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ABSTRACT
Background: Emerging immunotherapeutic strategies for the treatment of glioblastoma (GBM) such as
dendritic cell (DC) vaccines, heat shock proteins, peptide vaccines, and adoptive T-cell therapeutics, to
name a few, have transitioned from the bench to clinical trials. With upcoming strategies and developing
therapeutics, it is challenging to critically evaluate the practical, clinical potential of individual approaches
and to advise patients on the most promising clinical trials.

Methods: The authors propose a system to prioritize such therapies in an organized and data-driven
fashion. This schema is based on four categories of factors: antigenic target robustness, immune-activation
and -effector responses, preclinical vetting, and early evidence of clinical response. Each of these
categories is subdivided to focus on the most salient elements for developing a successful
immunotherapeutic approach for GBM, and a numerical score is generated.

Results: The Score Card reveals therapeutics that have the most robust data to support their use,
provides a reference prioritization score, and can be applied in a reiterative fashion with emerging data.

Conclusions: The authors hope that this schema will give physicians an evidence-based and rational
framework to make the best referral decisions to better guide and serve this patient population.
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Introduction

The current standard of care for GBM is maximal safe resection
followed by adjuvant chemoradiation therapy. Despite recent
advances in treatment and aggressive therapy, the median sur-
vival time remains slightly over 14 mo.1 Although these thera-
pies prolong progression-free survival, recurrence is inevitable.
Moreover, the nonspecific nature of conventional therapy for
GBM often results in incapacitating damage to surrounding
normal brain tissue. Despite scientific breakthroughs in our
understanding of this disease, only modest improvements in
survival have been achieved over the past 30 y. Interestingly,
several immunotherapeutic strategies have transitioned from
the bench to clinical trials. Although this is an exciting time in
brain tumor immunotherapy, practitioners face a unique and
difficult challenge in advising GBM patients on the most prom-
ising clinical trials. Frequently, the practitioner must guide this

decision without sufficient information or understanding of
how well a particular approach has been vetted. In addition,
while there have been numerous early phase studies in the field,
there is also a recognized wastage of valuable resources and
time, as patients enroll onto trials out of desperation that may
not have been sufficiently considered. Specifically in GBM there
have been hundreds of studies that could have been aborted
early on. The pace of development of immunotherapies in
oncology, including GBM, is faster than the traditional pace of
drug development, given the recognized need and patient and
advocacy enthusiasm. It is difficult therefore to prioritize pre-
clinical approaches that are rapidly progressing to clinical trial
implementation, as potentially ineffective approaches could be
rushed into development. Therefore, we propose a system to
prioritize such therapies in an organized and data-driven
fashion.
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This schema is based on four categories of factors: robust-
ness of the antigen target, ability to activate and sustain
immune responses in the glioma microenvironment, preclinical
vetting, and early evidence of clinical response (Table 1). Each
category is subdivided to focus on the most salient elements for
developing a successful immunotherapeutic approach for
GBM, and a numerical score is generated. Considering the sig-
nificant heterogeneity of GBMs, this system will ultimately
favor combination strategies, as they are more likely to result in
a meaningful outcome. This score card, which includes current
immunotherapy trials for GBM patients, reveals which thera-
peutics have the most robust data to support their use, provides
a reference prioritization score, and can be applied in a reitera-
tive fashion with emerging data. The rationale of the score
card’s use can potentially be applied in a forthcoming global
adaptive Bayesian clinical trial in GBM.2 The use of the score
card also intends to encourage preclinical vetting and rationally
selected combinatorial approaches for translational researchers
and industry.

Methods

Therapeutic selection

Current immunotherapy trials in GBM were identified through a
systematic search on www.clinicaltrials.gov using the following
keywords: “GBM” AND “immunotherapy” or “glioma” AND
“immunotherapy.” The two initial searches yielded a combined
total of 121 studies, many of which were duplicates. Nine trials
were eliminated that did not have a primary immune therapeu-
tic intent (e.g., PET imaging in patients treated with chemora-
diation or immunotherapy, MR imaging in patients treating
with DC therapy, evaluation of factors in human brain tumors)

or were targeted to other cancers such as cholangiocarcinoma,
grade II glioma, diffuse intrinsic pontine glioma, ependymoma,
and medulloblastoma/neuroectodermal tumors (i.e., they were
misclassified). Two trials were listed in duplicate (TVI-Brain-
1), both as a phase I and a phase II clinical trial
(NCT01290692/NCT01081223). Six trials were eliminated that
involved oncolytic viruses, which did not have an immunother-
apeutic intent (AdV-tK/radiation, DNX-2401, HSV G207).
Three studies had been terminated (IMA-950, IMA-950 and
poly-ICLC, tumor-specific hybridomas). A phase I clinical trial
of the IDH1 peptide vaccine (NCT02454634) was included in
the Appendix, given that there is an active recruitment of grade
IV gliomas in addition to grade III gliomas in this trial. Several
trials evaluating the immune checkpoint inhibitors in GBM
were not listed on either of the searches, and had to be searched
for separately on www.clinicaltrials.gov using search terms
“pembrolizumab” AND “GBM,” “nivolumab” AND “GBM,”
“ipilimumab” AND “GBM.” Six trials (NCT02209376,
NCT02026271, NCT02331693, NCT01904123, NCT02365662,
NCT0181192) were also not listed in either of the searches on
www.clinicaltrials.gov and had to be searched for separately
using search terms “EGFRvIII” AND “chimeric antigen recep-
tor,” “IL-12 adenovirus” AND “GBM,” “EGFR CAR” AND
“GBM,” “STAT3” AND “GBM,” “ABBV” AND “GBM,” “Adv-
TK” AND “Adv-Flt3L” AND “GBM.” Therefore, after eliminat-
ing duplicates, the complete search yielded a combined total of
68 trials, 34 of which were open and 34 of which were closed
(Appendix 1).

In order to obtain more information on each of the immu-
notherapeutics in the aforementioned trials, each agent was
then searched for via PubMed (with defined key search “name
of agent” AND “glioma,” “name of agent” AND “GBM,”
“name of agent” AND “cancer,” “name of agent” AND
“brain”), the source data assessed for results related to the Score
Card, and documented in the references listed in Tables 2 and
3. For the vetting of preclinical approaches, a search was then
performed using the terms “GBM” AND “immunotherapy,”
only eliminating review articles. Once these preclinical agents
were found, a more specific PubMed search was undertaken
regarding each preclinical agent of interest (with defined key
search “name of agent” AND “glioma,” “name of agent” AND
“GBM,” “name of agent” AND “cancer,” “name of agent” AND
“brain”). The source data were assessed for results related to
the Score Card and documented in the references listed in
Tables 2 and 3. Our literature review adapted the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines3 to minimize potential bias in the identi-
fication, selection, synthesis and summary of studies, and
enhance the quality and transparency of our review.

Explanation and justification of score card

The components of the score card are based on characteristics
that the authors believe are necessary to generate an optimal,
antitumor immune-therapeutic response (Table 1). In order to
ensure that the scoring system is properly balanced, three
experts in the field evaluated the categories and provided point
assignments for each category to be used in the score card,
which was then reviewed by a biostatistician (SZ). First, an

Table 1. Prioritization “Score Card” for glioblastoma immunotherapeutics.

Target Frequency of target expression 0–33% (1)
34–66% (2)
66–100% (3)

Therapeutic targeting has
benefit in other malignancy

1

Homogeneous tumor
expression

1

Expression is sustained at
recurrence

2

Mechanism of resistance 1
Specificity of expression in the

tumor
1

Immune activation
and effector
response

Activating component (i.e.,
costimulation, TLR)

1

Trafficking to the tumor
microenvironment

1

Maintenance of effector
response within tumor

1

Agent: Preclinical Glioma cancer stem cell activity 2
Efficacy in preclinical model Other model (1)

Clonotypic (1)
Xenograft/�GEMM (2)

Acceptable toxicity profile 2
Hits target (if known) in vivo 2

Agent: Clinical Clinical activity in GBM 3
Extreme responders 2
Combinatorial data 2
Acceptable phase I safety data 2

Abbreviation: �GEMM, genetically engineered murine model (of glioma).
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appropriate target is required, and the ideal target would be
specific to the tumor and have a high frequency of expression.
Additionally, target/antigen expression would preferably be
homogeneous (with ubiquitous or near ubiquitous staining on
immunohistochemistry) versus occurring as isolated islands of
the antigen deposited in the tumor mass, to prevent negative
clonotypic selection.4,5 Other desirable immune targets would
be those that remain present at the time of tumor recurrence
after standard-of-care therapy.

Generation and maintenance of a robust immune response
are also critical components of a successful immunotherapeu-
tic. Treatments/agents should be able to activate the immune
response (e.g., T-cell signal, proinflammatory cytokines, toll-
like receptor (TLR) agonists, DCs), support infiltration of the
tumor site, and sustain immune effector function within the
tumor microenvironment. Studies that have shown a lasting
immune response in the setting of a tumor rechallenge in vivo
or an antitumor immune response that results in a durable sur-
vival advantage were included in the score card. If there are no
published data showing that the agent generates or maintains
an immune response, then the categories are left blank. If the
agent failed to generate or maintain an immune response, the
category is scored as 0. It is clear that all of these attributes may
be difficult for a single agent to achieve given that GBMs are
notoriously heterogeneous regarding antigen expression, effec-
tor responses, and immunosuppressive mechanisms; hence,
this scoring system favors combinatorial treatment strategies,
which are more likely to impact a greater number of patients
and result in longer, durable responses.

Prior to advancing to clinical trials, the approach/agent
should be vetted in preclinical testing—ideally in a variety of
models. In the score card, credit was given to agents tested in
multiple animal model systems. The xenograft and genetically
engineered murine models (GEMMs) were weighted with more
points since they potentially are more representative of human
biology and recapitulate tumor heterogeneity. Furthermore, the
agent ideally should demonstrate effector function in the gli-
oma microenvironment. The role of glioma stem cells (GSCs)
in tumor immunosuppression has been established (i.e., inhibi-
tion of T-cell activation, induction of regulatory T cells, and ini-
tiation of T-cell apoptosis6,7); therefore, a treatment strategy
inhibiting GSCs will likely have a therapeutic advantage, and
thus this was included in the assessment. Finally, safety is para-
mount, but given the dire prognosis of GBM, certain toxicities
may be more acceptable, although it is challenging to define a
threshold level. For immunotherapeutics that have advanced to
phase II clinical trials, we took several additional factors into
consideration. A clearly favorable clinical outcome in GBM
patients and an acceptable safety/toxicity profile in phase I
studies were weighed heavily. Additionally, clinical trial results
that demonstrated the presence of extreme responders (i.e.,
patients with significantly lengthened survival times) were
given special consideration and were a component of our anal-
ysis. As mentioned above, because successful initiation and
maintenance of an adequate antitumor immune response are
difficult for a single immunotherapeutic agent to achieve, com-
bining immunotherapeutic strategies presents a feasible way to
enhance the antitumor response (e.g., blockade against indole-
amine 2,3-dioxygenase [IDO], programmed cell death ligand 1

[PD-L1], and cytotoxic T lymphocyte-associated antigen 4
[CTLA-4],8 or intratumoral IL-12 combined with CTLA-4
blockade). Additionally, any new immunotherapeutic will be
better received if it can be easily and safely combined with con-
ventional treatment regimens. With this in mind, agents for
which there were combination therapy data were given addi-
tional points because these, in the authors’ opinion, are most
likely to have a meaningful therapeutic response.

Arbitration of conflicting data

In several instances, the use of the score card was confounded
by conflicting reports. For example, in determining the target
frequency score of PD-L1, one study found nearly ubiquitous
staining,9 thus resulting in a score of 3; however, another study
found significantly less10 staining, rendering a score of 1.
Because there were concerns regarding the antibody staining in
the former study, the results were ultimately scored based on
the second study, which was also more aligned with the find-
ings of PD-L1 expression in other solid malignancies.11,12

Another example occurs in the setting of therapeutic benefit
found in phase II clinical trials of heat shock proteins in
patients with solid malignancies, but ultimately phase III stud-
ies failed to confirm these results in melanoma and renal cell
carcinoma.13,14 As such, the phase III data were prioritized and
the benefit in other malignancies was scored as 0. Yet there is
an active phase II clinical trial evaluating heat shock protein in
GBM (NCT02122822).

Additionally, the association between cytomegalovirus
(CMV) and GBM has remained controversial.15-17 There is not
a uniform consensus in the scientific community regarding the
expression of CMV in GBM.18-20 Regardless of the conflicting
data, two clinical trials focused on targeting CMV in GBM
have emerged, including the use of valganciclovir hydrochlo-
ride21 and DC immunotherapy against CMV antigen pp65.22

For the purposes of this paper, adoptive cellular approaches
that target CMV received the highest score (3) on antigen
expression given the recent data (Table 2).

Clinical versus preclinical designation

If the approach had entered clinical trials in other malignancies
and/or is in phase I or II trials for GBM patients, with pub-
lished results, then the assignment was made to the clinical
score card (i.e., IL-12). If the approach was not tested in other
malignancies and/or is in phase I testing, without reported
data, then the approach was classified as preclinical (i.e., IDH1
peptide).

Results

Overall, phase III immune therapeutic strategies scored
the highest

The DC-based strategies and the EGFRvIII peptide vaccine
(CDX 110) had the highest priority scores (Table 2), and both
are in final phase III clinical trial testing. These agents have
been vetted preclinically and have been efficacious in phase II
clinical trials. CDX 110 peptide vaccine targets the tumor-
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specific antigen epidermal growth factor receptor variant III
(EGFRvIII).4 The mutant is ligand independent and constitu-
tively active, resulting in sustained activation of oncogenic
pathways, but is only found in approximately a 30% of
GBMs.23-26 Restriction of EGFRvIII to GBM has made it an
excellent target for immunotherapy, but treatment failure cor-
responds to the loss of the antigenic target, and only a select
subset of patients could benefit27 (i.e., EGFRvIII-positive
patients). CDX 110 has been extensively studied in phase II
clinical trials, with prolonged survival in patients with newly
diagnosed GBM compared to historical controls27-29 and has
completed phase III testing, with the final results pending.

In contrast, DC vaccinations typically include multiple anti-
genic targets and do not require biomarker selection. The basic
strategy for DC vaccination is to give the patient autologous
DCs that have been manipulated ex vivo to present autologous
tumor antigens. DC administration has varied by route, sched-
ule, and combination with other treatment modalities. Vaccina-
tion with DCs is safe and has been well tolerated in
patients.22,30-33 Some studies have shown clinical responses,
either in tumor regression or improved survival relative to his-
torical or contemporary controls.22,31,34-36 Immune responses
have also been demonstrated with the use of surrogate end-
points.22,31,34-39 In patients who underwent reoperation after
vaccination with DCs, some had infiltration of cytotoxic T cells
within the tumor.35,40 Although there are no published data yet
on the DCVax phase II trial, it has moved to phase III clinical
testing. The most recent Nature paper by Mitchell et al.22

showed that preconditioning the vaccine site with tetanus/
diphtheria (Td) toxoid, a potent recall antigen, can significantly
improve the lymph node homing and efficacy of tumor-anti-
gen-specific DCs, and these patients (n D 6) had median sur-
vival times that exceeded 40 mo. This report enhanced the
score of this approach.

Yet, use of trabedersen or AP 12009 (a TGF-b antisense
compound) did not score as highly compared to the other
phase III immunotherapeutic strategies, despite an ongoing
phase III SAPHIRRE study. The transforming growth factor 2
(TGF-b2) is overexpressed in more than 90% of malignant glio-
mas, and its levels are closely related to tumor progression.41,42

Inhibition of TGF-b2 in tumor tissue leads to reversal of
tumor-induced immune suppression as well as inhibition of
tumor growth, invasion, and metastasis.43,44 Trabedersen (AP
12009) has been studied in three phase I/II studies,45 and a ran-
domized, active-controlled dose-finding phase IIb study,46 with
established safety and efficacy. Trabedersen treatment of
patients with recurrent high-grade glioma led to some long-
lasting tumor responses, but trabedersen treatment does not
activate or maintain an immune effector response, which con-
tributes to its lower score relative to the other phase III immu-
notherapeutic strategies.

Immune checkpoints (CTLA-4, PD-1) rank equivalently

The immune system regulates itself using immune checkpoints,
and these mechanisms are either upregulated or appropriated in
GBM. When T cells are activated, they upregulate membrane
CTLA-4 and PD-1 proteins. CTLA-4 competes with CD28 to
bind B7, and PD-1 will bind to its ligand, PD-L1; both signals

will inhibit ongoing T-cell activation. Blockage of these immune
inhibitory pathways has emerged as a powerful immunothera-
peutic strategy, and antibody-based targeting of immune check-
points (checkpoint inhibitors) has been heavily investigated as
single agents, or in combination. Commonly targeted check-
points include: PD-1, CTLA-4, and regulatory T cells (Tregs).
The use of blocking humanized monoclonal antibodies, such as
ipilimumab (anti-CTLA-4), is FDA approved for treating
patients with metastatic melanoma.47 Antibody targeting of the
PD-1/PD-L1 axis has also demonstrated robust preclinical effi-
cacy in an established murine model of glioma, including in syn-
ergy with ipilimumab.8 Anti-PD-1 antibodies (nivolimumab,
pembrolizumab) have also been clinically tested in melanoma
patients,48-50 and have been FDA-approved for treating advanced
melanoma and non-small cell lung carcinoma. The application
of the score card did not reveal an advantage of one approach
over the other (Table 2), but target elucidation indicates that
only a subset of patients is likely to benefit in the context of
monotherapy. It should be noted that although ipilimumab
(anti-CTLA-4 antibody) has demonstrated prolonged overall
survival in randomized phase III trials,47 anti-PD-1 agents (pem-
brolizumab, nivolumab) have a better toxicity profile.51

The score of daclizumab, an antibody against IL-2Ra that
depletes Tregs, ranked equivalently with the immune check-
point inhibitors. Tregs are populations of T cells responsible
for modulating immunity in a number of cancers, including
GBM.52 Daclizumab treatment was well tolerated in three
patients, with no symptoms of autoimmune toxicity, and it
resulted in a significant reduction in the frequency of circulat-
ing CD4CCD25CFoxp3C Tregs in comparison with saline
controls.53,54 A significant inverse correlation between the fre-
quency of Tregs and the level of EGFRvIII-specific humoral
responses suggests that the depletion of Tregs may be linked to
increased vaccine-stimulated humoral immunity.54 Of note,
daclizumab works by binding CD25, the a subunit of the IL-2
receptor, and therefore can target other CD25C T cells as well
as Tregs. Daclizumab has also been shown in multiple sclerosis
to reduce CNS inflammation in randomized phase III clinical
trials, possibly by targeting regulatory NK cells,55 suggesting
that this antibody has activity beyond just targeting Tregs.

The effectiveness of other immune modulatory agents, such
as those targeting colony-stimulating factor (CSF-1), also
ranked equivalently with the immune checkpoint inhibitors.
Tumor-associated macrophages are associated with high tumor
grade and poor prognosis in gliomas.56,57 Macrophages depend
upon CSF-1 for differentiation and survival; therefore, CSF-1R
inhibitors represent an alternative strategy to target tumor-
associated macrophages and microglia. In a mouse proneural
GBM model, the use of a CSF-1R inhibitor dramatically
increased survival, shrank established tumors, and slowed
intracranial growth of patient-derived glioma xenograft.58

PLX3397 and JNJ-40346527, both small molecule CSF-1R
inhibitors, are currently being studied in other malignancies in
clinical trials.59 One published phase I/II study showed that
CSF-1R inhibition was well tolerated, although preliminary
antitumor results suggested limited activity as a monotherapy
in the treatment of relapsed or refractory Hodgkin lym-
phoma.60 Discussions are ongoing about the initiation of this
strategy in GBM patients.
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Adoptive cell-based strategies rank heterogeneously

Adoptive cell-based strategies, including DC therapy, CMV T-
cell therapy, NK/LAK cells, EGFRvIII-CAR, IL13Ra2-CAR,
and EGFR-CAR show heterogeneous ranking as a group, with
a wide range of priority scores. Adoptive transfer therapy is a
form of passive immunotherapy in which immune cells are
activated and amplified ex vivo and administrated to a patient,
either by systemic injection or directly into the tumor or tumor
resection cavity. Cytotoxic T lymphocytes (CTLs), lymphocyte-
activated killer cells (LAK), and genetically-engineered T cells
expressing chimeric antigen receptors (CARs) have all been
used for this. The first is based on the trafficking of tumor anti-
gen-specific T cells to the desired malignant target. To accom-
plish this, autologous tumor-specific CTLs are collected,
activated ex vivo, expanded, and then readministered to the
subject. LAK cells are natural killer (NK) cells and NK T-like
cells that, when stimulated with IL-2, become nonspecific
tumoricidal cells. Several phase I and II studies have exploited
this tactic in the treatment of GBM.61-65 For example, autolo-
gous CMV-specific T-cell therapy is safe, with minimal side
effects, and may offer clinical benefit for patients with recurrent
GBM. During one study,65 4 of 10 patients who completed the
treatment remained progression free.

Genetically engineering T cells to express CARs, fusion pro-
teins that combine the single chain variable fragment of natu-
rally occurring monoclonal antibodies with the signaling
molecules that act downstream of TCR engagement, redirect
T-cell specificity to surface tumor-associated antigen indepen-
dently of MHC presentation. Two CAR T-cell therapies, target-
ing EGFRvIII and IL13Ra2, have been shown to be efficacious
in murine model systems of glioma and CNS melanoma.66-69

As such, the EGFRvIII-CAR (NCT02209376, NCT01454596)
and IL13Ra2-CAR (NCT02208362) are being investigated in
phase I clinical trials in GBM. Moreover, a pilot study of three
patients treated with intracranial delivery of IL13Ra2-specific
CAR T cells for recurrent GBM demonstrated safety and feasi-
bility with transient antitumor activity for some patients.70

Currently, CAR T cell therapies are limited to antigens
restricted from normal tissue expression, to avoid on-target,
off-tissue toxicity. However, preclinical studies have shown
CARs can be generated to fine tune T-cell activity to the level
of EGFR expression in which a CAR with reduced affinity can
enable T cells to distinguish tumor from non-tumor cells,
potentially expanding application of CAR T cells to additional
targets.71 Of the CAR approaches thus far devised, the IL13Ra2
faired best, ranking similarly to CDX 110, based on more
advanced clinical development, the ubiquity of the target, and
the anti-stem-cell properties. The EGFR CAR and EGFRvIII
CAR strategies however ranked similarly among the preclinical
therapeutic strategies.

STAT3 inhibition ranks high among preclinical therapeutic
strategies

The STAT3 pathway is a potent regulator of tumorigenesis,
tumor-mediated immune suppression, and metastasis to the
brain. STAT3 is overexpressed in gliomas72 and propagates
tumorigenesis by preventing apoptosis and enhancing

proliferation, angiogenesis, invasiveness, and metastasis.73,74

The STAT3 pathway also becomes constitutively active in
diverse tumor-infiltrating immune cells, markedly impairing
their antitumor effector responses75 and enhancing the func-
tional activity of immunosuppressive Tregs76 and myeloid-
derived suppressor cells.77,78 GSCs also depend on the STAT3
pathway, including for their immunosuppressive proper-
ties.7,79,80 Given that STAT3 is a molecular hub of both tumor-
mediated immune suppression and tumorigenesis, it is not
surprising that inhibition of this target ranked very highly as a
novel therapeutic strategy. Because p-STAT3 blockade agents
inhibit Tregs,76 enhance cytotoxic responses,75 inhibit growth
of glioma cancer stem cells in vitro,81 and reverse immune sup-
pression, p-STAT3 inhibitors have the potential to further
enhance peptide-based vaccination strategies, such as with the
PEP-3-KLH/CDX 110 vaccine, possibly including patients with
bulky tumors who are unable to undergo surgical resection.
Although STAT3 is widely recognized as a highly desirable
therapeutic target, small molecule inhibitors have been prob-
lematic for lack of specificity and associated toxicity leading to
discontinuation as therapeutics.82 The clinical trial implemen-
tation of another STAT3 inhibitor, WP1066, was delayed sec-
ondary to poor water solubility, which has recently been solved
by using it in a spray-dried nanoparticle formulation (SDD1).83

The preclinical data available for WP1066 are sufficiently com-
pelling to justify considering its use in human clinical trials.

The fourth highest-scoring preclinical approach employed
an EGFRvIII-CD3 bispecific monoclonal antibody construct.
In order to promote an antitumor immune response, bispecific
antibodies simultaneously bind to receptors on the surface of
immune effector cells and to transmembrane molecules on the
surface of cancer cells. An EGFRvIII-CD3 bispecific monoclo-
nal antibody construct (bscEGFRvIIIxCD3) has shown efficacy,
specificity, and potency in vitro and in vivo.84 Upon binding to
both targets, the construct resulted in potent tumor cell lysis,
T-cell proliferation, secretion of Th1-type cytokines, and upre-
gulation of T-cell activation markers. Systemic administration
produced complete cures in up to 75% of mice with established
EGFRvIII-expressing intracerebral tumors, while no effect was
observed among those with intracerebral tumors lacking
EGFRvIII expression.84 Formal toxicity studies of this agent are
currently underway in preparation for clinical trials, with no
apparent toxicity detected to date.

Ranking equivalently as the EGFRvIII-CD3 bispecific
monoclonal antibody construct, the fourth highest-scoring
preclinical agent was also the IDH1 peptide vaccine. IDH1
mutations, specifically at the R132H site, are present in most
low-grade gliomas and define secondary GBM.85 Although
found in approximately 12% of GBMs, IDH1 mutations may
drive the progression of a lower grade tumor to GBM.86 An
IDH1(R132H) peptide vaccine has recently been developed
and has been shown to induce a specific antitumor immune
response against IDH1(R132H)-mutated tumors in an MHC-
humanized animal model.87 Moreover, it has been shown that
targeting the IDH1(R132H) mutation in an intracranial glioma
model system can significantly prolong survival, with a cure
rate of 25%.88 There is an active phase I trial underway evalu-
ating the IDH1 peptide vaccine in IDH1(R132H)-mutated
grade III-IV gliomas.
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Therapeutic agents without an antigenic target score
lower

Approaches lacking an antigenic target such as anti-IL-2Ra,
arginine, NK/LAK cellular therapy, 4-1BB aptamers, Adv-TK
C Adv-Flt3L, and IL-12 adenoviral therapy had a lower priority
score overall. Given that systemic IL-12 therapy can be toxic,
mutant herpes simplex (HSV) vectors expressing IL-12 for
gene therapy have been developed.89-92 IL-12 has potent antitu-
mor properties, possesses antiangiogenic properties, and
enhances the cytolytic activity of NK cells and CTLs. IL-12-
secreting HSV has shown antiglioma immune activity in a
murine glioma model,89,91 and has been shown to be safe in a
non-human primate model.93 Phase I trial results with this
agent in human breast cancer have been acceptable,94 and this
modality is currently being evaluated in a phase I clinical trial
in GBM (NCT02026271). Adv-TK C Adv-Flt3L, a combinato-
rial gene mediated immunotherapeutic strategy, utilizes the
genes for Fms-like tyrosine kinase 3 ligand, which attracts DCs,
and thymidine kinase. This strategy, with ganciclovir treatment,
has been shown to prolong survival and shrink intracranial
tumors in murine models.95,96 A phase I clinical trial utilizing
this combined gene immunotherapeutic strategy is currently
recruiting patients harboring resectable primary GBM
(NCT01811992). Although CTLA-4 inhibition does not have
an antigenic target, as CTLA-4 expression is restricted directly
to T cells, this therapeutic actually ranked highly, given its
immune activation/effector response, preclinical, and clinical
scores.

Therapeutic agents without immune activation and
effector response properties score lower

TGF-b antisense compounds, anti-IL-2Ra, NK/LAK adoptive
cellular therapy, and IDO inhibitors all ranked lower. Each of
these agents had a priority score of 0 in the immune activation
and effector response category, as there is no published evi-
dence to date that any of these agents activate an immune
response, induce immune trafficking to the tumor, and/or
maintain an effector response within the tumor. Although neu-
tralizing TGF-b has been shown to result in an enhanced
immune effector response,97 traberderson, an antisense phos-
phorothioate oligodeoxynucleotide, has not been shown to acti-
vate or maintain an immune effector response in vivo.

Arginine, 4-1BB aptamers, Adv-TK C Adv-Flt3L, and IDO
therapies show the lowest scores of the preclinical agents

Considering that arginine-based therapy, Adv-TK C Adv-
Flt3L, and 4-1BB aptamers do not have a dedicated antigenic
target, and that IDO therapy has not been shown to activate or
maintain an immune response (Table 3), these therapies had
the lowest priority scores. Both IDO inhibitors and arginine-
based therapies are in initial phase I clinical trial testing in
GBM, and if there is a favorable safety profile, they could be
considered in combination with T-cell-enhancing therapies
and antigen-targeted approaches. Of course, with additional
emerging data, the relative merits of a given approach to others
would be expected to change.

Discussion

In many instances, agents/approaches such as CDX 110 and
DCs that are most advanced in clinical trials demonstrate the
highest priority score. Although the EGFRvIII peptide vaccine
scored well in the clinical category, other tumor-specific or
tumor-associated antigens are being targeted such as cancer-
testes antigens, tumor-differentiation antigens, viral-related
antigens, or mutated oncogenic proteins. EGFRvIII is a driver
of gliomagenesis, and it is not clear whether the other targets
will elicit similar responses. The peptides selected for cancer
vaccines are typically short, around 9 or 10 amino acids long,
and are capable of binding to MHC class I molecules, which
leads to activation of cytotoxic T cells. It is unclear whether
individual peptides or whole tumor lysates induce a better
immune response, as they have never been studied head to
head. However, these alternative approaches may provide dis-
tinct advantages by treating more than a select subset of GBM
patients (as is the case for CDX 110) or targeting a greater per-
centage of the tumor’s cells, as EGFRvIII staining is isolated
and heterogeneous.

In the DC strategy, immune responses have also been dem-
onstrated with the use of surrogate endpoints. In patients who
underwent reoperation after vaccination with DCs, some have
had infiltration of CTLs within the tumor.35,40,98 The priority
score here has benefited from the recent findings of Mitchell
et al.,22 showing the presence of extreme responders (>40 mo
survival); however, this was a small group of patients and
required preconditioning of the vaccine site with tetanus/diph-
theria (Td) toxoid, a potent recall antigen. Moreover, the anti-
genic target here was CMV pp65, which has also been used in
the setting of adoptive T-cell immune therapy.22

Ultimately, we predict that therapeutic approaches that acti-
vate the immune response, induce trafficking to the tumor, and
maintain effector function will most likely be of clinical benefit.
An example of this strategy would be a peptide vaccine (provid-
ing an immunogenic target) combined with an antibody that
triggers costimulation plus an immune checkpoint inhibitor.
Alternatively, patients could be selected who have a tumor that
elaborates immune-attracting chemokines or be treated with an
agent that induces this tumor property. For example, the TLR3
agonist poly-ICLC significantly enhances the homing of pep-
tide vaccine-induced CTLs to the glioma site via induction of
relevant chemokines in mouse glioma models.99,100 Moreover,
use of proinflammatory cytokines (such as IL-12, IL-7, and IL-
15), activating antibodies to costimulatory molecules (such as
CD40), or blocking antibodies to immune inhibitory cytokines
(such as IL-10 or TGF-b) could all potentially enhance clinical
activity. The lack of therapeutic effect of many prior immuno-
therapy tactics, such as the use of poly-ICLC and TLR ago-
nists,101-103 is probably related to the fact that only one
essential component of the antitumor immune cascade was
addressed. However, combinatory use of these agents with
other therapeutic approaches is actively being evaluated.

One of the more surprising findings was the relatively lower
score of the heat shock protein (HSP) vaccine. This vaccine is
generated by purification of HSP from the resected GBM, with
subsequent reinfusion of the complex to allow the chaperone to
interact with antigen-presenting cells (APCs), thus priming the
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lymphocytes with a varied cohort of antigenic peptides. How-
ever, the score was influenced by the absence of in vivo preclini-
cal glioma models supporting its use and failure to demonstrate
therapeutic efficacy in phase III clinical trials with other solid
malignancies.13,14 Nevertheless, ongoing clinical trials are using
lymphodepleting regimens that may influence its therapeutic
profile. Additionally, clinical trials in patients with recurrent
GBM have shown that this treatment elicits both adaptive and
innate immune responses, is well tolerated, and may improve
survival when compared with historic controls.104,105 One
caveat regarding such conflicting data is whether treatment fail-
ure in phase III clinical trials with other malignancies should be
used to penalize an approach in GBM. If so, to what degree?
Certainly most clinical trials evaluating DCs have not been effi-
cacious in other types of malignancies.106-108 Similarly, there is
a paucity of preclinical studies evaluating oral arginine in
GBM, even though arginine has been shown to enhance immu-
notherapy in other preclinical tumor models.109,110 However,
given that such an agent is cost effective and nontoxic, this
therapy is currently being investigated in a phase I clinical trial
in GBM

Areas that merit additional investigation include small mol-
ecule inhibitors and those agents that target the innate immune
system. Blocking M2 polarization with the inhibitor CSF-1R
has been shown to suppress glioma growth.58 A small molecule
inhibitor of CSF-1R, PLX3397, is currently being tested in
patients with solid malignancies (NCT01346358,
NCT02452424). STAT3 blockade agents have multiple mecha-
nisms of activity, including direct tumor-cytotoxic effects and
the ability to overcome the negative modulatory effects of the
local tumor microenvironment, allowing for immunological
recognition and clearance of cancer cells, including stem
cells.111-113 Thirdly, agents that target the innate immune sys-
tem has overall lower scores; yet, in the case of GBM patients
that have little antigenic expression, innate immune therapeutic
strategies, such as adoptive NK treatment, may actually have a
benefit.

Even though the score card is dynamic and updatable, it has
certain limitations. A key one results from the limited proprie-
tary information offered by pharma, which can result in an arti-
ficially low priority score. Additionally, the accuracy of the
reported data and the cut-off points for several of these catego-
ries may be arbitrary. For example, there is no perfect single
preclinical model system that is appropriate for GBM research,
as xenograft use is limited due to a compromised host immune
system, some preclinical tumor models may be more difficult
to treat than others, and the obvious variation of different lab
protocols, experimental designs, etc. Indeed, spontaneous
tumors in immunocompetent murine models (i.e., GL261,
GEMMs, VM/Dk, etc) are the most applicable to the human
behavior and nature of these tumors at this time, and provide a
promising avenue for studying immunotherapy and immuno-
suppression in this horrible disease.114 Even so, their use is also
limited due to reproducibility, labor intensive procedures,
latency of tumor formation, and cost. Unfortunately, the scor-
ing system is not sensitive enough to take all of these differen-
ces into account. Moreover, a therapeutic that has an antigen
target (EGFRvIII) is given more weight in the score card than a
therapeutic that does not (IL-12); these agents instead may be

associated with a variety of other mechanisms of potential anti-
tumor immunoreactivity. The expression of antigens and other
immune targets can also be quite inducible after various immu-
notherapeutic interventions (i.e., IFN-gamma induces PD-L1
expression).115 Therefore, if there is a defined antigen, should a
clinical trial be penalized if it does not use it for stratification/
eligibility consideration? So, the reservation exists that the scor-
ing of antigen targets and other molecular targets within the
same scoring system may not be entirely appropriate.

Also, the score card does not take into account the overall
mutational and neoantigen load. Using precision medicine to
target the genetic features of a malignancy is an exciting subject
in oncologic immunotherapy. For example, overall mutational
load, neoantigen load, and expression of cytolytic markers in
the immune microenvironment are associated with clinical
response to immune checkpoint inhibitors (e.g., anti-CTLA-4,
anti-PD-1/PD-L1 antibodies) in melanoma and non-small cell
lung carcinoma.116-118 The accumulation of somatic mutations
in GBM could possibly improve the response to such therapies
as well, and including high mutational burden as a “target”
could be considered in the score card.

Moreover, the current analysis was confined to published
works and clinical trials listed on www.clinicaltrials.gov, but it
did not include a variety of historical or unpublished studies.
For example, there have been several cytokine stimulation
approaches, such as with IL-2, that have been studied in a vari-
ety of cancers. Although IL-2 has been used successfully in the
treatment of melanoma and119 renal-cell cancer,120 it has not
shown benefit in GBM (unpublished data, personal communi-
cation from Dr Elizabeth Grimm), and thus was not included.
Similarly, TLR agonists were also not included. TLRs are pat-
tern-recognition receptors whose activation initiates innate and
adaptive immunity. The potent immunostimulatory properties
of TLRs and their associated ligands have been utilized as an
immunotherapeutic strategy for cancer therapy, including with
glioma.121 To date, three clinical trials of TLR agonists/poly-
ICLC in GBM have been completed, with marginal improve-
ment in survival.101-103 However, they may have activity when
combined with other immunotherapeutic agents, as shown in
other clinical trials.31,122,123 Moreover, the score card did not
include agents in phase I clinical trials in GBM without any
published preclinical/clinical data in this disease process: these
include the multipeptide vaccines (ICT107, SL-701, IMA950 in
which the clinical trial was terminated), and some of the per-
sonalized approaches (GAPVAC, Neovax, ERC1671, ADU-
623, TRC105). As more data becomes available on these
approaches, these can certainly be added to the score card,
which is dynamic and updatable.

Another major limitation is the way in which the DC strate-
gies were amalgamated. Given that there are multiple DC strat-
egies (use of tumor lysates, cell fusions, RNA, peptides) with
different antigen targets (CMV pp65, EGFRvIII, HER2, gp100,
etc.), all of them were combined in one column in the score
card for the sake of simplicity in presentation. However, this
approach may require its own separate score card, including
HLA-typing requirements, for patients who are capable/willing
to travel to a specialized center that manufactures these thera-
pies. Moreover, the score card prioritizes the presence of
extreme responders, but it is challenging to reconcile if extreme
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responses are due to selection bias, other factors unrelated to
the therapeutic in question, or the actual therapeutic. Most
importantly, the criteria chosen to score these therapies have
not been validated as being predictive of the ultimate efficacy,
marketability, or adoptability of a given therapeutic approach
in oncology.

Finally, the score card does not include categories for cost
effectiveness and global practicality given that exact cut-points
for these categories are not feasible; however, these categories
should be considered in a global adaptive Bayesian clinical
trial.2 In general, an agent that can be industrially manufac-
tured (i.e., a small molecule inhibitor or an antibody) is fairly
inexpensive to produce; on the other hand, cellular products
like DCs cost significantly more to produce per patient. The
caveat here is that although antibody therapies may be rela-
tively inexpensive to produce,124 the cost per patient may not
reflect this reality.125 Practicality, such as off-the-shelf strate-
gies, for global use relates to the ability to implement the immu-
notherapeutic strategy internationally or in community
hospital settings. As patients with GBM may have mobility lim-
itations, therapy at a local cancer community center may be
more convenient for some patients. Therefore, commercially
available agents would potentially score higher in these catego-
ries. Cell-based therapies would score lower in these categories
because cellular immune therapeutics are patient-specific, uni-
formity of the therapeutic products is likely to vary, and they
pose a greater regulatory hurdle. Most patients do not have
access to the specialized medical centers necessary to produce
and administer cell-based therapies, and even among these,
complex cellular processing approaches are limited and not
uniform. Because of the time and processing required to gener-
ate the product, the cost will be significantly higher. Ultimately,
determining a therapeutic benefit to cost ratio (i.e., extended
months of survival/cost) for each strategy could further refine a
score for this category and may justify more labor-intensive
strategies.

The score card may also provide guidance for go/no-go
translational developmental efforts. For example, if the anti-
gen/target score is >5 or the immune activation/effector score
is >2, then the agent could go to therapeutic development. If
the preclinical score is >7, then the agent goes to phase I clini-
cal trials. If the clinical score is >4, then the agent goes to phase
II clinical trials. Notably when the PD-1 and PD-L1 agents were
evaluated with the score card in the context of the preclinical
melanoma data, the total target, immune activation, and pre-
clinical score was 13—similar to the score of these agents in gli-
oma. Ultimately, these checkpoint inhibitors were approved in
melanoma but there are too few immunotherapy examples to
definitively define cut points for continued development and
clinical trial implementation.

The score card can also be updated as new data becomes
available. The authors propose a few alternatives to how this
can be implemented. One method includes crowdsourcing the
information by neurosurgeons, neuro-oncologists, pathologists,
basic and clinical neuroscientists, etc., where information can
be entered “online” into a live database as new data becomes
available on immunotherapeutics. The other alternative is to
have uninterested parties review the literature periodically to
update the score card as new data becomes available. One other

alternative includes having an expert committee to review the
literature periodically and update the score card.

In summary, one of the more promising strategies for the
treatment of gliomas is immunotherapy. Recently, there has
been much excitement regarding the immunotherapeutic
agents advancing into clinical trials. The authors propose a pri-
oritization method for evaluating the immunotherapeutic drugs
available. This prioritization score card, which includes pub-
lished evidence, is based on what the authors believe are the
key features defining a successful immunotherapeutic tactic,
providing a rational method of evaluating immunotherapies.
Ultimately, we hope that this score card will be a useful tool for
providers, so that they will be better informed and hence better
equipped to advise and serve this challenging patient
population.
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