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Animals in groups often exchange calls, in patterns whose temporal structure

may be influenced by contextual factors such as physical location and the

social network structure of the group. We introduce a model-based analysis

for temporal patterns of animal call timing, originally developed for networks

of firing neurons. This has advantages over cross-correlation analysis in that it

can correctly handle common-cause confounds and provides a generative

model of call patterns with explicit parameters for the influences between

individuals. It also has advantages over standard Markovian analysis in that

it incorporates detailed temporal interactions which affect timing as well as

sequencing of calls. Further, a fitted model can be used to generate novel

synthetic call sequences. We apply the method to calls recorded from

groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find

that the communication network in these groups has stable structure that per-

sists from one day to the next, and that ‘kernels’ reflecting the temporal range

of influence have a characteristic structure for a calling individual’s effect on

itself, its partner and on others in the group. We further find characteristic

patterns of influences by call type as well as by individual.
1. Introduction
Many animals exhibit group calling behaviour. Patterns of calling are observable

phenomena which reflect individual state and are dependent on behavioural con-

text [1,2]. Understanding the dynamics of vocalization patterns within groups is

an important growing topic in animal behaviour [2–5]. However, analysing the

structure of the communication network in a group of animals presents a chal-

lenge which goes beyond that of analysing calls of isolated individuals or pairs,

because multiple influences converge on an individual in parallel, making it

harder to characterize causal connections.

In this study, we introduce a model-based method for characterizing the tem-

poral and network structure of interactions between calling individuals from

the timing of call events. The paradigm was originally developed in computational

neurology for analysis of spiking neural networks [6,7]. We adapted the method

for the case of animal calls and applied it to data from groups of domesticated

zebra finch (Taeniopygia guttata), a communal songbird that is the subject of

much current research [8,9]. With this approach, we were able to represent zebra

finch communication networks in a compact model whose attributes reflect fine

details of timing and influence strengths between individuals in a group, yielding

a new data-driven perspective that complements other approaches based on

acoustics, neurology or ethology, and provides a useful visualization tool.

Before describing our study and analysis, we first wish to set our analytical

approach in context by discussing methods for modelling animal vocalization

sequences, in particular their applicability to vocalizations in groups.
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2. Modelling the processes that generate animal
vocalizations

Researchers analyse animal calling patterns in order to understand

the processes that generated them, whether their focus is on intra-

or interindividual mechanisms. A general paradigm with strong

mathematical support is to choose a family of probabilistic genera-

tive models that might generate the phenomena of interest, and

then to use model selection and/or parameter fitting to decide

which model from that family best matches the data.

A good example of this is Markov modelling. A Markov

model generates the next symbol in a sequence stochastically

but with limited memory: a kth-order Markov model chooses

the next symbol conditional on the most recent k symbols

and independently of all previous history. Markov modelling

has been applied widely to animal communications [4]; once

vocalizations have been reduced to symbol sequences, data fit-

ting can determine the transition probabilities between

symbols, as well as the model order, i.e. the length k of the

‘memory’ [10]. A Markov model is usually an extreme simpli-

fication of the presumed underlying biological process

and neglects important aspects such as call timing. Because of

this, a Markov model is unable to model some notable aspects

of vocalization such as ‘bursty’ call patterns. However, it is a

broadly useful tool. Extensions of this approach augment

the model to include unobserved state (the hidden Markov
model long used for speech recognition [11,12, ch. 17], the struc-

tured repetition of symbols (the semi-Markov model [13,14]) or

time gaps between events (the Markov renewal process [15–17]).

For our present purposes, an important consideration is that

Markovian models do not adapt readily to the case where

multiple influences converge on an individual in parallel. It is

possible to construct a Markov model for the sequence of

events emitted by a group as a whole. However, the system

still ‘remembers’ only the most recent k calls, irrespective

of whether they come from socially significant others (e.g. a

breeding partner) or from socially insignificant individuals.

Cross-correlation analysis can be used to analyse relative

timing, but is not derived from a generative model: it is descrip-

tive rather than inferential. A particular set of cross-correlation

statistics may be compatible with multiple hypotheses about

the underlying process (Markovian or otherwise). Cross-

correlation is an appealing alternative to standard Markov

modelling, because it gives some characterization of the time

gaps between events, not just the event sequences. Studies

based on cross-correlation typically probe for significant pat-

terns but do not attempt to give a formal model that could

have generated those patterns [2,18]. As one example of poten-

tial issues with cross-correlation, a causal network with a chain

structure such as A! B! C may well create indirect cross-

correlation phenomena from A!C, even where there is no

direct causal link (figure 1), which would result in a clear

instance of the maxim ‘correlation is not causation’.

The presence/absence of causal links can be probed

through measures of Granger causality [19, §9.13] for influences

with linear effects. Information theoretic measures can also be

used, and are not limited to linear relationships: in particular

transfer entropy, a measure of the conditional mutual infor-

mation between one time series and another, is related to

Granger causality and has been used to characterize the infor-

mation transmission between neurons in a population [19,

§9.13]. We do not pursue these approaches here since, as with

cross-correlation, they do not provide a generative model.
A probabilistic model that is directly applicable to events

on a continuous timeline is the Poisson process [20,21]. At its

simplest, the (homogeneous) Poisson process outputs events

stochastically but at a constant rate, meaning that the event

times are random but there is a constant expected number of

events per unit time (figure 2a). Most Poisson processes of

interest are inhomogeneous, having a rate that can change

over time (figure 2b). This Poisson process model can represent

a single stream of events, but in order to capture interactions

between individuals or between call types, we need to aug-

ment it with coupling such that calls from one individual can

modulate the rate of calling of another (figure 2c). This will

be achieved through influence kernels Kij whose effect is that

a call from each individual i results in a modulating ‘wave’

of influence on the rates of each other individual j. The instan-

taneous firing rate for individual j is given by a linear–nonlinear
link function, meaning that influences are linearly summed

and then passed through a nonlinearity:

ljðtÞ ¼ s bj þ
X

j

Kij � yiðtÞ

0
@

1
A,

where we have used bj to represent the constant base rate of call-

ing for j, Kij the influence kernel from individual i to j, * the

convolution operation, and yi(t) the sequence of events emitted

by individual i represented as a spike train. The function s is a

nonlinear mapping which can be freely chosen within certain

constraints; these include that the function must be monotonic

and non-negative [6]. In this work, our attention will be on

the characteristics of the kernels Kij, which capture both the

strength of influence from one individual to another and its

temporal characteristics (both excitatory and inhibitory).

Note that we will include reflexive influences (where i ¼ j )
in our analysis. The feedback effect of an individual on

itself may include self-listening, but could also account for a

refractory period such as for drawing breath. For model-

fitting purposes, it is important to include all known causal

antecedents, including an individual’s own calling history.

Such a point-process model can be fitted to data by maxi-

mum likelihood [6] after which the Kij reflect both the typical

time gaps between events and the typical sequencing of one

event after another. These coupled processes are not necess-

arily Markovian, and the modelling focus is slightly

different: instead of the turn-by-turn sequencing which

underlies Markovian models, the emphasis here is on separ-

ate processes each generating calls, happening in parallel, and

these processes can mutually influence one another.

In this study, we wished to use exactly these point-

process models, with interaction kernels, to elucidate the

temporal structure of networks of calling birds. We have

multiple motivations for doing this. The first is that the infor-

mation from the fitted model may yield information similar

to that which has previously been derived through cross-

correlation [2,5], such as the strength of pairwise influences,

but with more robustness to common-cause confounds and

other issues discussed above. A second is that the fitted

model may yield more finely nuanced information, and infor-

mation tied to an explicit model: for example, one individual

may have a suppressive effect on its neighbour at some time-

scales, and an excitatory effect at other timescales. Another is

that a fitted model can be used to make further inferences

about new datasets, for example, to predict whether commu-

nicating partners are paired or unpaired. Another is that since
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Figure 1. A synthetic example of indirect causation. A sequence was generated using a simplified A! B! C causal model, and then analysed using standard
methods and our proposed method. The generation procedure was deliberately designed as not a perfect match to any of the analysis models, so as not to privilege
any of them. We show an example timeline of events, along with the cross-correlation plots, and then the influence strengths recovered using each method
summarized as a social network diagram. Arrow thicknesses indicate the relative strength of influence (or transition probability for the Markov model); arrows
represent excitatory influences, while flat-headed arrows (the self – self loops in our analysis) represent inhibitory influences. Note that the values recovered by
each method are different in kind and have been rescaled separately for each of the network plots. Cross-correlation analysis recovers most of the influences/
independences but tends to recover false-positive connections for the indirect link A! C (see the lower-left panel of the cross-correlation plots). A simple
Markov model recovers influences without timing information, and in this case also adds a connection from C back to A to take the place of the baseline
event calling rate of A. Our proposed method recovers a good match for the network structure as well as timing information. It adds self-inhibitory feedback
on B and C to account for the fact that in this test case a call by A leads to no more than one call by B (and likewise for B! C). For further details of
this synthetic example, see the electronic supplementary material. (Online version in colour.)
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the model we fit is generative, it can be used to generate new

synthetic sequences having the same network characteristics,

which could be used for stimuli in future studies.

To this end, we conducted one study with a group of

female zebra finches in a standardized context, and one

reanalysis of existing data from a mixed-sex group of zebra

finches in a different and varying context.
3. Material and methods
3.1. Data collection
Four adult female zebra finches (at least 90 days old, with wild-

type plumage) were selected from an aviary of the QMUL

animal facility. The four birds were housed together in a flight

cage with free access to food and water, in a room separate from

the main aviary. The group of four birds was housed together

for more than two weeks before the recording sessions. The
birds were kept on a 12 L/12 D cycle (7.00–19.00), and the room

temperature was 20–218C.

To perform the recordings, each bird was transferred to an

individual cage (of size approx. 40 � 35 � 45 cm) with free

access to food and water, and remained in visual and auditory

contact with the other birds (at a distance of about 2 m). Birds

were kept in the individual cages for just over 1 h d– 1 (approx.

8.00–9.00) for recordings before returning to the group cage.

The solo cages were arranged in a square pattern so that all

birds were approximately equidistant. Since we intended to inves-

tigate calling patterns as a function of bird identity, we avoided the

potential confound of physical location by placing the birds in

cages in different orders each of the 3 days, choosing the ordering

by taking three rows from a four-by-four Latin square.

Audio was recorded during these 1 h sessions with four focal

microphones (AKG C451B), one directed at each cage. All audio

signals were recorded together onto a Zoom H6n multitrack

sound recorder to ensure that the recordings were temporally syn-

chronized. Recordings were made at 96 kHz sample rate and 16 bit

depth. The first day of this sound recording protocol was used as a
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Figure 2. Schematic of processes generating events: (a) homogeneous Pois-
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test run and for acclimation, and data were not analysed. The

second and third days were taken forward for annotation.

We used a cross-validated semi-automatic process to label the

audio events in the recordings. In a first pass, we applied automatic

event detection to locate the beginning and end of events, using

energy-based detection applied to spectrograms after performing

median-filtering. Spectrograms were trimmed to the frequency

region of interest (0.5–20 kHz). The four channels of the recording

inevitably contained large amounts of ‘crosstalk’ as the protocol

was designed so that the birds could clearly hear each other.

Hence we used the median spectrogram across all channels as a

background against which to judge the signal energy. Regions of

high energy exceeding a minimum duration (8 ms; two spectro-

gram frames or more) were taken forward as candidates to the

second stage.

The second stage of processing was manual refining of the

detections. Each 4-channel spectrogram was divided into 1 s

chunks (with an overlap of 50%) and the proposed annotation

superimposed. Annotators were then shown the 1 s chunks in a

random order, so that any variation in attention of the human

annotators would not systematically vary across the recording dur-

ation. For each channel, annotators could listen to the audio and

view spectrograms, confirm or reject the detected events and

label them as calls or other noises (such as wing flaps or cage

sounds). They could also label errors such as the merging or split-

ting of events, or misaligned event boundaries. Two separate

annotators manually processed all of the candidate annotations.

We used two paid annotators who were both PhD students with

critical listening skills (audio engineering backgrounds). These

annotators were trained by the first author, using excerpts from

the pilot session recordings as examples. Consensus decisions

were accepted, and deviations from consensus were resolved by

the first author. Finally, the first author listened through to the
full recordings with the annotations superimposed, as a check

for any remaining anomalies.

For the present study, we then extracted the calling times for

those events labelled as zebra finch calls. In this standardized

recording environment, our female birds did not use a wide

variety of call types (cf. [8]), predominantly the ‘Tet’/‘Stack’ type

with a very small number of ‘Distance’ calls (note that female

zebra finches do not sing). Therefore in order to provide a clear

analysis, we did not split calls into different categories. This dataset

of call times we refer to as zf4f (see ‘Data accessibility’, point (i)). In

this dataset, there were around 2800 calls in each hour-long session

(around 12 calls per bird per minute).
3.2. Analyses
We analysed the call timing information using the GLM point-

process model of [7], with specific configuration described in

the electronic supplementary material (hereafter referred to as

GLMpp). Our main unit of analysis was each 60 min recording

session as a whole, although we also analysed each 15 min seg-

ment separately, to investigate whether there was continuity or

change of communication patterns throughout a session. We

determined from preliminary tests that 15 min was the smallest

region we could use to have enough calls for a stable analysis.

We used penalized maximum-likelihood (maximum a poster-
iori) optimization to fit the model parameters to each dataset. We

fitted two models to each of our 60 min sessions—one combining

influences in additive fashion, one in multiplicative fashion—and

used an odds-ratio test to select the most appropriate model. In

all cases, the additive model was favoured. More details on the

modelling are given in the electronic supplementary material.

Our source code to perform analyses and generate figures is

available online (see ‘Data accessibility’, point (iii)).

The GLMpp model, after fitting to a dataset, yields a continu-

ous curve (a ‘kernel’) for each directed pairwise influence. For four

birds, this gives 16 kernels, four of which represent self–self influ-

ence and 12 of which represent self–other influence. In order to

make quantitative and visual comparisons, we summarized

kernels in two main ways. Firstly, we aggregated self–self and

self–other kernels separately to look for general tendencies that

might emerge independent of bird identity. Secondly, we applied

principal components analysis (PCA) to the kernels to project them

into a two-dimensional space summarizing the main dimensions

of variation among kernels. Our model for each kernel has many

degrees of freedom, to allow for many possible shapes, and this

high dimensionality could lead to overfitting problems when

performing tests of similarity/difference between kernels. We

therefore used the two-dimensional PCA projection when testing

for consistency within/between sessions and within/between

social relationship types, as well as for visualization. When apply-

ing PCA we did not centre the kernels (by subtracting the mean),

which has the advantage that the axis origin retains its meaning

as zero influence. In the PCA space, therefore, the distance from

the origin can be considered a simple summary of the magnitude

of influence represented by a given kernel.

To test for consistency between sessions, we took these

PCA magnitudes from the influence kernels, and measured the

Pearson correlation from one day to the next. Since self–self

and self–other kernels were different in kind (having positive

and negative peaks, respectively), we analysed them separately,

giving n ¼ 12 for self–other and n ¼ 4 for self–self. To investi-

gate whether any correlation was due to individual identity, to

physical location of the cage or to chance, we measured the cor-

relation using four different ways of matching one day up with

the next day. These four matchings were the combinations

given by a Latin square: one matching compared the same indi-

vidual across days, one matching compared the same physical
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location (and microphone) across days, while the remaining two

were null matchings with no meaningful interpretation.

To test for consistency within sessions, we took the self–other

magnitudes for each 15 min segment, and measured via Pearson

correlation how strongly a segment could predict the immediate

next segment. For each 1 h session, this gives three sequential

pairs of segments.

All of the above analysis was applied to our own zf4f dataset.

We also applied the analysis to a subset of the call data from [2]

in which interindividual call timings had been studied in a more

complex group setting. These groups were made up of freely

behaving zebra finch males (four) and females (four), whose voca-

lizations were individually recorded via backpack microphones,

over a period of three weeks. During this time, all birds were

able to interact physically, and to engage in various activities,

while pair-bonding, nesting and breeding progressed. We used

GLMpp as an alternative to the cross-correlation analysis of Gill

et al. to investigate group calling behaviour on a finer timescale,

including an investigation of self–self calling patterns. As all indi-

viduals in the analysed data formed pair bonds, we not only

distinguished between self–self and self–other interactions as in

zf4f, but we also separated out the self–partner interactions to

investigate any consistent patterns emerging specifically within

pairs. We were provided with the data for trial II, days 1, 7, 11,

18—the same days as displayed in fig. 5a of [2]—which span the

different breeding stages of that group (see ‘Data accessibility’,

point (ii)). Each session was just under 4 h long.

To evaluate formally whether specific types of interaction

kernels differed according to the nature of the social connection

(self–self, self–partner or self–other), we applied a multiple
response permutation procedure (MRPP), a permutation test for

between-group differences based on distances [22, ch. 2]. For

this, we used the vegan library in R v. 3.0.2 [23], using Euclidean

distance, and stratification according to the identity of the listener.

As the number of items in each category was small, we carried out

all MRPP tests in the two-dimensional PCA-reduced space to

avoid overfitting. From this test, we quote the ‘chance-corrected

agreement’ statistic, which summarizes within-group consistency

(by measuring the average within-group distance between items

after normalization by the overall average distance between items).

In the data of Gill et al. [2], calls were categorized into types. We

applied GLMpp to all calls together (as with our own data), but

since this dataset contained a larger number of calls across various

types, we also explored splitting the data according to call type so

that each pairwise interaction could have a different kernel for each
call type. Note that Gill et al. use five call categories, which implies

that for each directed pair we must fit 25 different kernels rather

than just one, and so in practice we found that the full analysis

by call type was less stable due to data sparsity issues. Hence the

recovered per-type kernels showed larger variances and the results

are in some cases less clear-cut than for the broader aggregate

models. We applied MRPP post hoc to these kernels, to quantify

the separability of kernel types in specific cases.

For further comparison of methods, we also analysed this

dataset using a cross-correlation method: the peri-stimulus time

histograms (PSTHs) of Gill et al. [2] but taking all calls pooled

together irrespective of type. This enabled us to inspect whether

the call timings considered as a whole contain signatures of

social context, under each analytical approach. The PSTH

method yields a correlation index which is a measure of the

tendency for each individual to call during the time window

50–500 ms after a stimulus call, normalized against the base

rate of calling, and is further described in [2].
4. Results
4.1. All-female group (zf4f )
We first show results from our recordings with four female zebra

finches in a standardized context. The model-selection test con-

sistently selected the model in which influences were combined

by addition (rather than multiplication). This is in contrast

to Pillow et al. [7] applying the same method to an analysis of

spiking neurons, which selected the multiplicative model.

We found that influence kernels exhibited consistent tem-

poral characteristics and broadly consistent magnitudes, and

that these differed very strongly between self–self and self–

other interactions (figures 3 and 4). The confidence intervals,

despite aggregating over individuals, were relatively narrow

with little overlap between self–self and self–other. This was

confirmed by the MRPP test (within-group agreement 41.3%,

p ¼ 0.0001).

How to read figure 3 plots. The kernel plots in figure 3 and

elsewhere summarize the kernels across the entire communi-

cation network, grouping the kernels according to whether

they represent a self–self (red lines) or self–other (blue) con-

nection. For each directed pair of birds, we inferred a single



0

0

PC
2

PC1

4

3

1

2

3-23-4 1-24-3
2-13-1 4-2

1-3
1-4

2-42-34-1

Figure 4. Principal components plot of kernels recovered from zf4f data.
Arrows connect the kernels for each directed pair, between the two days
studied. Ellipses show the 50% and 95% probability regions for Gaussian
fits, for the self – self (upper, dots) and for the self – other (lower, plusses)
datapoints. These Gaussian ellipses give a visual indication of the groupings
evaluated in the MRPP test. The number labels indicate the individuals
involved in each influence kernel. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160296

6

kernel curve; these plots show the median curve, and the 5–

95 percentile range, across all possible pairs of individuals in

the group. Hence the filled regions largely indicate the extent

of variation among the network connections. The time on the

x-axis can be thought of as similar to the ‘lag’ in cross-corre-

lation. The y-axis can be thought of as the ‘excess calling rate’

caused by a stimulus (although this interpretation is compli-

cated a little by the nonlinearity; see the electronic

supplementary material for detail). Imagine that a bird

emits a call at time zero. The plot then shows the effect of

that call over the next few seconds, increasing and/or

decreasing every bird’s tendency to call. Unlike a Markov

model, the call at time zero is not considered to lead to a

single call that happens as a consequence of it: another bird

might call once, twice or more during the period in which

it is strongly stimulated by the call at time zero. (In practice,

the strong inhibition we see—the strong negative peak for

self–self interactions—often suppresses multiple respond-

ing.) A flat kernel with a value of zero would correspond to

statistical independence, indicating that one bird had no

effect on the calling rate of the listener. The influences from

multiple individuals are added together by the listener

before being passed through a nonlinearity; the main effect

of the nonlinearity (for interpretive purposes) is a soft-thresh-

olding to prevent the rate going below zero. For self–self

kernels, the lag includes the lag due to the duration of the

call itself (median duration 0.1 s).

The self–other kernel magnitudes from one day to the next

were strongly predicted by individual identity ( p , 0.001), and

not by physical location or by the null combinations (table 1).

Physical location did not yield any observable effect ( p¼ 0.79),

having a correlation compatible with the null permutations.

Thus, we attribute the variation in interindividual influence

strengths (figure 5) to individual identity. In this study, we did

not find that self–self kernel magnitudes were predictable from
one day to the next: Pearson correlation was 0.48 ( p¼ 0.52),

which fell within the range of the null permutations.

When analysing the sessions in 15 min segments, we found

consistency but also variation in the self–other influence

strengths. Values did not remain constant but often were gener-

ally variable with characteristic typical magnitudes, and were

moderately predictable from the immediate preceding segment

(Pearson correlation 0.37, p ¼ 0.0013), confirming that the

between-day consistency can be observed on the finer scale of

15 min segments despite the observable variation. On this time-

scale, we also observed consistency in the self–self peaks, at a

similar moderate level (Pearson correlation 0.46, p ¼ 0.025).

Individuals exhibited a pattern of strong self-suppression

immediately after calling and for around the next 0.8 s, fol-

lowed by a slight positive effect thereafter. By contrast,

self–other interactions showed a consistent positive peak at

around 0.25 s, before decaying to around zero at 0.7 s, indicat-

ing a consistent characteristic timescale for calls that occur in

response to the calls of others. In this group of females,

although the network influences showed consistency, there

was no evidence for strong structure of the network such as

a hierarchy (figure 5).
4.2. Reanalysis of Gill et al.
The groups studied in Gill et al. were in a very different environ-

ment—mixed-sex and larger groups, with the ability to

physically interact, to undertake nesting and breeding. This is

reflected in some notable differences in the typical influence

kernels compared against those from the zf4f data (figure 6).

Again the different kernel types show continuity over

multiple sessions. Here, however, we observed specific

developments in the communication network as the pairs

progressed through different stages of bonding and breeding.

On the first day, when pairings were yet to stabilize, there

was little difference between self–other and self–partner

influence (note that the ‘self–partner’ category was labelled ret-

rospectively, so in the early days it indicates eventual partners).

As partnerships formed and developed they took on specific

within-pair communication characteristics: by day 7, when

nest material was provided and many of the birds were

involved in nest-building, communication showed a specific

self–partner peak with a timescale around 0.2 s, while the typi-

cal influence of non-partner birds (self–other) had reduced

down close to independence (figures 6 and 8). In other

words, group communication was dominated by within-pair

patterns. In the later days, this structured communication sub-

sided somewhat, although self–partner influences continued

to be stronger than self–other influences. As before, the self–

self kernels were strongly differentiated from all the other

kernels (MRPP agreement 22.6%, p ¼ 0.0001). The self–partner

kernels were not at all separable from the self–other kernels on

day 1; they became strongly distinctive on day 7, and remained

separable in subsequent days but with decreasing clarity

(figure 7 and table 2). We see that the data from day 1 did

not show a strong signature that might have predicted the

eventual pairings; rather, the trend seen visually is that the

‘self–partner’ interactions were very similar to the self–

other interactions before pairs had formed, but then reached

high levels with the established partner while the inter-

actions with non-partner individuals decayed down to weak

or inhibitory influences.
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Figure 5. Influence strengths, plotted as a social network. Standard arrows indicate kernels whose peak values are positive (excitatory), while flat-headed arrows
indicate kernels whose peak values are negative (inhibitory). In this case, all the self – self arrows looping back are inhibitory. Note that this view emphasizes the
magnitudes while suppressing the temporal structure recovered using our model. (Online version in colour.)

Table 1. Predictability (Pearson correlation) of kernel magnitudes, from
one day to the next, measured under four different permutations for
aligning the two days. The four permutations correspond to four rows of a
Latin square, one of which matched individuals across days, another which
matched physical cage locations across days and two null permutations
having no meaningful interpretation.

data
permutation

self – other
(n 5 12)

self – self
(n 5 4)

individual 0.82*** 0.48

location 20.09 0.37

null 1 20.41 0.60

null 2 0.11 0.29

***p , 0.001.
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Visualizing the influence strengths makes clear the social

network structure that was evident on day 7. Even considering

only the magnitude (and not the temporal structure) of influ-

ences, and considering all call types pooled together, the

network structure showed an observable signature under

both the cross-correlation and GLMpp analyses, though more

clearly for GLMpp (figures 8 and 9).

We note that the self–self influence kernels recovered

from these data were rather different from those in the zf4f
recordings. There was in both a strong immediate self-

inhibition effect, but in the present case this was followed by

a self-excitation at around 0.2 s which was not observed in

the zf4f data. The implication of short-term self-excitation

is that calls are being emitted in bursts or sequences. The

median self–self influences showed bumpy multi-modal

curves which suggested that there might be further structure

in the patterns of typical gaps in the sequences, or that the

aggregate plots were merging together different kernels

which each had differing timescales. We inspected the detail

of individual kernel plots and found that the latter was not

the case: there were no observable individual differences in

overall self-excitation timescales.

When inspecting the differences between males

and females (figure 10), we found this short-term peak in

self-excitation was seen more strongly in males. The pattern
became clearer when inspecting the kernels derived after sep-

arating the calls into behavioural call types. It was observed

to lie predominantly in Cackle calls, specifically in an individ-

ual following a Cackle with another Cackle (figure 12).

The kernel plots broken down by call type exhibited more

variance than the main plots due to data sparsity, but

nevertheless only the Cackle! Cackle self–self influence

showed this strong rapid peak (at around 0.15 s), and this

was consistent across the different days analysed.

Cackles explained one component of the multi-modal self–

self kernels. However, we could not conclude that the overall

self–self kernel was explained as merely a sum of unimodal

influences varying by call type, as the broken-down kernel

plots did not generally resolve to simpler structure.

Other aspects of the kernels broken down by call type con-

firm the observations of Gill et al. In many cases, the strongest

effect of a particular call type was to induce responses of the

same type, but with some influences from one call type

to another. Around day 7, we observed a tendency for Stacks

or Tets from a female to induce Tet responses in the male part-

ner (figure 11), as was also remarked upon in [2], and for the

male Tets to have a notable self-excitatory peak. By day 7,

birds were largely in the nest-building and later nesting

stages (fig. 2 of [2]).

Note that dividing the calls into five types gives a 25-fold

increase in the number of influence kernels to be recovered,

which may lead to data sparsity in some cases. This is visible

in the increased variance of the per-type kernel estimates

(figures 11 and 12). For this reason, we will only discuss per-

type kernels in which we observe clear patterns, or indicative

patterns which triangulate against observations made in

related work [2,24]. Quantitative analysis of the separability

of self–partner Tet and Stack calls found a significant but mod-

erate distinction between their interaction kernels on day 7, and

no separability on the other days (table 3).
5. Discussion
When animals interact in groups, multiple influences converge

on each individual in parallel and the effects of these influences

depend on social context. In groups of zebra finches, we found

temporal interaction patterns that were consistent: they
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persisted over time according to sender/receiver identity, and

they had characteristic structure depending on the nature of the

social bond (self–self, self–partner, self–other; male–female,
female–male) and on contextual status such as breeding

stage. These effects were observable considering all call types

pooled together, without having to separate calls into

subcategories, which has not been possible in previous work.

We characterized these communication networks by fitting

a simple general-purpose model which takes account of the

parallel known influences converging on an individual. The

model is flexible enough to represent a wide range of pairwise

influence patterns (kernels), including kernels which show

patterns of suppression and excitation together, depending on

relative timing.

When reanalysing call data previously presented by Gill

et al. [2] in which cross-correlation had been used to identify

interactions, we were able to confirm many of the observations,

but demonstrated in more detail the temporal structure

of interaction patterns, including self–self interactions. In

some social contexts (particularly nest-building), within-pair

influences dominate and calling patterns become much less

strongly influenced by extra-pair group members. The struc-

ture of the communication network changes qualitatively

through the different stages of zebra finch breeding activity.

We also found qualitative differences in communication

influence patterns between our female-only group and the

mixed-sex group of [2]. Note that the groups differed in various

ways (presence/absence of mates, ability to interact physically,

group size, backpack microphones, aviary environment, hand-

ling) and so we do not here attribute the differences between the

two studies to specific contextual parameters; that remains for

future study. However, the per-sex and per-type plots strongly

suggest that sex differences in timing patterns, and the presence

of specific self–partner interactions, are the dominant factors

in the differences seen between the two studies.
5.1. Zebra finch call types and their use in vocal
interactions

Our reanalysis adds extra detail to the use of the different call

types recorded and studied in [2]. For example, we quantify

the separability of the Tet and Stack calls, not through acous-

tic analysis but through the distinctiveness of their timing

influences (figure 11 and table 3).

Another example is the specific self-excitation pattern

observed for Cackle calls (figure 12). The specific pattern we

observed corresponds with behavioural observations in the lit-

erature: ‘[Cackle] calls are emitted in sequence either by one

single partner (especially by the male when leading the nest

search; Zann 1996a, b) or by both birds that are then per-

forming soft duets using these calls in combination with

Tet calls (Elie et al. 2010)’ [24, p. 301]. As well as the self-exci-

tation pattern, we found a short-term self–partner excitation

effect, corresponding to the duetting mentioned.

Elie et al. [24] take issue with the categorization of Tet/

Stack calls used by Gill et al. [2] and Ter Maat et al. [18].

They propose that the ‘Stack’ of Gill et al. is not the ‘Stack’

which Zann observed in wild zebra finches [8], but rather

that it is a variant of the ‘Tet’. They argue that the ‘Tet’ and

‘Stack’ are used in very similar behavioural circumstances,

and so should all be considered under the general category

of ‘Tet’. On the other hand, their own acoustic analysis

finds them to be similar but distinct clusters, and so they

suggest they could be referred to as ‘Tet-M’ and ‘Tet-S’ to

avoid confusion with the ‘Stack’ of Zann.
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Table 2. Within-group agreement for self – partner versus self – other
influence kernels, for each day of the Gill et al. data, with p-values.

day MRPP agreement (%) p-value

1 0.2 0.2359

7 35.7 0.0001

11 8.5 0.0008

18 5.8 0.0067
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In this light, our analysis may help to illuminate whether

the two categories annotated in [2] show different interaction

patterns. The question is whether the two call types are behav-

iourally equivalent. If this were the case, we would certainly

expect the Tet! Tet and Stack! Stack kernels to have similar
characteristics. We might also expect the cross-type influence

kernels (Tet! Stack and Stack! Tet) to be broadly similar.

Note that we would not necessarily expect the cross-type ker-

nels to look the same as the within-type kernels: for example,

the cross-type kernels might show smaller influence in the

hypothetical case that Tets and Stacks are behaviourally equiv-

alent but emitted in different states of arousal, and therefore

unlikely to happen in close temporal proximity.

Contrary to this hypothesis of equivalence, we found indi-

cations of differing influence kernels both within and between

Tets and Stacks on day 7 (figure 11 and table 3), in which we

saw that both Tets and Stacks from a female showed a tendency

to inspire a Tet response from a partner within around 0.25 s, but

this was not seen for Stack responses. Stacks and Tets also

showed differing self-excitation patterns, indicating that the

short-term sequencing of bursts had different character. We

treat this as indicative only, as the measured distinction between
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Tets and Stack influence patterns was moderate and was

only evident on the day of heightened self–partner interaction

specificity. Our analysis does not disprove the claim of Elie

et al. [24] that Tets and Stacks lie on a continuum and are used

in similar situations. However it indicates that as well as

having observable acoustic differences, Tets and Stacks may

be used differently within communication interactions on the

timescale of seconds.

Elie et al. [24, p. 300] describe the Tet call thus: ‘The Tet

call is the most frequent vocalization as it appears to be pro-

duced in an almost automatic and continuous fashion when

zebra finches move around on perches or on the ground.

These ‘background’ Tet calls form an almost continuous

hum and do not appear to produce a particular response in

the nearby birds’. Contrary to this, we find that Tets do

have an effect of inducing Tets from a partner on a specific

timescale. In this, we concur with Gill et al. [2].

It is worth noting that in our presentation we have not

focused on the resting ‘base rate’ of calling, which in our

model is the component that causes birds to call in the absence

of any stimulus. The base rates here took values of
approximately +0.15 per individual; the peak influence

spikes were on a similar or larger scale and thus had a non-tri-

vial effect compared against the base rate. A particular appeal

of our modelling approach here is that it can identify com-

ponents of influence even in the presence of a base calling rate.
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Figure 11. Aggregate kernels specifically for the ‘Tets’ and ‘Stacks’ of Gill et al. and their interactions, on day 7.
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Table 3. Within-group agreement for each day of the Gill et al. data, to
measure the mutual distinctiveness of four specific influence kernel types:
Tet – Tet, Tet – Stack, Stack – Tet, Stack – Stack (cf. figure 11).

day MRPP agreement (%) p-value

1 21.6 0.623

7 7.7 0.029

11 22.8 0.638

18 23.2 0.664
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5.2. Reflections on GLM point process methodology
The GLM point-process method we have used is relatively

generic—it can be applied to neurons as much as to calling ani-

mals—and as we have shown, it is flexible enough to capture a

variety of phenomena which are pertinent to the understand-

ing of animal calling interactions. It can capture specific

timescales and strengths of influence, both positive and nega-

tive and mixed, between individuals, including asymmetric
influences (A! B can be different from B! A), and provides

a useful representation separating specific influences out from

the calling base rate. It can reproduce bursty/sequential calling

phenomena in individuals or groups. The method has a

number of advantages over cross-correlation analysis. Directed

causation is directly modelled rather than implicit. (This

should not be interpreted as claiming that the method uncovers

the full set of factors having causal influence on an individual:

the model abstracts over physiological detail, and characterizes

the relative strengths of the causal factors proposed by the ana-

lyst.) Multiple convergent influences are simultaneously

modelled as well as a default base rate. Thanks to this, spurious

links due to common-cause effects are less likely to occur. One

example of the benefit of this is seen in our analysis by Gill et al.
in which, even with all calls pooled together rather than
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separated by type, the effect of social structure is seen much

more clearly than via a more conventional method (figure 8).

The method is not specialized for strict sequencing: for

example, if birds always emitted exactly three Cackles in a

sequence, this could not be modelled. In fact, this limitation

is in common with the standard Markov model. Future mod-

elling advances may add useful generalizations, for example,

the incorporation of hidden state variables. Strict sequencing

can be described in a hidden Markov model or a semi-

Markov model, but those are in general suitable only for

independent individuals and not a good fit for situations

with multiple influences within a group.

The point-process model we have described here is

closely related to a set of self-stimulating statistical models

called ‘Hawkes processes’ [25,26]. For example, the method

of Hall & Willett [25] has an appealing property of ‘streaming’

performance, meaning that the network characteristics can

adapt continuously through time as the network evolves.

However, their model has important limitations which the

GLMpp model does not. It does not incorporate the nonlinear-

ity which allows for flexibility and ensures that the model

remains meaningful in the presence of negative influences

(which otherwise could yield meaningless negative calling

rates). More importantly, under their model every link in the

network must have the same kernel shape and only the magni-

tudes can vary. We have demonstrated clearly in this work that

zebra finch calling networks require, at minimum, different

kernels for self–self, self–partner and self–other interactions,

which have dramatically different shapes.

Our method models each calling individual as an inhomo-

geneous Poisson process, where the changes in calling rate are

due to external influences. An alternative approach is to model

each individual (slightly more simply) as an inhomogeneous

Poisson process (figure 2b), and then look for correlations

among their inferred underlying calling rates. An advantage

of that approach would be to accommodate smooth modu-

lations in the base rate of calling; however, this comes at the

significant cost of probing the modelled rates only indirectly

for evidence of causal influence (much as in cross-correlation

analysis), rather than directly fitting a causal model to the

observed data.

Looking slightly more broadly, there are some existing

methods in the animal behaviour literature that have rough ana-

logies to our approach, but using different types of behavioural

data. Psorakis [27] use spatio-temporal proximity of animals as

indirect indicators of affiliation, which are then used to infer a

social network graph. Note that the method there can only

infer undirected (symmetric) connections between pairs of indi-

viduals, not directed connections as in the case of calling

patterns here. Another rough analogy is with Nagy et al. [28],

who infer pigeon hierarchy from delays in flock movement

responses. In that case, the observed data are continuous move-

ment data and temporal cross-correlations in movements are

the clues used, instead of discrete events, to infer networks.

The data size requirements of the GLMpp model are

reasonable for our purposes, as indicated by our ability to

recover stable repeatable influence kernels with 15, 60 or

240 min of data. (See also the electronic supplementary

material for a simulation test on data size requirements.)

The approach requires the same amount of data as does

cross-correlation. We note that dividing the calls down by

call type as well as by individual can lead quite quickly to

data sparsity issues. This is seen in the slightly rough nature
of the median kernels and higher variance in figure 11 versus

figure 6. This is of course true for other analysis methods as

well. The GLM analysis has been applied to datasets having

hundreds of neurons, and so it has the ability to scale to

larger groups than we have studied [7].

The computation required to fit these models is larger

than to run a cross-correlation test. In our largest data fit,

analysing one of the almost 4 h sessions from [2] and breaking

each of the eight individuals’ calls down into five types—

yielding a 40-by-40 fully connected network of influences to

infer—this took 7 h on an ordinary laptop (2.6 GHz Intel i5,

four cores). Analysis can be made faster if some connections

can be ruled out a priori, such as the influence from whines to

distance calls, which we know from behavioural observations,

previous work [1,2] and the present study do not show any

notable influence.

The paradigm that we have applied in this study is relatively

abstract and generic. This has two implications. First, it means

that the fitted models can and should be compared against

behavioural observations and against any more customized

behavioural and/or physiological models for the species being

studied, to explore the convergence of these different sources

of evidence. Second, it means that this approach is not limited

to songbirds, nor to communal species, and may find application

in other taxa such as mammals or territorial songbirds.

The GLMpp model is generative, which allows for interest-

ing experimental designs that can be considered in future, such

as generating large numbers of novel group call sequences as

stimuli, synthesizing background ‘crowd’ sounds, or creating

group interactions in which live individuals interact in real

time with automatic conversational participants.
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