 1
4 Cτ 4 + 1

2 χ−1
p p2 + 1

2 χ−1
m m2 − B · m − E · p + ητ · (p × m), (4.18)

where χp and χm are the electric and magnetic susceptibilities respectively, aτ is the toroidic stiffness
and C > 0 is the nonlinear toroidic coefficient. Here η measures the strength of the magnetoelectric
coupling. The last term in the above free energy represents the lowest possible order coupling
term between the three order parameters consistent with the required space and time reversal
symmetries. Minimization of this free energy with respect to polarization and magnetization
provides their equilibrium values, which are given by

p = χp(E − η m × τ ) (4.19)

and
m = χm(B + η p × τ ). (4.20)

Assuming isotropy, with E applied along the x-axis and B along the y-axis, p � χpE − αB =
pi + pt and m � χmB − αE = mi + mt, where nonlinear magnetoelectric terms have been neglected.
For the sake of consistency with the magnetoelectric equations, the parameter α must coincide
with τ , and thus ηχpχm = 1. Substitution of these equations for p and m in equation (4.18) gives
the following effective free energy function:

Feff = F0(E, B) + 1
2 aτ (T − Tc)τ 2 + 1

3 βτ 3 + 1
4 Cτ 4 + Gτ , (4.21)

where F0 = − 1
2 (χpE2 + χmB2), Tc = T0

c + [χmB2 + χpE2]/aτ and β = 3G = 3EB. The effective free
energy obtained corresponds to the free energy of a toroidal system subjected to an applied
toroidal field G. Interestingly, the third-order term coefficient is proportional to the applied field
G. Therefore, when G = 0, the free energy (4.21) describes a paratoroidal-to-ferrotoroidal second-
order phase transition. Under the application of a toroidal field G �= 0, the transition becomes
first order for G2 < 1/C2. It is worth pointing out that the addition of magnetoelectric nonlinear
terms would lead to higher-order terms in the expansion (4.21) that go beyond the minimal model.
However, within the spirit of the Landau approach, it is expected that such terms are not essential.

Assuming that the susceptibilities χp and χm are not temperature dependent, the entropy
of the system can be obtained as S(T, τ , G) = −∂Feff/∂T = −( 1

2 )aτ τ 2(T, G), where τ (T, G) is the
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equilibrium value of the toroidization, which is a solution of ∂Feff/∂τ = 0. Then, the change of
entropy isothermally induced by application of a toroidal field is obtained as

�S(T, G = 0 → EB) = − 1
2 aτ [τ 2(T, G = EB) − τ 2(T, 0)]. (4.22)

Taking into account the equations giving pt = τB and mt = τE, it is straightforward to show that,
in addition to a pure toroidal contribution, this change of entropy comprises polar and magnetic
contributions given by

�Sp−m(T, G = 0 → EB) = − 1
2 ap

τ [p2
t (T, E, B) − p2

t (T, E, 0)]

− 1
2 am

τ [m2
t (T, E, B) − m2

t (T, 0, B)], (4.23)

where ap
τ = aτ /B2 and am

τ = aτ /E2. The toroidocaloric entropy change is shown in figure 7. The
sum of polar and magnetic contributions is also shown. The difference between the total entropy
changes and this sum determines the pure toroidal contribution, which is only significant in the
temperature region of the continuous toroidal transition.

5. Summary and conclusion
Caloric effects are becoming potentially important for refrigeration and related technologies.
A caloric effect is expected to occur that is associated with each primary ferroic property.
Magnetocaloric, electrocaloric and mechanocaloric effects have been the subject of intense
experimental and theoretical research. In contrast, the toroidocaloric effect has been predicted
but not experimentally confirmed [53]. Multiferroics involve at least two coupled ferroic
properties and are thus likely to exhibit multicaloric effects. We have developed a general
thermodynamic framework for systems displaying interplay between multiple ferroic properties.
Within this framework, we have analysed multicaloric effects in magnetostructural metamagnetic
shape-memory and magnetoelectric ferrotoroidic materials. These systems have been described
within a Landau model with suitable coupling between order parameters. We expect that our
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phenomenological Landau results combined with first-principle calculations will provide in the
near future a route for designing materials with improved multicaloric effects.
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