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We discuss the distribution of commuting distances and its relation to income.

Using data from Denmark, the UK and the USA, we show that the commuting

distance is (i) broadly distributed with a slow decaying tail that can be fitted by

a power law with exponent g � 3 and (ii) an average growing slowly as a

power law with an exponent less than one that depends on the country con-

sidered. The classical theory for job search is based on the idea that workers

evaluate the wage of potential jobs as they arrive sequentially through time,

and extending this model with space, we obtain predictions that are strongly

contradicted by our empirical findings. We propose an alternative model

that is based on the idea that workers evaluate potential jobs based on a quality

aspect and that workers search for jobs sequentially across space. We also

assume that the density of potential jobs depends on the skills of the worker

and decreases with the wage. The predicted distribution of commuting dis-

tances decays as 1/r3 and is independent of the distribution of the quality of

jobs. We find our alternative model to be in agreement with our data. This

type of approach opens new perspectives for the modelling of mobility.
1. Introduction
Cities are growing and the majority of individuals in the world now live in urban

areas [1]. Understanding what governs the evolution and the organization of

urban systems is thus of primary interest for policymakers and planners. The avail-

ability of large-scale data about almost all aspects of cities has opened the possibility

of a new interdisciplinary science of cities with solid foundations [2]. In particular,

understanding mobility patterns is a central problem in this field and is related to

the labour market, a fundamental area of interest in economics, where the choice

of work and residential locations determines the commuting. We focus here on a

part of this area, namely the job search process that has a direct impact on the spatial

distribution of commuting trips. The seminal contributions on job search theory in

economics [3–5] rely on the central assumption that individuals choose among

different job offers that arrive sequentially in time, by maximizing their expected

discounted net wage, while waiting to accept a job offer is costly. These are clearly

very strong assumptions that should be tested against empirical data.

Surprisingly, the standard model of job search [4] does not integrate space

(some labour market studies do take space into account, e.g. [6]). We introduce

here a spatial component in this model and derive the consequences for the distri-

bution of the commuting distance. In particular, we show that the basic McCall

model [4] does not explain some fundamental statistical features observed in empiri-

cal data. We therefore propose a new stochastic model that does not rely on the

assumption of optimal control in search through time, but instead on the idea that

workers search through space, accepting an offer if it has a certain level of ‘quality’.

The qualityof a job is random and unobserved by the researcher, and it may integrate

any number of quality aspects specific to each individual. We find excellent agree-

ment between this new model and empirical data for Denmark, the UK and the USA.

Beyond the prediction of the distribution of commuting distances and their

relation with income, our model provides a search-based microfoundation for
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models of spatial patterns that can be found in the mobility

literature [7]. More generally, we question here the relevance

of optimal control theory as the main framework to explain

mobility and the behaviour of living organisms. Optimal

control theory is a mathematical optimization method used

to find the policies that optimize the outcome of a given pro-

cess. This method has been applied to many different

problems in areas such as biology, economics and finance,

ecology and management [8–11]. Here, we propose an

alternative framework to study human or animal behaviour,

closer to theories developed about foraging [12] and in which

actions are taken not on the basis of an optimal strategy but

on the first opportunity that is judged to be good enough.

In the first part of this paper, we present an empirical analy-

sis of the distribution of commuting distances for Denmark,

the UK and the USA, exploring how the average commuting

distance scales with income. In a second theoretical section,

we derive a probability distribution for the commuting dis-

tance from the spatial extension of the standard job search

model. We compare this theoretical prediction with our empiri-

cal results and show that the standard theoretical framework is

not in agreement with data. We then propose a new stochastic

model that does not rely on the optimal strategy assumption

and where workers evaluate potential jobs sequentially

across space and based on a quality aspect. We then show

that this new model is in excellent agreement with our data.
2. Empirical results
In this section, we investigate the distribution of commuting

distances and its relation to individual income using datasets

for three different countries: Denmark, the UK [13] and the

USA [14]. These datasets are produced by national agencies

and national household surveys (see Material and methods

for details) and record the commuting distance and the

income range at the individual level. The datasets cover

the whole of each country and take into account all trans-

portation modes. For the UK, the data are for the years

2002–2012; for the USA, 3 different years are available

(1995, 2001, 2009) and for Denmark, we have access to

10 years (2001–2010).

2.1. The average commuting distance
We first focus on the simplest quantity, the average commuting

distance and how it varies with income. The results for the

three countries studied here are shown in figure 1a,c,e. The

basic equilibrium models of urban economics [15–17] predict,

within a single city, that workers with higher incomes will have

longer commuting distances. This prediction is confirmed for

Denmark and the UK, while no particular trend can be

detected for the USA.

For Denmark, we observe an increasing range and a sat-

uration at large income values, while for the UK, we

observe a plateau at low-income values. In the range where

the increase is observed, we can fit the data by a power law

of the form

�rðYÞ � Yb, ð2:1Þ

where Y is the individual income and where the exponent b

depends on the country considered. For the USA, the fit gives

an exponent b � 0 indicating that there is no clear trend. For

the UK, the plateau around the commuting distance value
�r � 5 miles occurs in the low-income range [102, 104] (GBP

yr21). The fit on UK data for incomes higher than 5000

GBP (for all modes and all years) gives an exponent value

b � 0.5 (in the range [0.53, 0.66] when considering different

years). By contrast, we observe for the Danish data a strong

dependence with a large exponent of order 0.8 for yearly

incomes larger than 250 000 DKK and smaller than 500 000

DKK (for lower incomes, we observe a small plateau).

Depending on the year considered, the exponent b varies in

this case in the range [0.61,0.88].

2.2. The distribution of commuting distance
We now consider the full distribution of the commuting dis-

tance as shown in figure 1b,d,f for different incomes for

Denmark, the UK and the USA. There are two important

facts that we can extract from these empirical observations.

First, for all datasets studied here, the distribution is broad.

This means that the variation range of commuting distances

is extremely large. Indeed, we observe that with a non-

negligible probability, individuals in Denmark, the UK and

the USA are commuting on distances of the order of a few

hundred kilometres. Second, the shape of the distribution

and the large distance behaviour are remarkably similar

among the different countries we have studied here. These

non-trivial features are very important as they provide an

opportunity to test for any model that aims to describe spatial

commuting patterns.
3. Theoretical modelling
The three datasets observed here display a slow increase of

the average commuting distance with income and, more

importantly, a slowly decaying tail for large distances. We

would like to understand these two characteristics theoreti-

cally. We begin with a discussion of the standard job

search model of economics [3–5] and compare its predictions

with our empirical observations. This will lead us to propose

another model, the ‘closest opportunity’ model with predic-

tions that are in much better agreement with the data at

hand.

3.1. The spatial optimal job search model
Optimal control theory is a well-known mathematical optim-

ization method used to find policies that maximize the

benefit of a given process. An example of its application is

the stopping problem [18], where one has to choose the opti-

mal time to take an action based on successive observations

of a random variable. Optimal control theory has been

applied in many different areas [19–23] and to the job

search problem in economics [3–5]. As a starting point, we

will here consider the important McCall model [4] that has

been used in many different forms and variants. We will

study the implications of the McCall model for the spatial dis-

tribution of distances between residences and jobs depending

on income.

We begin by describing the McCall model in its simplest

version. The job search process is sequential in time.

A worker who is unemployed at time 0 reviews at every

time step a random wage offer w drawn from a distribution

with density f (and cumulative F ). At each time step, the

worker can either accept the current job offer and keep it
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Figure 1. (a,c,e) Average commuting distance versus income for different years. In dark blue, the commuting distance is averaged over all years. (a) UK data. This log – log
plot displays a plateau for small values of income followed by a regime, when fitted by a power law (see inset), gives an exponent b � 0.5 ([0.53,0.66]). In the inset, the
average commuting distance is averaged over all years, and the power law fit gives an exponent b � 0.58. (c) US data. In this log – log plot, we do not observe an income
dependence. Indeed, a power law fit gives an exponent b � 0. (e) Danish data. The power law fit on the commuting distance averaged over all years (in the inset) gives
an exponent b � 0.77. (b,d,f ) Commuting distance distribution for different income classes. The probability distribution is shown for different income classes. In dark
blue, we show the distribution for a particular value of the income for which fits have been performed. In red, we show the one parameter fit with the analytical function
predicted by the extended McCall model (equation (3.8)), and in blue, the one parameter fit with the analytical function predicted by the closest opportunity model
(equation (3.15)). (b) UK data (averaged over all available years). (d ) US data (averaged over all available years). ( f ) Danish data (all years give the same result and we
choose here to show the year 2008). In all cases, we observe that the tail predicted by the extended McCall model (equation (3.8)) decays too quickly and cannot fit the
data for long distances. In contrast, the closest opportunity model is in excellent agreement with empirical observations. (Online version in colour.)
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forever, or she can pay a waiting cost c to discard the offer

and wait for the next offer. The worker’s income yt at time t
will thus be yt ¼ w if she accepts the offer or yt ¼ 2c if she

refuses it. The actual value of her total returns is the
discounted sum of her future payoffs

X1
t¼0

mtyt,
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where the discount factor m , 1 takes into account that

the value of a given amount of money is higher the

earlier it is received. In this model, with an offer w at

hand, the worker maximizes the expected value of her

total return v(w)

vðwÞ ¼ kX
1

t¼0

mtytl, ð3:1Þ

where the brackets denote the average over the offer distri-

bution. The classical way to solve this problem is to write the

Bellman equation for this stopping process which reads [24]

vðwÞ ¼ max
w

1� m
, � cþ m

ð
vðw0Þf ðw0Þdw0

� �
: ð3:2Þ

This equation has a simple interpretation. The value of

the current offer v(w) is the maximum of two terms:

the first term is the total return if the current job offer is

accepted, and the second term is the expected value of reject-

ing the current offer and waiting for the next. In the latter

case, the worker pays the waiting cost c and evaluates the

expectation of the value v(w0) of the next random offer w0.
The optimal strategy that solves this equation is to accept

the current offer if it is larger than a reservation wage t and

to refuse it if it is lower. The reservation wage satisfies

the equation

t

1� m
¼ �cþ m

1� m
tFðtÞ þ

ð1

t

w0f ðw0Þdw0
� �

, ð3:3Þ

so that the worker is indifferent between accepting the job for

which w ¼ t or waiting for another offer. By solving this

equation, we obtain a function t that depends on the offer

distribution. The probability p of accepting an offer is then

p ¼
ð1

t

f ðwÞ dw, ð3:4Þ

and the number of trials N before accepting a job offer thus

follows a geometric distribution

PðNÞ ¼ ð1� pÞN�1p: ð3:5Þ

Space is absent in the McCall model, and we will now

extend it in the simplest possible way. We assume now that

the individual reviews the job offers sequentially in the order

of increasing distance from home. The first offer reviewed is

the closest to her residence, the second one is the second closest

and the nth time step corresponds to the nth closest job to the

seeker residence. Each random wage offer w is still drawn

from a distribution with density f (and cumulative F), and

thus the probability that the individual accepts an offer is still

given by equation (3.4). This means that the worker, starting

from home, will examine the offer and will choose the first

one that is above her reservation wage. We will also assume

that jobs are uniformly distributed in space with density r. If

a worker has accepted the Nth offer, the probability that she

has moved a distance r from the residence is given by a classical

result for the Nth nearest neighbours in dimension d ¼ 2 for

uniformly distributed points [25]

PðR ¼ rjNÞ ¼ 2

ðN � 1Þ!
1

r
ðrpr2ÞNe�rpr2

: ð3:6Þ

The distribution of the commuting distance R is then given by

PðR ¼ rÞ ¼
X
N�1

PðrjNÞPðNÞ, ð3:7Þ
and since the distribution of N is geometric (equation (3.5)),

we obtain

PðR ¼ rÞ ¼ 2prpre�prpr2

: ð3:8Þ

This distribution decreases as a Gaussian over a scale of order

�1=
ffiffiffiffiffi
rp
p

, where 1=
ffiffiffi
r
p

corresponds to a typical interdistance

between different offers (t and therefore p depend on the

income Y and so does this distance too). We also note that

the average commuting distance decreases if the spatial density

of opportunities r increases. A decrease in the number of job

openings during economic downturns then leads to increasing

commuting distances.

To test the consistency of these results with empirical

data, we fit in figure 1b,d,f empirical data using the prediction

equation (3.8) of the extended McCall model. We observe that

the best (one parameter) fit is reasonable for the short dis-

tance regime but is unable to reproduce the slow decay

observed for large distances. In addition, we have also con-

sidered another generalization of the McCall model with

transport costs and showed that it also cannot reproduce

a slow decaying tail such as a power law (see the general

argument presented in the Material and methods section).

It thus seems that the McCall model is not consistent with

our data. We therefore seek an alternative model that does

predict the empirical findings just outlined. We will propose

such a model in the next section and compare its predictions

with data.
3.2. The closest opportunity model
In this new model proposed here, we change three important

assumptions of the McCall model. First, we assume that workers

evaluate offers sequentially across space, whereas in the original

McCall model the evaluation was performed through time.

Second, jobs are chosen based on some ‘quality’ aspect that

could take into account many factors and not only on the

wage (see for instance [26]; R. E. Hall and A. I. Mueller 2013,

unpublished data, http://www.nber.org/papers/w21764#

(accessed 12 January 2015)). Finally, we change the framework

used to study human behaviour, and the reservation wage of

the McCall model, which is the result of an optimal strategy, is

replaced by a reservation quality representing the minimal job

quality that meets worker expectations.

We still consider the problem of a worker who looks for a

job starting from her residence (that we assume to be located

at r ¼ 0). Job offers are uniformly distributed across space

with density r. The density of jobs r relevant for the

worker depends on the income level Y, and we assume that

it is simply

r ¼ r0

Ya
, ð3:9Þ

such that higher income jobs are less dense than lower

income jobs. The exponent a depends on the country under

consideration and reflects many exogenous factors concern-

ing job offers at a certain income level [26] (R. E. Hall and

A. I. Mueller 2013, unpublished data, http://www.nber.

org/papers/w21764# (accessed 12 January 2015)). We

remark that the job density r is the only parameter that dis-

cerns here different types of workers. We also note that the

framework introduced here for the income allows for many

generalizations to other quantities such as the skill level

for example.

http://www.nber.org/papers/w21764%23
http://www.nber.org/papers/w21764%23
http://www.nber.org/papers/w21764%23
http://www.nber.org/papers/w21764%23
http://www.nber.org/papers/w21764%23
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The McCall model assumes that jobs are primarily charac-

terized by the wage they offer. We depart from this and assume

instead that each job is characterized by a random ‘quality’ X
that encodes many factors. The job quality is distributed

according to f (with corresponding cumulative distribution

F ) and job qualities are independent. We further assume that

a given worker has a reservation quality value t (in the same

spirit as the reservation wage), and she will keep expanding

her search radius until this threshold is met. We denote by R
the commuting distance and its cumulative thus reads

PðR � rjtÞ ¼ PðX½0;r� � tÞ ¼ 1� FðtÞrpr2

: ð3:10Þ

We now take into account that workers have different search

costs and different expectations for a future job, which leads

them to have different reservation qualities. We consider

the reservation quality as random, distributed according to a

density g(t), and obtain the cumulative distribution of

commute distances

PðR � rÞ ¼
ð

gðtÞPðR � rjtÞdt, ð3:11Þ

with corresponding density

PðR ¼ rÞ ¼ dPðR � rÞ
dr

¼ �2rpr
ð

gðtÞFðtÞrpr2

log FðtÞdt: ð3:12Þ

The first term in this integral is the probability that a worker

has reservation quality t, the second term is the probability

that all offers are below t in the disc of radius r and the last

term (the logarithm) corresponds to the probability that at

least one offer is above t in the circular band [r, r þ dr] (see

figure 2 for a simple illustration of this process). A simple

and natural assumption for the distribution of the reservation

quality t is that it is the same as the distribution of job quality F:

gðtÞ ; f ðtÞ: Then equation (3.12) simplifies in a remarkable

way as follows:

P(R ¼ r) ¼ �2rpr
ð

f(t)F(t)rpr2

log (F(t))dt

¼ �2rpr
ð1

0

xrpr2

log x dx

¼ 2rpr

(1þ rpr2)2
: ð3:13Þ

Under these assumptions, the distribution of commuting dis-

tances does not depend on the distribution of job quality, an

effect that was already observed in the specific case discussed

in [7], and the model proposed here can then be considered as a

microfoundation for this type of process. This also means that
we may generalize the interpretation of the model: we may

allow the distribution of job quality to be specific to each

worker, since this has no consequence for the distribution of

commuting distances.

In contrast to the McCall job search model of the previous

section that displayed a rapid Gaussian decaying tail, we

observe here that the distribution is slowly decaying as

P(R ¼ r) � r23 for large r. The average commuting distance is

easily computed within the closest opportunity model and

we find

�r ¼ 1

2

ffiffiffiffi
p

r

r
: ð3:14Þ

Replacing r by r0/Ya, we find that the distribution of

commute distance conditional on income is

P(R ¼ rjY) ¼ 2r0prYa

(Ya þ r0pr2)2
ð3:15Þ

and that the average commute distance is

�rðIÞ ¼ 1

2

ffiffiffiffiffi
p

r0

r
Ya=2, ð3:16Þ

which is a power law with exponent b ¼ a/2.

The theoretical result equation (3.15) also implies a simple

scaling that can be checked empirically. Indeed, if we rescale

the commuting distance by Ya/2, u ¼ r=
ffiffiffiffiffiffi
Ya
p

, all the curves

for different incomes should collapse on the unique curve

that depends on only one parameter and is given by

PðuÞ ¼ 2pr0u

ð1þ r0pu2Þ2
: ð3:17Þ

In the next section, we evaluate these theoretical predictions

against our data.

3.2.1. Comparison with empirical results
The closest opportunity model predicts that the average

commuting distance varies with income as �r � Ya=2, where a

depends on the country considered. We will interpret our

empirical results in terms of this relationship. For the USA, we

observe an exponent bUSA� 0 indicating that the density of

jobs is independent from the skill level in the USA. For the UK

and Denmark, we observe a non-zero exponent with bUK �
1/2 for the UK and a larger value for Denmark bDK � 0.8.

These results indicate that the density of jobs decreases with

the skill level, more in Denmark than in the UK. The observed

difference between the USA and the two European countries

in the spatial density of jobs at different income levels suggests

a more general difference between Europe and the USA (for a

discussion in equilibrium theory about the spatial distribution

of workers and skill levels, see, for example [27]). It is interesting

to note that there seems to be a correlation between the value of

the exponent b and the size of the country. Further studies are

however needed to confirm this observation.

The crucial prediction allowing us to distinguish between

models is the distribution of commuting distances and how it

depends on income. Indeed, for the simple spatial extension of

the McCall model presented here, the distribution of r decreases

very quickly (equation (3.8)) and is not a broad distribution

(extending the McCall model with transport costs can lead to a

broad distribution such as a power law, but this requires fine

tuning of parameters; see the Material and methods section).

In sharp contrast, in the closest opportunity model, we have a

broad distribution of the form given by equation (3.15), and in
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figure 1, we display the one parameter fit with this form for a

given income category. The agreement with data is very good

for the UK and the USA, but there are some discrepancies in

the Danish case. It seems that for this Danish case there are

other heterogeneities that are not taken into account in our

model. In particular, Denmark is a small country with a large

proportion of the population living on islands, imposing

important constraints on commuting patterns.

An additional and very strong test of the validity of

equation (3.15) is provided by the data collapse on the curve

given by equation (3.17). In figure 3b,d, we plot the rescaled

commuting distance distribution for different income categories

and we observe a very good collapse, except for the lower

income category in the UK for which the square root behaviour

is not applicable. We remark that for the USA b ¼ 0, which

implies that the probability distribution equation (3.15) does

not depend on the income category so that the curves are auto-

matically collapsed. We furthermore note that the agreement

between the data and the closest opportunity model for

Denmark is strongly reinforced by the data collapse predicted

by our model and observed in the data (shown in figure 3).
4. Discussion and perspectives
With the increasing availability of ever more precise and

comprehensive data, we can test a number of predictions of
models for the urban structure and its processes. In this

article, we predict the distribution of commuting distances

and discuss its relation with income. We showed that the

empirical data do not support the standard McCall model

(based on optimal control) for the job search process. Instead,

we have proposed a model based on the closest opportunity

that meets the expectation of each individual is able to predict

correctly the behaviour of the average commuting distance

with income in terms of the density of job offers. More impor-

tantly, this model is able to correctly predict the form of the

commuting distance distribution, its broad tail and the data

collapse predicted by its form.

Stated succinctly, previous models relied on the idea that

workers wait for a job that pays enough, while in the new clo-

sest opportunity model, workers search space for a job that is

good enough. Although further studies on more countries

are certainly needed, this stochastic model provides a micro-

scopic foundation for a large class of mobility models and

opens many interesting research directions in modelling mobi-

lity while leading to testable predictions. More generally, we

proposed here an alternative framework to study human or

animal behaviour, in which actions are taken not on the basis

of an optimal strategy but on the first opportunity that is

good enough. This framework would potentially find some

applications in our understanding of foraging for example

and other applications in ecology or finance where optimal

control might be a too strong assumption.



rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160306

7
5. Material and methods
5.1. Data description
As we describe below, for both the USA and the UK datasets,

a weighting methodology has been developed to take into

account non-responses, undercoverage, multiple telephones in

a household (for the US dataset) and drops-off in the travel

recording (for the UK dataset). This methodology has been

developed to make data trustable and usable, but without any

doubt, there is noise in the data (and probably self-reporting

errors too). One can indeed note that there is a bias for low-

income values (for both UK and US data), which is very likely

due to rounding. However, this bias does not change the order

of magnitude of the commuting distance and thus does not

substantially affect the results.

5.1.1. UK data
We used data from the UK National Travel Survey (NTS) for the

years 2002–2012 [13]. Each year’s sample has a size of 15 048

addresses and was designed to provide a representative sample

of households in the UK. A weighting methodology was devel-

oped to adjust for non-responses and drop-offs in the travel

recording. Data collection is obtained from face-to-face inter-

views and a 7-day travel record of individual daily travel activity.

We specifically exploit the individual and the trip files of this

dataset. The individual file is used to determine the income cat-

egory of each individual (data provide 23 income bands). The

trip file allows us to link individuals to their weekly commuting

trips for which we know the distance. To compute the average

commuting distance as a function of the income class, we first

average the commuting distance of each individual, including

all transportation modes, over the number of commuting trips

undertaken during the week. We then average these quantities

over all individuals for each income category. When we consider

average values from these data, we do not distinguish between

different transportation modes or the geographical locations of

the origin and destination of the trip.

5.1.2. US data
We used data from the 1995, 2001 and 2009 National Household

Travel Survey (NHTS) [14], a survey of the civilian, non-

institutionalized population of the USA. The NHTS datasets

contain data for 42 033, 26 032 and 150 147 households (with

approx. 40 000 add-on interviews for the latest version).

Weighting factors are used to take into account non-responses,

undercoverage and multiple telephones in a household.

These datasets allow us to associate an income category to each

worker (this dataset indicates 18 different income bins) and the

one-way distance to workplace. For the 2009 NHTS, the personal

income is not provided, in this case we proxy personal income

by the household income divided by the household size.

5.1.3. Danish data
The Danish data are derived from annual administrative register

data from Statistics Denmark for the years 2001–2010. We observe

the full population of workers, and for each year, we have infor-

mation on the workers’ annual income and their commuting

distance. We used the post-tax income. Commuting distances

have been calculated using information on exact residence and

workplace addresses using the shortest route in between. Note

that for these data, no weighting methodology is required as we

observe the full population of workers in the country.

5.2. Including transport cost in the McCall model
We discuss here the general case for the McCall model where

there is a transport cost associated with distance. The distance
from the home of a worker to a job offer is then a random

variable R having density 2prr, which is independent of

the wage W associated with the job. To link the probability

of accepting a job to space, we assume a linear transport

cost dR that is paid by the worker if she accepts a job.

Ultimately, she cares about the net wage W 2 dR. The optimal

strategy of the worker involves a reservation wage t, and the

worker accepts the first offer that offers a net wage W 2 dR .

t. These assumptions already imply that the commuting

distance for the accepted job satisfies R , (W 2 t)/d. Then, the

tail behaviour of the commuting distance cannot follow a

power law if W has a bounded distribution, and we therefore

allow W to have an unbounded distribution. The density of

commuting distances is

P(R ¼ rjW � dR . t) ¼ P(R ¼ r)P(W � dr . t)

P(W � dR . t)

¼ 2prr(1� F(tþ dr))Ð1

0 2prs(1� F(tþ ds))ds
: ð5:1Þ

From this, we can observe that

@ ln P
@ ln r

¼ 1� f(tþ dr)

1� F(tþ dr)
dr, ð5:2Þ

which shows that in general P does not decay as a power law, unless

f (tþ dr)=(1� F(tþ dr)) ¼ z=r for some z . 1. In the specific case

where W follows a power law with F(W) ¼ 1�W�z, W . 1,

we obtain

@ ln P
@ ln r

¼ 1� zr
tþ dr

ð5:3Þ

which tends to 1 2 z/d as r! 1. This model thus leads to a power

law for the distribution of commute distances if the distribution of

wage offers follows a power law. If we consider all wages, the

Pareto law tells us that they can be broadly distributed, but this is

not the quantity needed here. Indeed we are considering here the

offer distribution for a given set of skills, and it is very unlikely

that a given individual will sample offers that range over the

whole income distribution.

We can then compute the relationship between the average

commuting distance and income in this model. For w 2 dr . t,

we have

P(R ¼ rjW ¼ w, W � dR . t) ¼ P(R ¼ r, W ¼ w, w� dr . t)

P(W ¼ w, dR , w� t)

¼ 2r

(ðw� tÞ=d)2
, ð5:4Þ

which leads to the conditional expectation

E(RjW ¼ w, W � dR . t) ¼
ððw�tÞ=d

0

2r2

(ðw� tÞ=d)2
dr

¼ 2

3

w� t

d
: ð5:5Þ

This model thus predicts that for a linear transport cost, the

expected commute distance is always linear in income which

does not fit the empirical findings.

In any case, it seems that to predict results consistent

with empirical observations (a broad law such as a power law

with exponent close to 3 for the distribution, and a power law

behaviour for the average distance), this model needs fine

tuning of the parameters, in sharp contrast with the closest

opportunity model.
5.3. Including transport costs in the closest opportunity
model

Workers base their decisions on transport costs that depend

not only on distance but also on monetary costs and travel
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time. We shall see how transport costs can be accommodated by

the closest opportunity model proposed in this article. This is

useful as we get exact predictions regarding how the observables

of the model are modified by transport costs. The model can then

also be used for prediction in cases when transport costs change.

We let the variable r represent here the transport cost, the

closest opportunity model predicts

d log P(R ¼ r)

d logðrÞ ¼ �3: ð5:6Þ

In general, we may expect that the transport cost is an increasing

and concave function of distance, since travellers switch to faster

modes for longer trips. Denoting the physical distance by ‘, we

assume that r � ‘v, where 0 , v , 1. In terms of distance, we

then find that

d log P(R ¼ r)

d log ‘
¼ d log P(R ¼ r)

d log r
d log r
d log ‘

¼ �3n: ð5:7Þ

For the income elasticity, the model predicts a relationship between

transport cost and income, that is b ¼ d log rðIÞ=d log I ¼ 1=2:

The elasticity of commuting distance with respect to income is

then larger

d log r1=nðYÞ
d log Y

¼ 1

2
þ 1

2n
:

Observing the commuting distance rather than transport cost,

we thus expect an exponent in the tail of the distribution smaller
than 3 in absolute value and an income elasticity of the average

commuting distance, that is greater than 1/2. It is thus possible

to back out the exponent v from both observed exponents.
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data [14] are provided by the US Department of Transportation, Fed-
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