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ABSTRACT
Interleukin-2 (IL-2) is one of the key cytokines with pleiotropic effects on immune system. It has been
approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. Recent progress
has been made in our understanding of IL-2 in regulating lymphocytes that has led to exciting new
directions for cancer immunotherapy. While improved IL-2 formulations might be used as monotherapies,
their combination with other anticancer immunotherapies, such as adoptive cell transfer regimens,
antigen-specific vaccination, and blockade of immune checkpoint inhibitory molecules, for example
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) mono-antibodies,
would held the promise of treating metastatic cancer. Despite the comprehensive studies of IL-2 on
immune system have established the application of IL-2 for cancer immunotherapy, a number of poignant
obstacles remain for future research. In the present review, we will focus on the key biological features of
IL-2, current applications, limitations, and future directions of IL-2 in cancer immunotherapy.

Abbreviations: ACT, adoptive T cell therapy; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; DC, dendritic
cells; IL-2, interleukin-2; JAK, Janus family tyrosine kinases; LAK, lymphokine activated killer; MAPK, mitogen-acti-
vated protein kinase; MMPs, matrix metalloproteases; NK, nature killer cell; PD-1, programmed death 1; PD-L1, pro-
grammed death ligand 1; PI3K, phosphoinositide 3-kinase; PSA, prostate specific antigen; STAT, signal transducer
and activator of transcription; TAAs, tumor-associated antigens; TCR, T cell receptor; Th1, T helper-1; Th2, T helper-2;
Th17, T helper-17; TILs, tumor-infiltrating lymphocytes; TNF-a, tumor necrosis factor a; Treg, T regulatory cell
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Introduction

Cancer is one of the most common lethal diseases in the world,
with 14 million new cases diagnosed annually and is also the
leading cause of deaths worldwide, causing 8.2 million deaths
annually as World Health Organization (WHO) reported in
the World Cancer Report 2014. Although the identification of a
large amount of driver oncogenes and subsequent targeted
therapy have resulted in a prolongation of overall survival in
these with driver mutations, survival remains dismal as a whole
and novel therapeutic approaches are still urgently needed.
Recently there has been a breakthrough in harnessing the
immune system to treat malignant tumors. Cytokines are small
glycoproteins that bind to cell surface receptors and regulate
the development, survival, and function of immune cell. Thus,
cytokines have been extensively studied as potential therapeutic
agents to manipulate the immune response to tumor cells.

IL-2 is one of the key cytokines with pleiotropic effects on
the immune system. The discovery of IL-2 as “T-cell growth
factor” (TCGF) in 1976 quickly revolutionized the fields of
basic immunology research and immunotherapy for human
cancers.1 IL-2 was an early candidate for cancer immunother-
apy and was approved for the treatment of metastatic renal
cell carcinoma (1992) and later for metastatic melanoma
(1998) by FDA. Much progress has been made recently in our
understanding of IL-2 in regulating lymphocytes that has led

to exciting new directions in cancer immunotherapy (Fig. 1).
There are several excellent reviews on IL-2, which examine
the molecular biology of its expression, its role in immune
cell signaling and immune development, as well as the struc-
tural biology of cytokines and their receptors.2-5 In the pres-
ent review, we will focus on the key biological features of IL-
2, current applications, limitations, and future directions of
IL-2 in cancer immunotherapy.

The biology of IL-2 and its receptors

IL-2 is a small 15.5-kDa four a-helical bundle cytokine, which
has been one of the most studied cytokines since its discovery
about 38 y ago. It is produced predominately by antigen-simu-
lated CD4C T cells, while it can also be produced by CD8C cells,
natural killer (NK) cells, and activated dendritic cells (DC).6-8 IL-
2 is an important factor for the maintenance of CD4C regulatory
T cells and plays a critical role in the differentiation of CD4C T
cells into a variety of subsets. It can promote CD8C T-cell and
NK cell cytotoxicity activity, and modulate T-cell differentiation
programs in response to antigen, promoting naive CD4C T-cell
differentiation into T helper-1 (Th1) and T helper-2 (Th2) cells
while inhibiting T helper-17 (Th17) differentiation.9-11

IL-2 receptor is composed of the three subunits IL-2Ra
(CD25), IL-2Rb (CD122), and IL-2Rg (CD132) (Fig. 2). The
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abg trimeric complex forms the highest affinity receptor. IL-
2Ra is unique to IL-2 and is expressed by a number of immune
cells including T regulatory cells (Treg), activated CD4C and
CD8CT cells, B cells, mature DCs, endothelial cells, and so
on.12-16 The a chain is overexpressed (8–10-fold) compared

with the bg chains. It is believed that the a chain functions to
bind IL-2 initially, localizing it to the cell surface, effectively
increasing its concentration and also inducing a conforma-
tional change in IL-2 which then subsequently binds to the bg
chains on the cell surface.3,4 The expression of IL-2Ra in naive

Figure 1. Timeline in understanding the biology and therapeutic application of IL-2.

Figure 2. Signaling pathways of IL-2.
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T cells can be triggered rapidly by T cell receptor (TCR) and co-
stimulatory signals followed by a positive IL-2/IL-2Ra feedback
loop.2 Unlike naive T cells, NK cells, and memory phenotype
CD8C cells express high levels of bg and some NK cells can
also express a chain after the stimulation by IL-2. Of note,
Tregs, which act to dampen the immune response, constitu-
tively express high levels of a chain.17 This enables them to
consume IL-2 more efficiently than effector CD4C, CD8C, and
NK cells, even at a low level.18

The b chain is shared with the IL-15 receptor and the g

chain can be partnered with several other cytokines (e.g., IL-15
and IL-21) receptor chains and is critically involved in signal-
ing. Both of them belong to hematopoietin receptor family.19

IL-2Rb is mainly expressed by multiple lymphoid populations
such as Treg, memory CD8C T cells, NK cells, and NKT cells.
Similar to the IL-2Rb subunit, the IL-2Rg subunit is expressed
mostly by haematopoietic cells.20,21 Interestingly, the IL-2Rg
subunit is stored intracellularly and its expression by CD4C is
triggered only upon activation.22

The signaling pathways of IL-2

IL-2 binds to its receptors at different affinities.23 The isolated
IL-2Ra binds IL-2 with low-affinity (Kd-10

¡8 M) without
transducing a signal and the heterodimeric IL-2Rbg binds IL-2
with intermediate-affinity (Kd-10

¡9 M) and transduces intra-
cellular signals. When all three IL-2 receptor subunits form an
IL-2Rabg trimeric complex, its binding affinity to IL-2 is
greater than binding to either a single IL-2 receptor subunit or
the IL-2Rbg heterodimer.24-26 Binding of IL-2 to the IL-2Rbg
or IL-2Rabg complex leads to the activation of multiple signal-
ing pathways with initial signal transduction involving the
recruitment of Janus family tyrosine kinases (JAK1 and JAK3)
to the cytoplasmic domains of IL-2Rbg or IL-2Rabg. The acti-
vation of JAK kinases results in the recruitment and phosphor-
ylation of signal transducer and activator of transcription 1
(STAT1), STAT3, STAT5A, and STAT5B. Then, three major
downstream signaling pathways including the STAT signaling
pathway, the phosphoinositide 3-kinase (PI3K-AKT) signaling
pathway, and the mitogen-activated protein kinase (MAPK)
signaling pathway are activated (Fig. 2).2 These pathways have
mediated the survival, proliferation, differentiation, activation,
cytokine production etc. in different types of immune cells.2,18

The application of IL-2 in cancer immunotherapy

IL-2 as monotherapy

In 1985, 25 previously treated patients with metastatic cancer
were treated with increasing high dose (HD) IL-2 at an esca-
lated dose of 60,000–600,000 IU/kg until intolerable toxicity. In
this first series of 25 patients, 4 of 7 patients with metastatic
melanoma and 3 of 3 patients with metastatic renal cancer
showed regression of metastatic tumor.27 The study first dem-
onstrated that IL-2 was capable of mediating tumor regression
in humans, and thus it was further evaluated in the subsequent
studies in these two kinds of cancer types. In a phase II trial,
multiple cycles of HD IL-2 at a dose of 600,000–720,000 IU/kg
with up to 15 bolus infusions were administered every 8 h or as

many as the patient could tolerate in 255 patients with meta-
static renal cell carcinoma, which showed a complete response
of 7% and an overall response rate of 15%.28 Hence, IL-2 was
approved for metastatic renal cell carcinoma in 1992 and later
it was approved for metastatic melanoma in 1998 by FDA.
Although IL-2 has been demonstrated capable of mediating
tumor regression, it is insufficient to improve patients’ survival
due to its dual functional properties on T cells and severe
adverse effect in high dose. Nowadays, IL-2 monotherapy is
not the optimal and standard treatment in both metastatic
renal cell carcinoma and metastatic melanoma. Efforts to fur-
ther improve the efficacy of IL-2 therapy are focused on its
combination with other anticancer immunotherapies.

IL-2 combined with other cytokines

Though HD IL-2 monotherapy showed promising results in
metastatic renal cell carcinoma and melanoma, the toxicity and
cost limited its application in a large population. Thus, some
investigators evaluated the efficacy of regimens containing low-
dose IL-2 combined with other cytokines, such as interferon a

(IFN-a). Several phase II trials evaluated HD bolus IL-2 alone,
intravenous (IV) IL-2 and IFN, and subcutaneous IL-2 and
IFN in patients with metastatic renal cell carcinoma and
showed a similar response rates and median overall surviv-
als.29-31 The addition of IV IFN to HD IL-2 did not seem to
improve efficacy with an increasing toxicity. Furthermore, in a
randomized phase III trial, patients with advanced renal cancer
were assigned to receive either low-dose IL-2 and IFN every
6 weeks or HD IL-2 every 12 weeks. The results showed that
HD IL-2 produced a statistically significant improvement in
response rate (23.2% vs. 9.9% p D 0.018) and response duration
(median 24 vs. 15 mo) compared with low-dose IL-2 and IFN-
a.32 Other two randomized studies also demonstrated that
there were no significant differences in overall survival between
HD IL-2 and IL-2 combined with IFN.33,34 Taken together,
these results indicated that HD IL-2 is superior to both lower
doses of IL-2 or IL-2 and IFN in terms of response rates and
duration of response.

IL-2 combined with other cell-based immunotherapy

As mentioned above, IL-2 can promote the activation and cell
growth of T and NK cells. Thus, early combination strategies
were initiated to investigate IL-2 incorporating immune cells
such as lymphokine activated killer (LAK) cells and T cells.
Compared with HD IL-2 monotherapy, co-administration of
LAK cells with IL-2 yielded a clinical response rate of 20–35%,
however, mostly with a transient response in solid tumors.35-37

Another study focused on utilizing an adoptive T cell therapy
(ACT) that combines the infusion of ex vivo expanded tumor-
infiltrating T cells (TILs) with HD IL-2 regimen in patients
with metastatic melanoma.38 In this approach, HD IL-2 is used
to expand TILs from tumor fragments to large numbers for a
period of 5–6 weeks. Then, these TILs undergo further rapid
expansion in the presence of HD IL-2, feeder cells, and anti-
CD3 for an additional 2 weeks to reach billions of cells for later
infusion.39 The promising results were reported in numerous
phase II clinical trials, with an approximately 50% clinical
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response rate and 13% of durable complete regression in
patients with metastatic melanoma.40,41 Although IL-2-based
TIL therapy is very promising, TILs expanded in the presence
of IL-2 exhibit a more differentiated phenotype that can
shorten their long-term persistence and survival in vivo. These
drawbacks may compromise clinical benefits of this treatment.
To improve the quality of TILs, some researchers attempted to
use other cytokines such as IL-7, IL-15, and IL-21 to grow
TILs. These studies have shown that these cytokines could
maintain the expression of CD28 by CD8C TILs more effi-
ciently than IL-2 during the rapid expansion of TILs.42

IL-2 combined with chemotherapeutic agents

IL-2 combined with chemotherapeutic agents (so-called bio-
chemotherapy [BCT]) including cisplatin and dacarbazine has
been extensively investigated in patients with metastatic mela-
noma over the past two decades.43 Composite results from a
variety of inpatient regimens show a response rate about 50%,
with 10% to 20% complete responses and a median survival of
11 to 12 mo. Despite promising antitumor activity reported in
initial studies, BCT regimens have consistently failed to pro-
duce statistically significant benefits in overall survival in ran-
domized phase III trials. Of seven previously reported phase III
trials involving a spectrum of BCT combinations,44-50 only a
single-institution trial comparing sequential administration of
cisplatin, vinblastine, and dacarbazine (CVD) followed by IL-2
and IFN with CVD reported an increase in overall survival
with a statistically marginal significance. Moreover, two meta-
analyses of the literature encompassing 18 trials and more than
2,600 patients in which BCT (including IFN, IL-2, or IL-2 plus
IFN regimens) was compared with chemotherapy alone showed
higher response rates, but no survival advantage, for the BCT
regimens.51,52 Although BCT produced slightly higher response
rates and longer median progression-free survival than CVD
alone, this was not associated with either improved overall sur-
vival or durable responses. Considering the extra toxicity and
complexity, this concurrent BCT regimen cannot be recom-
mended for patients with metastatic melanoma. New combina-
tions of IL-2 with other chemotherapeutic agents should be
investigated.

IL-2 combined with targeted therapy

Targeted therapy has deeply revolutionized the current strategy
for cancer treatments, especially after the discovery of BCR-
ABL in leukemia and EGFR mutation in non-small-cell lung
cancer (NSCLC). Unfortunately, not all of patients would bene-
fit from targeted therapy and nearly all patients who initially
respond to targeted inhibitors inevitably develop acquired resis-
tance to the treatment.53-55 In advanced NSCLC, the imbalance
of the IL-2/IL-2R system, with the decline in IL-2 levels and the
significantly high-soluble IL-2 receptor (sIL-2R) concentra-
tions, has been observed and associated with poor prognosis.56

On the other hand, the role of IL-2 activation in the restoration
of the immunocompetence of lymphocytes against lung cancer
has been demonstrated.57 Other authors found that EGFR-TKI
affects the cancer-related networks of pro-inflammatory cyto-
kines and activates the lymphocytic responses, which suggested

a possible synergism between the EGFR molecular pathway
inhibition and immune system modulation in tumor shrink-
age.58,59 In a phase II study,60 70 consecutive patients with
advanced NSCLC were divided into gefitinib (G) and gefitinib
C IL-2 (GIL-2) group. The author observed a significant higher
overall response rate (16.1% vs. 5.1%, p < 0.001) and a similar
disease control rate (41.9% vs. 41%, p > 0.05). The median
time to progression was similar (3.5 vs. 4.1 mo, p > 0.05) while
the median OS was significantly prolonged in the GIL-2 group
(20.1 vs. 6.9 mo, p D 0.002), which showed that IL-2 might
improve the outcome of EGFR-TKI. A recent retrospective
analysis examined the safety and efficacy of HD-IL2 following
TKI therapy in patients with metastatic renal cell carcinoma,61

which showed that prior TKI did not affect the effect of subse-
quent HD IL-2 therapy. These results suggested the combina-
tion of IL-2 could increase the efficacy of targeted inhibitors.
However, there is still lack the randomized compared study in
patients with driver mutations. Thus, whether other targeted
inhibitors combined IL-2 have this effect remains unknown
and requires further investigation.

IL-2 combined with peptide vaccines

Theoretically, IL-2 has a synergistic effect with cancer vaccines
in the treatment of human malignancies.62 When IL-2 is
administered in conjunction with cancer vaccines such as
recombinant viruses, naked DNA, or peptide antigens, it can
dramatically enhance antitumor effects. A previous phase II
study demonstrated that patients with metastatic melanoma
receiving HD IL-2 plus the gp100 peptide vaccine had a higher
response rate than expected among patients who are treated
with IL-2 alone.63 A recent phase III trial further confirmed
this result.64 In this trial, patients with advanced melanoma
were randomly assigned to receive HD IL-2 alone or gp100
plus incomplete Freund’s adjuvant (Montanide ISA-51) once
per cycle, followed by IL-2. The vaccine plus IL-2 group had a
significant improvement in centrally verified overall clinical
response (16% vs. 6%), longer progression-free survival
(median 2.2 vs. 1.6 mo; p D 0.008) and overall survival (median
17.8 vs. 11.1 mo; p D 0.06) compared with the IL-2 group.
These studies illustrated that the addition of cytokines could
enhance the effect of vaccine therapy in patients with mela-
noma and highlighted the potential of using rational combina-
tions of immune agents in treating patients with metastatic
cancer.

IL-2 combined with immune checkpoint inhibitors

Tumor cells can escape from the immune system via several
mechanisms. One important way is by adapting immune
inhibitory pathways called immune checkpoints. Some
checkpoints are co-stimulatory, which are required for
T-cell activation such as CD28 and its ligands B7.1 (CD80)
and B7.2 (CD86). Other checkpoints inhibit T-cell activa-
tion such as CTLA-4 and PD-1 immune checkpoints.65-67

CTLA-4 is capable of suppressing effector immune
responses on T cells and multiple animal models have sug-
gested enhanced antitumor immunity with CTLA-4 block-
ade.68-70 IL-2 administration may also mediate antitumor
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effects. In addition, IL-2 also stimulates T-regulatory cells
that constitutively express CTLA-4 and can suppress
immune reactions. Hence, IL-2 might enhance antitumor
reactivity in the presence of CTLA-4 blockade. In fact, a
phase I/II study had assessed the antitumor activity and
autoimmune toxicity of CTLA-4 blockade in combination
with IL-2.71 Disappointingly, the objective response rate is
not superior to single administration and there is no evi-
dence to support a synergistic effect of CTLA-4 blockade
plus IL-2 although durable cancer regressions were seen in
patients treated with this combination. Interestingly, a
recent study also suggested that the efficacy of CTLA-4
blockade was significantly improved by recombinant IL-2 in
mouse and elevated serum IL-2Ra predicted resistance to
CTLA-4 blockade in patients with advanced melanoma.72

Hence, we suppose that only patients presenting a high
baseline sIL-2Ra concentration might benefit from CTLA-4
blockade in combination with IL-2. To date, the combina-
tion of IL-2 with CTLA-4 inhibitors seems have no extra
benefit for cancer immunotherapy. However, whether IL-2
has a synergistic antitumor effect with other immune check-
point inhibitors (such as PD-1/PD-L1 antibody, nivolumab,
or pembrolizumab) need more basic and clinic research.

The limitations of IL-2 immunotherapy against cancer

Undoubtedly, IL-2 showed great potential in treating metastatic
cancers. However, its application in the clinic remains relatively
restricted due to several shortcomings. First, IL-2 has the dual
functional properties that it can act on both Tregs as well as
effector T cells.5 As a result, some studies have used IL-2 to
enhance antitumor immune responses and other studies have
used IL-2 to dampen autoimmune responses. Furthermore,
both HD and low-dose IL-2 therapy preferentially induce the
expansion of CD4CCD25CFoxp3C Treg and the Treg level
remains elevated after each cycle of HD IL-2 therapy.73-75 A
study by Sim et al. has shown that HD IL-2 induces a large
expansion of a specific CD4CCD25CFoxp3C Treg subset that
expresses ICOS. These ICOSC Tregs had a higher proliferative
capacity in response to IL-2 and displayed a more immunosup-
pressive phenotype. Patients who showed no response to HD
IL-2 had significantly greater expansion of ICOSC Treg after
the first cycle of therapy compared with these who responded,75

which suggested an inhibitory role of these cells that could be a
crucial limiting factor in preventing antitumor lymphocyte
activity and tumor eradication during HD IL-2 therapy. Tregs
would undergo a rapid reconstitution during HD IL-2 and TIL
therapy, which was found to be associated with poor clinical
response. Meanwhile, the reconstitution of endogenous Tregs
was correlated with the dose of IL-2 doses during TIL
therapy.76

Another major drawback is the severe toxicities of HD IL-2
therapy. Due to rapid elimination and metabolism via the kid-
ney, IL-2 has a short serum half-life of several minutes. Thus,
to achieve an optimal immune-modulatory effect, IL-2 should
be given in a high dose, which will inevitably result in severe
toxicities. HD IL-2-induced severe toxicities including vascular
leak syndrome (VLS), pulmonary edema, hypotension, and
heart toxicities.77-79 Several mechanisms have been proposed

but still not clearly clarified. It is believed that the induction of
pro-inflammatory cytokines such as IL-1, IL-6, tumor necrosis
factor a (TNF-a), and IFNg were potential contributors to IL-
2-induced VLS. In addition, Krieg et al. reported that binding
of IL-2 to the high-affinity IL-2Ra-expressing endothelial cells
induced an acute vasodilation effect and VLS.16 Other studies
have also suggested that elevated levels of eNOS, angiopoietin
2, or a protein fragment of the IL-2 molecule designated as per-
meability-enhancing peptide may lead to VLS.80-82

Strategies to improve efficacy of IL-2 immunotherapy

IL-2 mutants

Ideally, we hope the IL-2 could efficiently activate NK cells and
T effector cells without Treg expansion. To achieve this goal,
IL-2 mutants were created, which had different binding proper-
ties for the IL-2 receptor components. Initial mutational
approaches to improve IL-2 efficacy for effector T cells focused
on enhancing binding to the a chain of the IL-2 receptor.83-86

Disappointingly, this was not as successful as envisioned
because these mutants might actually downregulate immune
responses in vivo when delivered systemically due to the global
stimulation of Tregs that express the a chain component of the
high affinity IL-2 receptor. Recently, two novel IL-2 mutants,
namely F42K and R38A, have been described and character-
ized.87,88 These IL-2 mutants have changed IL-2Ra binding
domains that greatly decrease their binding affinity to IL-2Ra
while having an affinity similar to that of native IL-2 to the
IL-2Rbg complex. Moreover, these mutants can activate LAK
cells without the production of high levels of pro-inflammatory
cytokine (IFNg, IL-1b, TNF-a) and prevent VLS.88 Further-
more, some other studies have suggested that IL-2 mutants
have less effect in stimulating a large expansion of Treg when
compared with native IL-2. These findings are crucial and
encouraging since expansion of Treg by wild-type IL-2 is
another main limitation of HD IL-2 therapy. A more recent
paper identified IL-2 mutants using yeast displaying a higher
affinity to the b chain.89 One of these mutants, termed as
“superkine” or “super-2” reflecting its enhanced agonist prop-
erties, also showed improved antitumor activity and exhibited
less VLS compared to native IL-2. The higher affinity of the
mutated IL-2 for the b chain of the IL-2 receptor may be
important to explain the reason that modified IL-2 might func-
tion in vivo. Others have explored an alternative strategy in
which IL-2 mutants were engineered to carry four point muta-
tions that limit their interaction with IL-2Ra to avoid the
expansion of Tregs. Taken together, these studies clearly
showed that it was feasible to structurally alter IL-2 to accentu-
ate or reduce particular biologic properties to modify the func-
tion of IL-2, which might be an important breakthrough in the
use of IL-2 for cancer immunotherapy.

Antibody–cytokine fusions or immunocytokines

Another novel approach attempts to deliver IL-2 to tumor sites
by genetically fusing cytokines with antibodies (also called
immunocytokine), or antibody components such as a single-
chain variable fragment (scFv), which could bind tumor-
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associated antigens (TAAs).90,91 The major advantage of this
approach is that it could improve the half-life of cytokine and
enhance the immune-modulatory effect of cytokines with less
toxicity. For example, IL-2 was conjugated to an antibody reac-
tive with ganglioside 2 (GD2), which would eventually accumu-
late at the tumor site due to the binding of the antibody to the
GD2 antigen on the tumor. As a consequence, the local concen-
tration of IL-2 is increased at the tumor site. Currently, two
immunocytokines, Hu14.18-IL2 and L19-IL2 (Darleukin), are
in phase II clinical studies. Hu14.18-IL2 consists of an IgG anti-
body that recognizes GD2, and L19-IL2 is a diabody with two
human IL-2 molecules that are genetically fused to the C-termi-
nus of each scFv domain. Pre-clinical studies have demon-
strated encouraging therapeutic outcome in vivo.92-95 In the
phase I clinical trials, Hu14.18-IL2 and L19-IL2 have shown a
mild and reversible toxicity profiles.96,97 In addition Hu14.18-
IL12 showed that 58% of melanoma patients achieved stable
disease after the first cycle of treatment in the phase I clinical
study. Currently, L19-IL2 is in phase II trials to validate its effi-
cacy in patients with metastatic melanoma in combination
with dacarbazine (NCT02076646 and NCT01253096).

Protease activated cytokines

Severe toxicities limit the wide application of HD IL-2 in
clinical practice. Recently, a new strategy was developed to
reduce its adverse effects. This strategy employs a fusion pro-
tein (FP) in which IL-2 is joined covalently to a specific
inhibitory binding component separated by a protease cleav-
age site. The local concentration of the specific binding
inhibitor is extraordinarily high and specially binds to IL-2.
However, after cleavage by proteases that are over-expressed
locally at the tumor site [such as matrix metalloproteases
(MMPs) or prostate-specific antigen (PSA)], IL-2 will be
available to interact with high-affinity receptors on immune
cells. These receptors are 10- to 1,000-fold more avid than
the specific binding of the isolated a chain. Moreover,
immune cells can produce additional cytokines after stimula-
tion. This approach successfully demonstrated that the FP
could reduce tumor growth in a mouse colon cancer model
in vivo.98 In this study, antibody/IL-2 complexes might be
able to bind preferentially to cells that express particular
combinations of receptors, which is meaningful since it
might preferentially stimulate effector cells such as CD8C

cells and NK cells via eliminating inhibitory components. As
a result, specificity will increase, which might further
increase its efficacy. This method could not only increase the
efficacy of immunotherapy by preferentially altering the
tumor microenvironment and enhancing particular subsets
of immune cells but also reduce toxicity since it could spe-
cially identify tumor cells.

Future directions of IL-2-based immunotherapy

Despite the comprehensive studies of IL-2 on immune system
have established the application of IL-2 for tumor immuno-
therapy, a number of poignant obstacles remain for future
research. First, the dose and timing of these new IL-2-based

reagents, the immunogenicity of the novel molecules, and their
effective combination remain unclear. Secondly, although a lot
of studies have focused on the role of IL-2 on T-cells and NK
cells, the IL-2R can be expressed by other haematopoietic cells,
in particular B cells that can express IL-2Ra along with the
b and g subunits. The role of intermediate and high-affinity IL-
2R signaling in B cells and different B cell subsets needs to be
clarified. Thirdly, the role of IL-2 in regulating CD4C T cell
lineage commitment into different effector types, especially the
switch between Treg and Th17 differentiation still remain con-
troversial.99 Lastly, successful immunotherapies might be a
combination, which includes not only one of effective cyto-
kines, but also other immunologic approaches. In the combina-
tion, which one could bring survival benefit and will be
transformed into clinical application need further research in
the future.

Conclusions

IL-2 plays a critical role in the activation of immune system
that could be a useful way to eradicate cancer. As monotherapy,
IL-2 has been demonstrated capable of mediating tumor regres-
sion and was approved for metastatic renal cell carcinoma and
metastatic melanoma by FDA. Nevertheless, IL-2 as monother-
apy is insufficient to improve patients’ survival due to its dual
functional properties on T cells and severe adverse effect in
high dose. The complexity of IL-2 or IL-2 mutants with one or
more of these other common g chain cytokine family members,
named as “superkines” may stimulate unique and more potent
signaling effects on lymphocytes through the simultaneously
triggering of multiple signaling complexes. Their alone or com-
binations with other anticancer immunotherapies, such as
adoptive cell transfer regimens, antigen-specific vaccination,
and blockade of immune checkpoint inhibitory molecules (e.g.,
CTLA-4 and PD-1/PD-L1 antibodies), have shown to over-
come these drawbacks and bring some survival benefit in
patients with advanced cancer. These strategies might hold the
promise of treating metastatic cancer in the future.
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