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Bone’s remarkable mechanical properties are a result of its hierarchical

structure. The mineralized collagen fibrils, made up of collagen fibrils and

crystal platelets, are bone’s building blocks at an ultrastructural level. The

organization of bone’s ultrastructure with respect to the orientation and

arrangement of mineralized collagen fibrils has been the matter of numerous

studies based on a variety of imaging techniques in the past decades. These

techniques either exploit physical principles, such as polarization, diffraction

or scattering to examine bone ultrastructure orientation and arrangement, or

directly image the fibrils at the sub-micrometre scale. They make use of

diverse probes such as visible light, X-rays and electrons at different

scales, from centimetres down to nanometres. They allow imaging of bone

sections or surfaces in two dimensions or investigating bone tissue truly in

three dimensions, in vivo or ex vivo, and sometimes in combination with

in situ mechanical experiments. The purpose of this review is to summarize

and discuss this broad range of imaging techniques and the different mod-

alities of their use, in order to discuss their advantages and limitations

for the assessment of bone ultrastructure organization with respect to the

orientation and arrangement of mineralized collagen fibrils.
1. Introduction
Bone is a material of remarkable mechanical properties that are optimized

through evolutionary processes and functional adaptation during the lifetime

to meet the basic mechanical needs of supporting the human body, transmitting

forces for locomotion and protecting vital organs. In order to achieve these

mechanical properties, human bone has developed a complicated, composite

structure (figure 1). At a macroscopic level, the organ bone is composed of

two osseous tissue types: cortical and trabecular bone. These differ at a micro-

structural level, with cortical bone being composed of osteons or Haversian

systems, whereas trabecular rods and plates form the trabecular or cancellous

bone compartment. Both cortical and trabecular bone are typically made up

of lamellae, which are mostly composed of mineralized collagen fibril bundles

or fibres [8,9], a few to several micrometres in diameter. At the ultrastructural

level, mineralized collagen fibrils with diameters of the order of approximately

100 nm are the building blocks of bone [8]. It is possible that these do not form

bundles or fibres, but have a disordered organization instead [9]. The minera-

lized collagen fibrils are formed by the combination of collagen fibrils [10]

and hydroxyapatite (HA) mineral crystals [11]. The crystals appear in the

form of platelets [12], approximately 3 � 25 � 50 nm in size, although significant

variations in platelet size have been reported, based on experiments using

atomic force microscopy (AFM) [13], transmission electron microscopy (TEM)

[14] and X-ray scattering [15] or diffraction [16]. Platelets are formed by hexa-

gonal crystal unit cells, with dimensions a ¼ b ¼ 9.4 Å and c ¼ 6.8 Å [17].
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Figure 1. Bone at different hierarchical levels. At a macroscopic level, bone consists of the cortical and the trabecular bone compartments. On a microstructural level, the
trabecular network and the Haversian system are observed, which are typically formed by bone lamellae. At a lower hierarchical level, bone ultrastructure comprises miner-
alized collagen fibrils, which are arranged randomly or in bundles. This review presents the methods that enable investigations of the organization of the ultrastructure.
(a) Human femur cut in half and imaged using scanning electron microscopy (SEM). (Image from [1] with kind permission of the Royal Society of Chemistry.) (b) Trabecular
network imaged using SEM in backscattered electron mode. (Image from [2] with kind permission of Humana Press, Inc.) (c) Haversian system imaged using synchrotron
radiation-based computed tomography (SR-CT). (Image from [3] with kind permission of SPIE.) (d ) Lamellar structure of trabecular bone imaged using polarized second
harmonic generation ( pSHG) imaging. (Image from [4] with kind permission of the Materials Research Society.) (e) Lamellar structure of cortical bone imaged using circularly
polarized light microscopy. (Image from [5] with kind permission of John Wiley and Sons, Inc.) (f ) Mineralized collagen fibril bundles imaged using transmission electron
microscopy (TEM). (Image from [6] with kind permission of PLoS.) (g) Single mineralized collagen fibril and diffraction pattern (inset) showing the orientation of unit crystal
cells imaged using TEM and electron diffraction, respectively. (Image from [7] with kind permission of ACS Publications.) (Online version in colour.)
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The crystals are either intra- or extra-fibrillar [18], where intra-

fibrillar crystals are associated with the gap regions of the

collagen fibril [19], while extra-fibrillar crystals are found in

the space surrounding the fibrils [20]. It is worth noting that

the collagen–mineral interaction is a topic of intense interest

and study [21,22]. Further, it has been shown that the

c-plane of the unit cells coincides with the direction of crystal

platelets [23], and with the direction of the fibrils [24]. This

means that, for investigating the orientation of the bone ultra-

structure, one can study the orientation of each of the four

structural elements of the ultrastructure: (i) the unit crystal,

(ii) the crystal platelet, (iii) the collagen fibril, and (iv) the

fibril bundle or fibre (if the fibrils have been organized in

bundles or fibres).

There exist several factors that are being intensely studied

concerning bone’s ultrastructure organization [21,25–29].

Among them, the significant contribution of the orientation

and arrangement of bone’s ultrastructure to its mechanical

properties has long been suggested [30–33] and experi-

mentally investigated [34–41]. In addition, several studies

conducted at different structural scales have shown that

ultrastructure orientation and arrangement are among the

best predictors of mechanical properties such as bone

strength or elastic modulus [42–45]. Many approaches have

been proposed in previous years to investigate the three-

dimensional (3D) orientation of at least one of the four

structural elements of bone ultrastructure mentioned above,

including methods based on visible light, X-rays, electrons

or magnetic fields, with some of them providing very prom-

ising results. This review intends to present an overview of

these approaches and recent progress in their development,

in terms of their suitability for the assessment of bone ultra-

structure organization, with a specific emphasis on

ultrastructure orientation and arrangement. Namely, for
each technique we (i) explain its underlying physical prin-

ciples, (ii) present how the method is applied to study

ultrastructure organization, and (iii) critically present the

advantages and limitations of those methods in assessing

3D organization of the mineralized collagen fibrils.

It should be mentioned that an overarching limitation of all

studies are the artefacts introduced by sample preparation

steps, including sample sectioning, decalcification, dehy-

dration or embedding [46]. Depending on the protocol used,

these procedures might alter to a greater or lesser extent the

tissue structure and, therefore, limit the quantitative aspect of

result interpretation. However, quantitative studies of the

effects of these factors in relation to the ultrastructure orien-

tation and arrangement are missing. Hence, this review does

not include the effects of sample preparation on the

final outcome. Finally, this review does not include techni-

ques such as magnetic resonance imaging (MRI) [47],

electron backscatter diffraction [48], microwave method [49],

small-angle light scattering [50], elastic scattering spectro-

scopy [51] or ultrasonic methods [52], which have been

shown to be able to provide information on the orientation

and arrangement of ultrastructure in bone or other tissues,

but have not contributed extensively to the assessment of

bone ultrastructure organization.
2. Techniques to assess the organization of bone
ultrastructure

2.1. Technique categorization
The techniques to assess the organization of the mineralized

collagen fibrils or the bone ultrastructure can be divided

into two categories, as follows.
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The first category represents methods, which can be used

to examine directly and specifically the orientation of the struc-

tural elements of the bone ultrastructure (fibril bundles/fibres,

collagen fibrils, mineral platelets or unit crystals) without pro-

viding an image of them, by using polarization, scattering or

diffraction of the probe. In this category, only MRI makes use

of another physical phenomenon, the orientation-dependent

magnetic relaxation. We denote this category of techniques as

‘orientation-specific techniques’.

The second category encompasses methods that provide

direct images of bone ultrastructural elements, which we refer

to as ‘imaging techniques’, where orientation-specific infor-

mation can be derived from the images (as a by-product).

These methods exhibit spatial resolutions that enable imaging

of the ultrastructure of bone, where the ultrastructural elements

(mineralized collagen fibrils or fibril bundles) can be visually

identified. Quantification of the orientation and arrangement

of the ultrastructure is performed by image post-processing of

the acquired images, either through specialized orientation-

sensitive algorithms [53–55] or, most commonly, through

two-dimensional (2D) or 3D Fourier transform (FT) [56],

which allow the orientation and degree of orientation (DO) to

be derived [57–60]. It should be noted that the indirect assess-

ment of the organization of mineralized collagen fibrils by

imaging techniques can lead to artefacts, which are discussed

in the introduction of the respective subsection.

Moreover, another distinction between the various techni-

ques is adopted in this review, through the different probes

used for the techniques. (Visible) light is the more conventional

probe used for many decades in the assessment of the orien-

tation of mineralized collagen fibrils. As its wavelength

exceeds the mineral crystal sizes, methods using light as a

probe are limited in examining the collagen fibrils or fibril bun-

dles. X-rays and electrons have been used more recently, and

can give access to significantly higher spatial resolutions

than (visible) light, which allows crystal platelets, unit crystals

and also features of the fibrils, such as the typical approxi-

mately 67 nm collagen D-spacing, to be probed. The only

method that uses a different probe is AFM, which exploits

the mechanical interaction of the sample with a sharp tip.
2.2. Orientation-specific techniques
The orientation-specific techniques and their characteristics are

presented in table 1. In the following, these techniques are

discussed in detail.
2.2.1. Light-based techniques

2.2.1.1. Polarized light microscopy
Polarized light microscopy (PLM) has been used since the

early nineteenth century to study collagen structure in differ-

ent biological tissues, exploiting the positive intrinsic and

form birefringence of collagen [5,38,62]. Especially for bone,

use of PLM has been mostly driven by the early observation

of the alternating bright and dark appearance of the lamellae

in the osteons (figure 2). The two commonly used forms of

PLM are circular PLM and linear PLM (figure 2).

In circular PLM, image brightness depends on the out-

of-plane orientation of the mineralized collagen fibres in the

structure and on their DO, with fibres perpendicular to the

light path and most highly oriented fibres leading to the high-

est detected intensities [5,38,63]. In linear PLM, the image
brightness also reflects the in-plane orientation of the collagen

fibres relative to the polarizer [64], at the plane perpendicular

to the light path. In order to retrieve the in-plane orientation,

either the sample or the polarizer–analyser system has to be

rotated and the results need to be fitted to a sinusoidal curve

[64,65]. However, the in-plane results have an ambiguity of

+908, which is inherent in polarizer–analyser systems (see

linear PLM images in figure 2). This ambiguity can be removed

with the introduction of a quarter-wavelength plate in the ima-

ging system [66], which is, however, not standard in linear

PLM microscopes. Other factors that influence the local

image intensity are the section thickness and its optical trans-

parency, the uniformity of the illumination and the initial

light intensity [5]. These factors should be well controlled

when performing PLM experiments [67]. In addition, local

image brightness is susceptible to changes depending on the

collagen content/density [64,68] (i.e. the mineral-to-matrix

ratio), which is not uniform throughout a bone section, and

thus complicates quantification of the 3D orientation of the

mineralized collagen fibres from PLM images [64,68]. In gen-

eral, there is a lack of standardization in the analysis of

polarized light images, mainly due to the challenging technical

demands and the complex theory of polarized light and bire-

fringence, which can lead to incorrect interpretations of PLM

outcomes [62,64].

On the other hand, the applications of PLM in bone

research throughout the years have been numerous, provided

important insights into the ultrastructural organization of

bone [69–72] and allowed structure–function relationships

to be investigated [34,35,73–75]. Because of its wide use

since the early twentieth century and its relatively low cost

compared with most other methods, PLM has been the

method of reference for almost all other developed methods

investigating the ultrastructural organization [63,76–78].

While other methods, such as X-ray scattering, are increas-

ingly being used as reference methods to quantify bone

ultrastructure orientation, shape and size, newer PLM tech-

niques are being developed for quantitative assessment of

the 3D orientation of mineralized collagen fibres, by combin-

ing the sensitivity of linear PLM for the in-plane orientation

and the out-of-plane sensitivity of circular PLM [64,68,79].

The spatial resolution of PLM is in the range of approximately

250 nm and—as typical for optical microscopy systems—is

limited by the diffraction limit of visible light at approximately

150 nm (super-resolution microscopy techniques have not

been employed in such applications).
2.2.1.2. Polarized Raman spectroscopy
Raman spectroscopy is based on the Raman effect, where

incoming photons scatter inelastically on the probed molecule

and experience an energy shift. When many photons from the

incoming laser interact with the probed material, the outcome

is a spectrum of different energy shifts, depending on the

material molecules. If one uses a polarized laser, the direction

of collagen fibrils affects the Raman signal [80] (figure 3). More

specifically, the polarized laser affects some of the peaks in the

energy spectrum, such as the amide I and the v1 phosphate

peak [67]. This offers a way to investigate the orientation of

the collagen fibrils [67,83]. Given that the amide I peak charac-

terizes the organic and the v1 phosphate peak the inorganic

part of the ultrastructure, polarized Raman spectroscopy

(PRS) can be used to derive information on the collagen and
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Figure 2. Determining bone ultrastructure organization using polarized light microscopy (PLM). (a) Sketch of the orientation of the fibrils in the osteon, for the
three different osteon types (transverse, alternating and longitudinal). (b) Linear PLM (i) and circular PLM (ii) images of the three types of osteons. The linear PLM
images exhibit the ‘Maltese cross’ artefact, because of the polarizer – analyser set-up, leading to a +908 ambiguity in the orientation of the fibrils in the plane of
the section. (Images from [5] with kind permission of Wiley-Liss.)
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the minerals independently [84,85]. Once the peak positions of

the spectra are identified and the heights of the peaks or the

areas under the peak are calculated, the data analysis required

to extract the 3D orientation of the ultrastructure is similar to

that of PLM, as the data have to be fitted to a sinusoidal

curve [86]. However, as in PLM, a quantitative 3D analysis is

not possible to date.

In contrast with linear PLM, Raman spectroscopy offers

the advantage that the orientation in the plane perpendicular

to the light path can be deduced unambiguously as there is

no analyser in the experimental set-up. In addition, Raman

spectroscopy is performed in reflection mode, meaning that

it can be used to analyse a sample without the need to section

it, even in vivo [87], and can reach the bone under the skin

[88,89]. On the other hand, Raman experiments are much

more time-consuming (acquisition of one spectrum typically

needs tens of seconds, except if coherent Raman scattering

is employed [61]), and offer a lower spatial resolution of

approximately 1 mm compared with that of PLM (approx.

250 nm). Despite that, advances in instrumentation have

enabled high-resolution, position-resolved analyses of bone

ultrastructure orientation [81,82]. This is often combined

with composition analysis [90,91], which is an inherent capa-

bility of Raman spectroscopes to provide properties that

determine different bone quality [92] and other clinically

relevant [88,93] properties. Because of the attention Raman
spectroscopy has been gaining as an in vivo imaging moda-

lity [88,89,94,95], and the advances that have been made in

recent years in the tools to characterize mineralized collagen

fibril orientation, Raman spectroscopy/imaging can be

expected to become a common tool to characterize bone

ultrastructure organization in the near future.
2.2.1.3. Polarized Fourier transform infrared spectroscopy
Raman and infrared (IR) spectroscopy are two vibrational

spectroscopy methods that can detect specific chemical

bonds in a sample [96]. Their difference lies in the fact that

IR spectroscopy detects the absorption of photons by the

sample for a range of IR frequencies, as opposed to the

energy shift due to Raman scattering for a single frequency.

Fourier transform IR (FTIR) is the most commonly applied

type of IR spectroscopy, because of its higher speed, accuracy

and signal-to-noise ratio compared with conventional (dis-

persive) IR techniques [97]. Similar to Raman spectroscopy,

the orientation and arrangement of mineralized collagen

fibres can be investigated through the use of a polarized

laser [77,98]. However, IR spectroscopy detects asymmetric

rather than symmetric vibrational modes (stretches) [99].

Consequently, the technique cannot be used to image

aqueous samples, as opposed to Raman spectroscopy. IR

spectroscopy is usually conducted in transmission mode,
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Figure 3. Determining bone ultrastructure organization with Raman spec-
troscopy. (a) Two Raman spectra of human vertebral trabecular bone
embedded in polymethyl methacrylate, where the most important peaks are
identified. Spectra were acquired under orthogonal laser polarization directions
(double-headed arrow inset). Analysis of the differences in the heights or areas
under peaks, such as the v1 phosphate peak (approx. 960 cm21) or the amide I
peak (approx. 1650 cm21), can provide the ultrastructure orientation. (Image
from [67] with kind permission of PLoS, peak assignments according to
[81].) (b) A composite of 2D images based on polarized Raman spectral analy-
sis, resulting in a 3D representation of two orthogonal planes of an osteonal
structure of human cortical bone. The colour intensity corresponds to the v1

phosphate to amide I ratio, with a spatial resolution of 1 – 2 mm. (Image
from [82] with kind permission of Elsevier.) (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160088

6

and thus requires more extensive (and destructive) sample

preparation steps. On the other hand, the equipment for IR

spectroscopy is significantly less expensive, making its appli-

cation more common than Raman spectroscopy. Although

FTIR has been routinely used to examine the composition of

bone [100], relatively few studies have investigated the ultra-

structural organization of bone [101,102] and neighbouring

tissues such as the ligament-to-bone insertion [103] or carti-

lage [77,104]. This is due to the relatively recent idea of

using polarized light for different sample or polarization

rotation angles, which allows collagen fibril orientation to be

examined in FTIR [77,98]. It should be noted that, as for PLM

and Raman spectroscopy, FTIR is an inherently 2D technique,

and cannot provide quantitative 3D orientation information. Its

spatial resolution is somewhat lower than that of Raman

spectroscopy [92], in the range of a few to several micrometres.

2.2.1.4. Polarized second harmonic generation imaging
Second harmonic generation (SHG) imaging [105,106] is a

relatively new technique that has gained a lot of attention

during the past two decades, partly because it can be realized

using existing multi-photon microscopy instrumentation

(SGH and multi-photon microscopy are described in more

detail in §2.3). SHG exhibits high specificity and, thus,
good image contrast for collagen [107,108], which makes it

an ideal imaging method for all collagenous tissues including

bone (figure 4). Direct investigation of the orientation of the

fibrils can take place with the help of a polarizer–analyser

couple [106,110]. Compared with PLM, pSHG offers higher

image contrast for collagen fibrils. Another advantage of

pSHG is the capability to penetrate tissue. However, this is

limited to less than approximately 50 mm in the case of

dense tissues such as bone [4,111], as the signal is compro-

mised with increasing tissue depth [112,113]. On this

account, there have been only a few studies published for

bone using pSHG [109,114], and these are restricted to regions

close to the bone surface, where similar results can be achieved

using PLM. On the other hand, SHG is a popular technology

that has gained a lot of attention more recently, and it is regu-

larly being used for other softer tissues such as tendon [108],

cartilage [112] or intervertebral disc [110]. However, similarly

to PLM, SHG cannot be employed to quantitatively determine

the collagen density and, hence, to derive the DO of the fibrils,

but provides the in-plane [115] and/or out-of-plane [116]

orientation in a semi-quantitative way [117].

2.2.2. X-ray-based techniques

2.2.2.1. Small-angle/wide-angle X-ray scattering
Small-angle X-ray scattering (SAXS) and wide-angle X-ray

scattering (WAXS), also referred to as small-angle and

wide-angle X-ray diffraction (SAXD and WAXD), are

phenomena occurring when incoming X-rays are scattered

by a sample, at smaller or larger angles, respectively. SAXS

and WAXS exploit differences in electron density distri-

butions of the different materials within the sample; X-ray

photons interact with ordered and periodic systems such as

collagen and mineral crystals, resulting in scattered X-ray

waves that interfere constructively or destructively to create

the corresponding intensity patterns on the detector, depend-

ing on the size and the spatial distribution of the scatterers

[118]. SAXS and WAXS can both be used for the analysis of

bone ultrastructure [119]: WAXS provides information from

scatterers with dimensions in the sub-nanometre range,

which are typical for crystallites and spacings between crystal

lattice planes. By contrast, SAXS can be employed to retrieve

information from tissue features of the order of 1–100 nm,

from both collagen [120] and mineral crystal platelets

[121,122], thus providing information on both organic and

inorganic phases of bone [123]. When used in combination,

SAXS and WAXS can simultaneously provide information

on the unit crystals, crystal platelets and collagen fibrils in

bone [123]. The area detectors used to record diffraction

patterns in SAXS and WAXS provide information on tissue

anisotropy based on the anisotropic scattering [124]. SAXS

especially has been regularly employed in the past few

decades to investigate collagen fibril orientation in many col-

lagen-rich tissues [125]. For bone, studies have been

undertaken to investigate ultrastructure organization in

animal [126,127] and in human bone tissue [63,128,129], in

cortical [63,122,130] and trabecular bone [76,101], and in the

bone–cartilage interface [131–133], looking at the influence

of age [134], disease [135,136], drug use [137–139], fracture

healing [140,141] or genetic modifications [142,143].

The high brilliance of synchrotron radiation (SR) facilities

and recent advances in fast-readout and low-noise detectors

have enabled fast acquisition of X-ray scattering patterns,
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Figure 4. Determining bone ultrastructure organization using polarized second harmonic generation ( pSHG). (a) Comparison of organized wild-type (i) and dis-
organized osteogenesis imperfecta (oim) (ii) bone ultrastructure from 5 mm thick sections of demineralized femoral mouse bones. The images in (a(i),(ii); parallel)
are taken with a polarizer angle difference of 908 with respect to the images in (a(iii),(iv); perpendicular). (Images from [109] with kind permission of SPIE.)
(b) pSHG of human vertebral trabecular bone in transmission mode. The white arrows indicate the polarization direction of the incident laser beam. Mineralized
collagen fibril bundles/fibres arranged in lamellae are clearly visible when aligned with the laser polarization direction (b(ii)). (Image from [4] with kind permission
of Cambridge Journals.)
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which have allowed spatially resolved investigations of

bone tissue through scanning small-angle X-ray scattering

(sSAXS) [76,144]. In typical sSAXS protocols thin sections

are used to obtain information from discrete probed tissue

volumes. Common practice is to match the thickness of the

sections with the size of the X-ray beam, so that the probed

volume is cubic. This practice also helps to avoid averaging

information over extended sample volumes, where ultra-

structural orientations may vary significantly. However, the

use of thin sections for spatially resolved investigations is a

destructive method. Typical spatial resolutions of sSAXS are

in the range of tens of micrometres, but can reach the sub-

micrometre level. However, higher spatial resolutions usually

also need thinner tissue sections (to ensure cubic probed

volumes), which restricts the field of view (FOV).

SAXS diffraction patterns provide 2D orientation infor-

mation only, which is merely a projection of the 3D

orientation information of the ultrastructure [145]. Recently,

there have been efforts towards deriving the 3D ultrastruc-

ture orientation from SAXS data (3D SAXS), by probing the

sample under different rotation angles [45,141,146]. In a

new method, called 3D sSAXS [145], the 3D ultrastructure

orientation has been derived quantitatively in a spatially

resolved manner for small bone trabecular volumes [67]

(figure 5). These results underline the potential of SAXS

and WAXS for studying bone ultrastructure orientation and

arrangement, with its main limitation being the difficulty in

accessing the special synchrotron facilities required for such

investigations. Another limitation is the need for thin sec-

tions, when spatially resolved information is needed,

making the method destructive. Compared with PLM,

SAXS and WAXS offer better capabilities to characterize the

organization of mineralized and non-mineralized collagen

fibrils in a quantitative fashion, as the DO of the fibrils can

be normalized by the transmission information that is being

simultaneously recorded [147]. Finally, it should be noted

that SAXS and WAXS can be combined with in situ
mechanical testing [148,149] to investigate load transfer

mechanisms in normal [150], diseased [151] or treated [152]

bone, broadening their range of applications and providing

insight into bone structure–function relationships.
2.2.2.2. X-ray scattering/diffraction tensor tomography
X-ray scattering/diffraction tomography has been developed

and employed in previous decades to tomographically recon-

struct SAXS or WAXS information for a sample volume [153].

Briefly, reconstruction techniques used in X-ray absorption

tomography have been applied to tomographically recon-

struct information from specific q-ranges in the diffraction

patterns. This can be used to distinguish different materials

[154], tissues [155], tissue features or composition [156,157]

within a sample. However, such approaches assume isotropic

azimuthal scattering, ignoring the anisotropy in the diffrac-

tion patterns. Approaches that take into account the

structural anisotropy have also been proposed [158–160],

where diffraction information is reconstructed for different

azimuthal angles. These studies provide tissue anisotropy

information in a tomographic way. However, they do not

provide 3D orientation information, as they do not account

for the fact that the orientation information in the diffraction

pattern is merely a projection of the 3D orientation, which

changes with sample rotation [145].

Concerning quantitative ultrastructure organization

analysis, three techniques were developed very recently to

investigate 3D ultrastructure orientation in a tomographic

way, based on the phenomenon of X-ray scattering: X-ray

tensor tomography [161], six-dimensional SAXS tomography

(6D SAXS tomography) [162] and small-angle scattering

tensor tomography (SAS tensor tomography) [163]. The

three techniques can retrieve the ultrastructure organization

of a volume of material, such as bone, without having to sec-

tion the sample. These techniques have evolved in different

ways: X-ray tensor tomography has evolved from X-ray
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Figure 5. Determining bone ultrastructure organization with 3D scanning small-angle X-ray scattering (3D sSAXS). (a) Trabecular bone volume, which includes the
trabeculae of interest, imaged with micro-computed tomography. (b) Thin section cut out of the volume in (a). The region of interest (rectangle) is scanned with
sSAXS for different rotation angles. (c) Local 3D orientation for every bone sub-volume, based on the analysis of the diffraction patterns of each sub-volume for the
different rotation angles. The level of the degree of orientation (DO) is denoted by the length of the vector, as well as by the colour of the colourmap (in the online
version). (d) Many consecutive thin sections stacked together. In each section, the region of interest contained in the red rectangle is scanned. (e) The trabecular
structure under investigation. ( f ) Reconstruction of the 3D orientation map for each sub-volume of the trabecula. The level of the DO can be interpreted by the
length of the vector and the colourmap in (c) (in the online version). (Images from [145] with kind permission of Elsevier.) (Online version in colour.)
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dark-field imaging using a grating interferometer [164],

where ultra-small X-ray scattering is exploited [165]. The

intensity modulations due to the rotation of the third grating

[166,167] or of the sample [168,169] reveal the 2D orientation

of the ultrastructure, and have been used to retrieve 2D ultra-

structure organization of bone [170] or dentin [166]. By

rotating the sample around two axes, and using an iterative

reconstruction algorithm, it is possible to retrieve the 3D

ultrastructure orientation [161]. Applications to bone ultra-

structure are expected to follow. SAS tensor tomography

and 6D SAXS tomography, on the other hand, have evolved

from SAXS, combining the concepts of SAXS tomography

[171] and 3D sSAXS [145], while adding a sample rotation

around a second axis. For the reconstruction of ultrastructure

orientation, 6D SAXS tomography employs a finite number of

virtual tomographic axes (figure 6a): for each axis direction,

only the ultrastructure orientations that are parallel to the

axis are reconstructed. The use of 6D SAXS tomography

has very recently been employed to evaluate the ultrastruc-

ture orientation in bone dentin [162]. On the other hand,

SAS tensor tomography uses an iterative tensor tomography

algorithm based on spherical harmonics for the reconstruc-

tion of the ultrastructure orientation (figure 6b). Known

internal sample symmetries—such as the rotational sym-

metry in mineralized collagen fibrils—can be exploited to

reduce post-processing time. SAS tensor tomography was
very recently applied to successfully retrieve the ultrastruc-

ture organization of a bone trabecula [163] (figure 6c,d). All

three techniques are non-destructive, and open new paths

towards ultrastructure organization investigations of whole

sample volumes. It should be noted that this comes at the

cost of higher X-ray dose, and long post-processing times

needed to handle the vast amount of acquired data [172].

In addition, X-ray tensor tomography is currently limited to

the assessment of only the 3D orientation and not the DO,

as it cannot quantify the amount of scatterers in each voxel.

The spatial resolution of these techniques is similar to the

SAXS techniques, i.e. in the range of tens of micrometres

in synchrotron facilities and hundreds of micrometres for

laboratory-based systems.

2.2.3. Electron-based techniques

2.2.3.1. Electron transmission diffraction
Electron transmission diffraction pattern detection can be an

additional feature in TEM set-ups [173] (described below).

It is used to provide information on the orientation of

mineral crystals [23,24,174], derived from the diffraction pat-

tern of the electrons that interact with the crystal lattice planes

(figure 7). However, extensive preparation protocols for

TEM that typically include fixation, dehydration, drying,

enhancing feature contrast, preparing small samples for
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Figure 6. Determining bone ultrastructure organization with six-dimensional SAXS tomography (6D SAXS tomography) and small-angle scattering tensor tomography
(SAS tensor tomography). (a) The virtual-tomography-axis technique in 6D SAXS tomography, where, for each virtual sample axis, the corresponding projections (arrows
with matching colour) are used to reconstruct the ultrastructure orientation. (Image from [162] with kind permission of Nature Publishing Group.) (b) The iterative
spherical harmonics technique in SAS tensor tomography. The thousands of SAXS patterns corresponding to the same voxel under different angles (i) are fitted to
a spherical harmonics equation (represented by a single sphere in (ii)) that represents the local orientation and arrangement of the mineralized collagen fibrils (iii).
(c) Computed tomography reconstruction based on the recorded transmitted intensity. (d ) Reconstruction of the orientation and arrangement information for a
bone trabecula based on the iterative spherical harmonics algorithm. (Images from [163] with kind permission of Nature Publishing Group.) (Online version in colour.)
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subsequent cutting with an ultramicrotome and the following

handling of very small specimens have restricted the use

of electron diffraction for quantifying bone ultrastructure

organization to a handful of studies over the past decades

[6,7,175–178] (figure 7), examining either the crystal arrange-

ment in single platelets or fibrils or a limited number of points

within a TEM section. TEM gives access to very small features

at the nanometre scale (e.g. single platelets), which are inac-

cessible with other techniques, and enables the analysis of

the 3D orientation of mineral platelets [179,180]. Nevertheless,

the restricted FOV (of the order of a few micrometres) and

elaborate sample preparation procedures are major limiting

factors for electron transmission diffraction to become

widely used in the study of the organization of bone

ultrastructure.

2.3. Imaging techniques
The imaging techniques presented here provide direct

images of bone ultrastructural elements, where orientation-

specific information can be derived from the images (as a

by-product). These ultrastructural elements include minera-

lized collagen fibril bundles (for light-based techniques),

mineralized collagen fibrils (for X-ray-based techniques) or

fibril features such as the approximately 67 nm D-spacing

and crystal platelets (for electron-based techniques). By

applying image post-processing steps to the gathered image

data (e.g. FT) and with the goal to derive orientation-specific

information, the organization of the ultrastructure can be

analysed [53,55–59].

The imaging techniques typically have a considerably lower

FOV than the orientation-specific techniques employing the same

probe (presented earlier). The reason for the FOVs being

different is that the ultrastructural elements need to be visually

identified, which relies on high spatial resolutions, which in

turn limit the FOV, and, consequently, the size of the area/
volume that can be investigated. One way to overcome this

limitation and to extend the effective FOV is through imaging

adjacent sample areas [181].

Another consequence of the image-based approaches is the

need to discretize the image data in order to derive the ultra-

structure orientation via orientation-specific algorithms,

which usually include a FT of a 2D or 3D dataset (figure 8).

However, most algorithms are not specific for the fibrils,

but they rather average the information from all features in

the image. For the case of bone, this can be features of the

lacuno-canalicular network, lamellar boundaries, cement

lines, bone–canal or bone–marrow interfaces and possibly

image artefacts. Despite this, the imaging techniques presented

here offer the advantage of providing visual information of

bone tissue at the scale of the structural elements, which also

enables observations concerning other aspects of the bone

tissue, such as the size of the collagen fibrils or fibres, the

lacuno-canalicular network or the lamellar structure. Such

information can then also be used to create ultrastructural

models that enhance the analytical tools to study bone’s

hierarchical structure [6,182–184].

The most commonly used imaging techniques for asses-

sing the mineralized collagen fibril organization are

presented in table 2.

2.3.1. Light-based imaging techniques

2.3.1.1. Confocal laser scanning microscopy
Confocal laser scanning microscopy (CLSM) enables imaging

‘inside’ tissues by selectively collecting information from a

specific plane (the focal plane) via the use of pinholes in

the light path [185]. As different focal planes can be chosen,

CLSM enables taking a so-called z-stack of images, which

contains information of a volume inside the tissue. It

should be noted that this capability is limited in the case of

hard tissues such as bone, where CLSM penetration is
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Figure 7. Determining bone ultrastructure organization with electron trans-
mission diffraction. (a) Single mineralized collagen fibril. Data assessed by
TEM. (b) A diffraction pattern from an area of the fibril, with the c-axis of
the crystals (strong black dots) being aligned with the direction of the
fibril. (Images from [7] with kind permission of American Chemical Society
Publications.)
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Figure 8. Typical ultrastructure orientation analysis for the presented ima-
ging techniques. (a) Tendon collagen fibres imaged using second harmonic
generation microscopy. The image is split into multiple compartments, in
each of which the orientation is determined via an orientation-specific
image-processing algorithm. (b) FT of a single compartment in (a), to retrieve
the 2D orientation of the fibres in this compartment. FT is the most common
method to retrieve orientation information from the data in imaging
techniques. (a,b) The spatial resolution of imaging techniques, where the
orientation-specific information is derived as a by-product, has to be in
the sub-micrometre range, so that fibres can be identified, which limits
the FOV that can be covered. Also, the necessary compartmentalization
(white grid in (a)) reduces the ultrastructure organization analysis resolution
(here it is reduced to approx. 25 mm). Moreover, irrelevant structural features
(such as the blood vessels that appear black in figure 8a), or possible imaging
artefacts, are also taken into account, unless special care is taken to eliminate
their influence of the orientation-specific measures. (Image from [59] with
kind permission of OSA publishing.) (Online version in colour.)
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restricted to a few hundreds of micrometres. The contrast in

CLSM images is a result of differences in the refractive

index of materials, which is typically small within biolo-

gical tissues. Consequently, CLSM is often combined with

fluorescence microscopy, in order to provide additional bio-

chemical information characterizing the sample. Collagen is

well fitted for fluorescence imaging without the need of flu-

orescent dyes because of its autofluorescence [186]. CLSM

has been regularly used to investigate bone and other tissues

[187], including the organization of the bone ultrastructure

[188–190]. However, bone tissue assessed by CLSM can pro-

vide images of the mineralized collagen fibril bundles, which

are on the same size scale as its spatial resolution capabilities

(approx. 200 nm). Thus, studying the orientation of the bone

ultrastructure using CLSM provides qualitative rather than

quantitative results. In addition, confocal microscopes have

recently lost their charm to multi-photon microscopes to

some extent, as the latter offer higher tissue penetration

depths and more specific information from the focal plane/

point (figure 9) as well as other advantages described in

the following.
2.3.1.2. Second harmonic generation in multi-photon microscopy
Multi-photon microscopy uses short-pulsed laser to create a

high spatial and temporal photon density at a well-defined

focal point in the specimen, where two or more lower-

energy photons are combined to reach the energy levels

necessary for fluorescence excitation [192] (figure 9). The

set-up for multi-photon microscopy experiments is very simi-

lar to those for CLSM if one removes the pinholes and

switches to a very short-pulsed laser [193]. Yet, multi-

photon microscopy offers several advantages: (i) higher

tissue penetration depth (photons at higher wavelength

penetrate deeper into scattering tissues), (ii) significantly

greater selectivity of the imaging plane, as photons are

combined at, and excite, only one desired point in space,

(iii) higher photon yield, due to the lack of the pinholes pre-

sent in CLSM, which are not needed as the excited point

emits fluorescence photons only, (iv) less photodamage

(damage to the tissue by harmful radiation), and (v) less

photobleaching (progressive destruction of the fluorescence

properties of the fluorophore by continuous excitation)

[194]. Multi-photon microscopy is routinely used in vivo
and is continuously advancing [195]. For the investigation
of collagen-rich structures, an extended experimental set-up

of multi-photon microscopes is commonly employed, which

is called SHG microscopy.

SHG microscopy [105,106] is based on the homonymous

phenomenon, where a high photon density beam passing

through a strongly birefringent material excites electrons to

a virtual state, which results in the emission of photons at

an energy twofold the excitation energy. SHG microscopy

is thus an appropriate imaging technique for strongly bi-

refringent materials such as collagen, which can be well

distinguished from other tissue components [107,196]. It

can experimentally be implemented using the same set-up

as for multi-photon microscopy, with the addition of a detec-

tion filter at half the wavelength of the emission laser. Owing

to the great popularity of the technique [191], more dedica-

ted and sophisticated set-ups have been developed that

take full advantage of the capabilities of SHG [111]. In

recent years, there have been many studies on collagenous

tissues using SHG microscopy, including cartilage [197],

tendon [59], muscle [198], skin [199], fetal membranes [200]

and vessels [201].

At the same time, bone ultrastructure organization has

been investigated using SHG imaging in a handful of studies

only [45,202–204] (figure 10), which is due to the limited

penetration depth of SHG in mineralized tissues (less than

100 mm [45]). Nonetheless, the capability of SHG to provide

spatial resolutions down to approximately 30 nm [206], the

development of methods to quantify the 3D orientation of

collagen fibrils [5], and the advantage to scan deep within

the tissue in vivo [121,207,208] or to image in conjunction

with mechanical testing [209,210] point towards a wider

use of SHG for a quantitative investigation of the bone

ultrastructure in the future.
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Figure 9. Imaging bone with confocal laser scanning microscopy (CLSM). (a) CLSM image of a single lamella from a human femur. The arrow represents a quali-
tative assessment of the orientation of the collagen fibrils. (Image from [63] with kind permission of Elsevier.) (b,c) Difference in the focusing capabilities of CLSM
versus multi-photon microscopy. (Images from [191] with kind permission of Nature Publishing Group.) (b) In the case of CLSM, the laser beam excites molecules
outside of the focal plane on its path through the tissue. (c) In multi-photon microscopy, (at least) two photons are combined to specifically excite only the
molecules at the focal spot. (Online version in colour.)

Figure 10. Imaging bone with second harmonic generation (SHG) microscopy. Collagen fibril bundles from porcine cortical bone (in green in the online version).
A grid has been superimposed in order to compartmentalize the picture that enables semi-quantitative assessment of the 2D orientation of the collagen fibrils
(white arrows). (Image from [205] with kind permission of Elsevier.) (Online version in colour.)
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2.3.2. X-ray-based imaging techniques

2.3.2.1. Absorption-based X-ray imaging
SR-based computed tomography (SR-CT) is a CT-based

technique [211] that can reach resolutions in the sub-

micrometre range [212]. Compared with conventional

laboratory-based micro-computed tomography (mCT) imag-

ing systems, SR-CT can deliver higher resolution images of

bone tissue [213] with increased signal-to-noise ratios,

mainly due to the high X-ray flux available at (third gener-

ation) X-ray synchrotron sources [213]. At the same time,

the use of quasi-monochromatic X-ray light in SR-CT imaging

prevents beam hardening effects, which are typically present

in CT scans from laboratory-based mCT systems that are

equipped with a standard (polychromatic) X-ray tube.

Moreover, the parallel X-ray beam set-up for SR-CT

imaging is free of cone beam artefacts known from classical

mCT systems, where X-rays are emitted in a cone beam

fashion [214]. SR-CT allows bone features of sizes similar to

the mineralized collagen fibrils or fibres [3,215,216] to be

examined in a quantitative way [217,218]. Examples are

osteocyte lacunae, which are in the micrometre range, and

canaliculi, with dimensions of the order of 100 nm. These

bone microporosities can be identified and segmented

straightforwardly due to their high contrast compared with

the surrounding (mineralized) bone matrix. However, identi-

fying single fibrils requires higher spatial resolutions and
contrast, as is shown for SR-CT at sub-micrometre resolution,

where a mineralized collagen fibril arrangement is visible

[202] (figure 11). The technique is not currently at a stage

where bone ultrastructure organization can be studied in a

quantitative fashion, yet continuous advancements in SR-

CT [212,219] at ever increasing spatial resolutions, currently

reaching 20 nm [220], will eventually enable single collagen

fibrils to be resolved in three dimensions, and hence quanti-

tative investigations of 3D orientation of mineralized

collagen fibrils in bone. Nevertheless, improvements in

resolution typically come at the cost of a reduced FOV.

2.3.2.2. Phase-contrast X-ray imaging
Unlike the traditional X-ray absorption techniques, phase-

contrast X-ray imaging exploits the phase of the propagation

X-ray waves (not their amplitude), which is modulated by

interaction with the object when coherent X-rays beams are

used, provided explicitly by SR sources.

The various phase-contrast techniques offer in many

cases higher image contrast at lower X-ray exposure or dose

than X-ray absorption techniques, which makes them good

candidates for in vivo studies [221–223]. The applications of

phase-contrast X-ray imaging techniques are rapidly increas-

ing [222] and specific imaging modalities such as X-ray phase

nanotomography [224] and ptychographic (or lensless) CT

[225] have been used to image bone with spatial resolutions
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at the nanometre scale. The first studies on bone ultrastructure

organization have been performed on volumes at the micro-

metre level [226] (figure 12). Considering the capabilities of

ptychographic CT for quantitative analysis of materials and tis-

sues [227] at spatial resolutions below 20 nm [228], where

single collagen fibrils could be resolved, phase-contrast

methods offer the potential for a direct insight into bone

ultrastructure organization of single osteons or trabeculae.
2.3.3. Electron-based imaging techniques

2.3.3.1. Transmission electron microscopy
TEM has very high spatial resolution capability, which is well in

the sub-nanometre range [229]. TEM examines sub-micrometre

thin material sections, which are difficult to prepare [230]. The

image contrast is imparted through differences in the quantity

of transmitted electrons through the sample. The high financial

equipment and sample preparation costs, the extensive sample

preparation time and expertise required [231] and the restricted

FOV (as a consequence of the high spatial resolution) have lim-

ited the use of TEM in the study of bone ultrastructure

organization.

On the other hand, the available studies using TEM por-

trayed the bone ultrastructure at a nanoscopic scale, which

has led to important arrangement models of the bone ultra-

structure, such as the twisted plywood pattern in the

osteons proposed by Giraud-Guille [232]. TEM has also

allowed local qualitative assessment of the ultrastructure

arrangement of healthy and osteoporotic bone [233,234],
but in two dimensions only (figure 13). Furthermore, TEM

has been applied to make important contributions to

what we know about bone structure at very small scales,

through investigations of the shape and size of bone crystals

[14,235], their spatial relationship and arrangement in

relation to the collagen fibrils [175,236] or features of the

collagen fibrils such as the approximately 67 nm D-spacing

[7] (figure 13). Finally, TEM is also playing an important

role in studying crystal arrangement during the bone

mineralization process [237].

2.3.3.2. Scanning electron microscopy
Scanning electron microscopy (SEM) is the most widely used

electron microscopy technique. SEM provides nanometre res-

olution of the sample surface, so there is no need to prepare

very thin samples, as for TEM. However, equipment is costly

and bone sample preparation procedures labour intensive

[2,238]. Secondary electrons allow sample texture and topo-

graphy to be analysed, and have been used in SEM to

determine collagen fibril orientation in different tissues

such as ligaments [57], menisci [239], tendons [240,241] and

cartilage [242,243], as well as bone [203,209,210]. SEM gives

access to mineralization levels and elemental analysis using

backscattered electrons and energy-dispersive X-rays,

respectively, generated by the interaction of the electron

beam with the sample [2,204]. However, only the sample

surface is imaged. At the present time, SEM is typically

employed in the study of 3D ultrastructure orientation in

combination with volume electron microscopy techniques,
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which give access to volumetric information, such as serial

focused ion beam SEM (FIB SEM) and serial block-face

SEM (SBF SEM) discussed below.
2.3.3.3. Serial focused ion beam SEM and serial block-face SEM
In recent years, different volume electron microscopy tech-

niques have been developed, such as serial focused ion

beam SEM (FIB SEM) and serial block-face SEM (SBF

SEM) [206]. Both methods follow the idea of imaging a

volume slice by slice, by alternating between SEM imaging

and removing a very thin section of the sample block at

the surface, either with an ion beam for FIB SEM or with

an ultramicrotome for SBF SEM. The result is stacks of 2D

images that provide a 3D volume of the sample. Given

that the result of such a procedure is a micrometre volume

with nanometre resolution, the data can be used to study

ultrastructure organization of tissues such as muscle,

tendon [207] or bone, either in two dimensions

[208,244,245] or in three dimensions [9,246] (figure 14).

Although only a limited tissue volume can be assessed

when using volume electron techniques (the spatial resol-

ution at nanometre levels restricts the FOV to tens of

micrometres), and despite the fact that these techniques

are destructive, they provide important insights concerning

the organization of the bone ultrastructure, such as in

Haversian systems [9] or trabeculae [247]. While the spatial

resolution of FIB SEM is of the order of a few nanometres,

compared with the tens of nanometres for SBF SEM
(owing to the finer sectioning or milling capabilities of

FIB), both techniques are expected to play an important

role in further investigations of bone ultrastructure organiz-

ation at the nanometre scale. It should be noted that both

techniques also allow investigations of bone microporosities,

including the lacuno-canalicular network [245]. Still, the

extended sample preparation protocols and the extended

imaging times involved for serial sectioning electron

microscopy consume a lot of resources and time [246].
2.3.4. Other imaging techniques

2.3.4.1. Atomic force microscopy
AFM [248] is the only technique among the presented ones

where the probe mechanically interacts with the sample: a

sharp tip mounted on a cantilever is used to probe the

sample surface, piezoelectric elements are used to move the

sample (or the tip) in the x–y direction and a third element

is used to move it in the z-direction. A force-feedback loop

has the task of keeping the interaction force between the tip

and the sample constant, by acting on the z-piezoelectric

element: when the force deviates from the set value, the

element moves the sample (or the tip) accordingly, so that

the force goes back to the pre-assigned levels. AFM spatial

resolution capabilities are impressive and are only compar-

able with TEM among the techniques considered in this

review: it can reach spatial resolutions in the sub-nanometre

range, in biological samples and even at room temperature

[249]. In addition, AFM can act as a nanoindentation tool to
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measure mechanical properties of micrometre-scale samples

[250,251]. Compared with electron microscopy equipment,

AFM is inexpensive and less destructive, while requiring

much less copious sample preparation. However, its results

are less repeatable, as the probe can be gradually or abruptly

blunted by the contact with the sample, or it can pick up a

small particle on its tip, events that can cause artefacts in

the resulting image. Also, in order to reach the resolution

levels needed for imaging single fibrils, the FOV has to be

restricted to a few micrometres [252]. Moreover, AFM

probes the surface of materials, and can thus provide only

2D information on the organization of the ultrastructure.

This is why AFM’s numerous applications in bone research

[253,254] have been mainly focused on the study of its mech-

anical properties at a tissue [255–257] and single fibril level

[258–260], while very few studies have investigated the
organization of the mineralized collagen fibrils [261,262]

(figure 15). However, similarly to TEM, AFM has been exten-

sively used to examine bone features at the nanometre scale,

such as the size of mineral platelets [13,264], collagen fibril

characteristics (e.g. its diameter and D-spacing) [263,265,266]

and the spatial relationship between collagen fibrils and

mineral platelets [267–269].
3. Discussion
The presented techniques that can be used to assess the orien-

tation and arrangement of the mineralized collagen fibrils,

the ultrastructural units of bone, were grouped into two cat-

egories. For the orientation-specific techniques, the orientation

of the collagen fibrils is probed directly based on physical
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principles such as polarization, diffraction and scattering

(see table 1). On the other hand, for the imaging techniques,

the images of the ultrastructure must be post-processed

using algorithms such as Fourier transform in order to

derive quantitative information about the organization of

the ultrastructure (table 2).

The presented techniques are numerous, and of different

nature, and are used to study the orientation and arrangement

of the ultrastructure at different hierarchical levels, in three

dimensions or two dimensions only and/or in conjunction

with mechanical testing. Some of the techniques have the poten-

tial to be applied in vivo, whereas some methods are inherently

destructive, and others have the potential to reveal the organiz-

ation of bone ultrastructure with further advances in

technology. Here, we provide a critical assessment of the pre-

sented techniques with respect to the above-mentioned

aspects, taking into account their capability and potential to

provide insight into the organization of bone ultrastructure.

3.1. Assessment at different hierarchical levels and
additional information on bone tissue

The presented techniques can provide insight into bone

structure and organization at different length scales, probing

distinct features at different hierarchical levels (figure 16).

In general, orientation-specific techniques provide a larger

FOV, as single fibrils or fibril bundles do not need to be

resolved individually to provide quantitative information on

the 3D organization of the ultrastructure. By contrast, imaging

techniques where single collagen fibrils or fibril bundles need

to be spatially resolved offer a more limited FOV due to

their intrinsic inverse relationship between FOV and spatial

resolution. Additionally, the presented techniques provide

complementary information, other than orientation and

arrangement of mineralized collagen fibrils. Imaging techni-

ques visualize bone structure, probing tissue features apparent

at different scales, which allows measures such as ultrastructure
feature shapes and sizes and other structural information to be

derived, for example about local mineralization, the collagen–

mineral interface and the lacuno-canalicular network.

More specifically, regarding imaging techniques, AFM

and electron microscopy techniques can directly image

mineralized collagen fibrils, with a FOV covering areas at a

scale of tens of nanometres to a few tens of micrometres [9].

Imaging bone at this scale provides useful information on

other structural features, such as the collagen–mineral inter-

face [21], mineral platelet sizes and shapes [13,14] or collagen

D-period [7,263] for very high-resolution techniques such as

TEM and AFM, and offers data revealing structural details

of the lacuno-canalicular network [245] and bone remodelling

sites [270] for high-resolution techniques such as SEM. X-ray

phase-contrast techniques such as ptychographic CT [225] or

X-ray phase nanotomography [226] operate at similar scales

to volume SEM, and in addition offer the important advan-

tage of tomographic (i.e. non-destructive) assessment. These

techniques can also provide insight into features such as the

lacuno-canalicular network and mineralization levels at the

nanoscale [225,271]. At higher FOVs, SR-CT offers a tomo-

graphic approach, with the limitation that SR-CT cannot

resolve single fibrils and is limited to visualization of fibril

bundles only. Moreover, SR-CT allows structural features to

be studied, such as the intracortical canal network or the

lacuno-canalicular network [3,217], microcracks [272], patho-

logical cysts [273] and trabecular bone micro-architecture

[274]. Similar to SR-CT, optical microscopy techniques, such

as CLSM or SHG, are limited to visualization of fibril bundles

only. On the other hand, optical microscopy techniques

provide insight into the mesoscopic bone organization.

Orientation-specific techniques can offer additional infor-

mation on bone tissue. Electron diffraction gives access to

information about crystal lattice, shape, size [23] and orientation

[180] at spatial resolutions at the nanometre scale, but is expens-

ive, requires extensive sample preparation and provides a very

restricted FOV only. When the TEM set-up is used in imaging
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mode (and not diffraction mode), it allows for very high-resol-

ution images of bone tissue [174]. Using X-ray scattering

techniques, such as scanning SAXS and scattering tomographic

techniques, one can achieve sub-micrometre resolutions and

FOVs at the millimetre level. In addition to crystal or fibril orien-

tation [145,163], X-ray scattering techniques disclose features

such as the collagen 67 nm D-period [15,16], the shape and

size of HA platelets [126], the load partitioning between differ-

ent bone phases [149,150] and also information on tissue

composition [155,156,159,275]. Polarized spectroscopic tech-

niques such as polarized FTIR (pFTIR) and PRS come along

with a comparable low resolution (at the micrometre scale),

but they can provide a wealth of information on bone chemical

composition and tissue quality, such as mineralization/

mineral-to-matrix ratio, crystallinity, collagen cross-linking/

maturity and carbonate-to-phosphate ratio [92,100]. Optical

microscopy techniques such as pSHG and PLM are also limited

in their spatial resolution, which is around 200 nm, but their

wider FOV allows studies of macroscopic samples.
3.2. Quantitative assessment of three-dimensional
orientation and arrangement of mineralized
collagen fibrils

The capability to quantitatively assess the 3D organization of

the ultrastructure is key to the understanding of structure–

function relationships in bone tissue. As can be seen in

tables 1 and 2, four different techniques can provide

quantitative measures for the mineralized collagen fibril

orientation and arrangement within a tissue volume. First,

for the orientation-specific techniques, 3D sSAXS gathers

data that can be used to derive the 3D orientation and

arrangement of bone tissue ultrastructure for tissue sections

with resolutions at the micrometre scale. By stacking these

results from consecutive thin sections, one obtains volumetric

information for samples at the millimetre scale, as exempli-

fied for complete trabeculae [67,145], that can also provide

insight into important ultrastructure–microstructure relation-

ships [67]. X-ray scattering tomography techniques, including
6D SAXS tomography [162] and SAS tensor tomography

[163], provide bone ultrastructure organization information

in a tomographic, non-destructive way, at the cost of higher

X-ray doses and longer data post-processing times. Neverthe-

less, X-ray scattering tomography techniques seem to open

the way to tomographic investigations that provide ultra-

structure orientation information in three dimensions.

Regarding imaging techniques, volume electron microscopy

techniques, such as FIB SEM [208] or SBF SEM [206],

provide information by serially removing thin sections and

imaging the underlying surface, to reconstruct volumes of

tens of micrometres in size. Finally, through phase-contrast

techniques, such as ptychographic CT [225] and phase-con-

trast nanotomography [226], bone tissue samples at overall

dimensions of tens of micrometres can be imaged in a

tomographic and thus non-destructive way, with spatial res-

olutions at the nanometre scale. Whereas both volume

electron microscopy and phase-contrast techniques use

post-processing algorithms, such as FT, to provide the 3D

orientation and arrangement of mineralized collagen fibrils

at the nanoscale [226,247], phase-contrast approaches have

the important advantage of being non-destructive, hence

allowing further investigations on the tissue post hoc.
3.3. Combination with in situ mechanical testing
The capability to assess the organization of the ultrastructure

in combination with in situ mechanical testing is another

important aspect to understand structure–function relation-

ships in bone tissue. Not all presented techniques can be

combined with mechanical testing, e.g. techniques that need

sample sectioning, such as PLM, FTIR, SHG in transmission

mode, TEM (and electron transmission diffraction) or

volume electron microscopic techniques (e.g. FIB SEM or

SBF SEM). Electron-based techniques relying on an SEM

set-up are not ideal for in situ experiments, mainly because

of the imaging process taking place under high vacuum

and due to the extended sample preparation that alters

the mechanical properties of the tissue. Although both

requirements have been alleviated with the advent of

environmental SEM, which can image samples ‘wet’ and

under moderate pressures and has thus enabled in situ exper-

iments of biological samples, reported in situ SEM

experiments have been very limited until now for bone

tissue, because they currently cannot provide sufficient

spatial resolution that would allow assessment of the bone

ultrastructure organization. X-ray-based techniques such as

SAXS and WAXS have been used in recent years for in situ
experiments [149,150,152,276–279]. However, these studies

have been carried out for a limited number of discrete

points in space within the sample only, and they could not

provide quantitative results in terms of the 3D orientation

of the ultrastructure. The orientation reconstruction technique

of 3D sSAXS [145] could be applied to whole sample

measurements in order to provide such 3D information.

Also, the X-ray scattering tomography techniques of SAS

tensor tomography [163] and 6D SAXS tomography [162]

could be used to provide the ultrastructure organization

in situ. However, the biggest limitations of X-ray-based

techniques for use in conjunction with in situ experiments

are the radiation dose and the time needed to acquire the

experimental image data, both of which have an important

effect on the mechanical properties of the bone sample
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[280]. On the other hand, light-based techniques do not

induce specimen damage—even though long laser residence

times can detrimentally affect the sample [281]. PRS would

involve acquisition times of tens of seconds for every spot,

enough for bone to exhibit its viscoelastic behaviour [282].

Reflection mode SHG (either polarized or not) has been

used in combination with in situ experiments of bone [283]

and other tissues [200,201]. However, as discussed earlier,

SHG in reflection mode can provide qualitative orientation

information only, which originates from the sample surface

or from sites very close to the surface.

3.4. In vivo assessment
Electron microscopic techniques cannot be applied in vivo
due to the sample preparation procedures and imaging con-

ditions needed, which are incompatible with living

mammalian cells [284]. Also, in vivo measurements require

techniques that can reach bone tissue a few millimetres

below the skin surface. X-rays have the inherent ability to

penetrate deep into tissues; however, X-ray imaging tech-

niques used to investigate bone ultrastructure organization

operate at high resolutions, requiring very small samples

and involving significant X-ray doses, which is detrimental

for in vivo applications. Local tomography [285,286], where

the reconstructed region of interest is smaller than the

sample, could be used to significantly reduce the dose, yet

at the expense of reconstruction errors [287] such as cupping

(radial increase of the grey values towards the edge of the

reconstruction circle) or other non-uniform errors over the

FOV. Application of SAXS and WAXS in vivo is also very dif-

ficult due to the high X-ray dose required for signal detection,

because the primary X-ray beam is blocked and the signal is

only generated from the scattered X-ray photons, which are

several orders of magnitude less than the transmitted ones.

However, X-ray phase-contrast methods based on grating-

based dark-field imaging [164,288] could be more easily

adopted to be used in vivo in animals [221,289] and even-

tually in humans [290,291], whereas they can also be

combined with standard X-ray absorption methods

[223,292]. Their use in providing information on ultrastruc-

ture organization [161,169], by exploiting ultrastructure

orientation-dependent signal modulations [168,293], is

expected to rise in the future, as these methods have not

been adequately explored to date [169]. In addition, the two

recent non-destructive X-ray scattering tomographic methods

[162,163] are potential candidates for being applied in vivo,

although that would require significant technological

advances, mainly in detector technology, in order to reduce

the dose deposited in the sample.
Visible light is less harmful to biological tissues and could

be used for in vivo investigations of ultrastructure organiz-

ation. The assessment would however be restricted to

superficial areas, due to the (very) low penetration depth of

light in hard tissues such as bone. For instance, it has been

shown that Raman spectroscopy can be performed on bone

transcutaneously [88,89,94,95], whereas application of SHG

in vivo in tissues underneath the skin is possible through

the use of endomicroscopes [294,295], which can in addition

preserve the laser polarization and, thus, also enable pSHG

imaging [296,297]. Therefore, the use of PRS and (p)SHG

for the in vivo assessment of the ultrastructural organization

of bone can be envisaged in the future.
4. Conclusion
Bone’s composite nature and hierarchical structure impart

its remarkable mechanical properties. At the ultrastructural

scale, the mineralized collagen fibrils, with a diameter of

approximately 100 nm, are bone’s building units. Their organ-

ization has been shown to be of importance in determining the

mechanical properties at different levels. For this reason, mul-

tiple techniques that assess the orientation and arrangement of

the mineralized collagen fibrils have been developed.

This article reviewed these different imaging techniques

suitable for the assessment of bone ultrastructure organization,

and evaluated their ability to determine the orientation and

arrangement of the mineralized collagen fibrils at different

scales, using different probes and exploiting various different

physical phenomena. Their advantages, limitations and most

important applications in the study of bone ultrastructure

arrangement were presented. Finally, we evaluated the tech-

niques’ capabilities to assess the ultrastructure organization

quantitatively and in three dimensions, and in terms of combi-

nation with in situ experiments and their suitability for in vivo
studies.

It seems that we are currently at a point where both the

interest in bone ultrastructure organization is high and the

technology potential to assess it is sufficient. As technology

is advancing on many fronts (e.g. probe strength and size,

lens quality, detector sensitivity) these techniques are going

to offer an improved ability to assess bone’s ultrastructure

organization, and it is very probable that new techniques

based on similar physical principles will emerge.
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