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Abstract

In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomo-
cysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three
groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP
(peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta
in vitro was determined by response to acetylcholine (ACh). The histological changes in
endothelium were assessed by HE staining and scanning electron microscopy (SEM). The
expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohis-
tochemistry and immunofluorescence, and the number of circulating endothelial progenitor
cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant
endothelial injury and dysfunction including vasodilative and histologic changes, associated
with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries
significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated
by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite
scavenger (FeETMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis
were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate
dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-
end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube
formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of
EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necro-
sis of EPCs were much more severe, and the p-eNOS expression and tube formation in
Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these
changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury.
In conclusion, this study indicates that nitrative stress plays a role in vascular endothelial
injury in hyperhomocysteinemia, as well as induces endothelial progenitor cell injury
directly.
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Introduction

Homocysteine (Hcy) is an intermediate product of methionine metabolism in vivo. The World
Health Organization stated that the fasting plasma homocysteine levels in healthy adults range
from 5 to 15 pmol/L. Elevated plasma homocysteine is associated with the development of coro-
nary artery disease, myocardial infarction, stroke and peripheral vascular disease [1-5]. Hyperho-
mocysteinemia (HHcy) (plasma homocysteine levels more than 15 umol/L) is an established risk
factor for coronary heart disease and other cardiovascular diseases [6,7]. Homocysteine may
directly or indirectly cause vascular endothelial damage and promote the proliferation of vascular
smooth muscle cells [8]. Endothelial dysfunction was exhibited in multiple hyperhomocysteinemic
animal models (including mice [9], rats [10], and primates [11]). However, the underlying mecha-
nism is not fully understood yet. Recent studies have indicated that hyperhomocysteinemia
improved the activity of inducible nitric oxide synthase (iNOS) and increased the generation of
nitric oxide (NO), and induced the production of ROS, which greatly enhanced the formation of
peroxynitrite (ONOO) [12]. Peroxynitrite-mediated nitrative stress leads to severe damage to pro-
teins, lipids, and DNA [13], resulting in cell damage or apoptosis and cytotoxicity. 3-nitrotyrosine
(NT) formation has been used extensively as a footprint for the generation of peroxynitrite in vivo
via nitration of tyrosine residues on proteins. The endothelial progenitor cells (EPCs) play a crucial
role in repairing the injured endothelium and re-endothelialization [14]. The amount and bioactiv-
ity of endothelial progenitor cells have became an important indicator of vascular endothelial func-
tion and risk assessment in cardiovascular disease [15,16]. What’s the effect of elevated nitrative
stress on endothelial progenitor cells in hyperhomocysteinemia? In the current study, by using the
hyperhomocysteinemic rats model in vivo and primarily cultured endothelial progenitor cells in
vitro, we would investigate the role of nitrative stress in hyperhomocysteinemia-induced endothe-
lial dysfunction, mainly focused on the indicator of endothelial repair-endothelial progenitor cells.

Materials and Methods
Animals

The experimental procedures were compliant with the Guiding Principles in the Use and Care of Ani-
mals published by the National Institutes of Health (USA) and were approved by the Institutional
Animal Care and Use Committee of Capital Medical University (China). Animals were provided by
Vital River, License: SCXK (Beijing), 2012-0001. Before the start of the experiments, all animals were
housed in a room under a 12 h light/dark cycle and controlled humidity and temperature, with free
access to food and water. The Wistar rats were performed under pentobarbital sodium (150 mg/kg)
anesthesia to reduce suffering. Once the experiment was completed, all the Wistar rats were eutha-
nized by decapitated at the guillotine (a physical method was suggested by AVMA Guidelines on Eu-
thanasia). 6-week-old female C57BL/6 mice for EPCs culture were sacrificed by cervical dislocation.

The 30 healthy, adult female Wistar rats (SPF grade) were randomly divided into 3 groups:
(1) control, n = 10, females; (2) hyperhomocysteinemia model, n = 10, females; (3) hyperhomo-
cysteinemia treated with FeTMPyP (peroxynitrite scavenger, Cayman), n = 10, females. All
control rats received normal diet and the other two groups received rat chow containing 2.5%
methionine. HHcy + FeTMPyP group received FeTMPyP (3 mg/kg) weekly via intraperitoneal
injection at 10-16 weeks. The rats were sacrificed after 16 weeks.

Plasma homocysteine assays

Carotid artery was cannulated and procoagulant tubes were used to obtain serum. The tube
was centrifuged at 3000 rpm, 4°C, for 10 min. The supernatant was used for homocysteine
detection by enzyme-linked immunosorbent assay (ELISA).
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Endothelium-dependent vasodilatation

After rats were euthanized with pentobarbital sodium (150 mg/kg), fresh thoracic aortas were
isolated from the chest and transferred into ice-cold and oxygenated HEPES buffer (mM:
NaCl, 144; KCl, 5.8; MgCl,-6H,0, 1.2; CaCl,, 2.5; Glucose, 11.1; HEPES, 5; pH 7.38-7.40). The
thoracic aortas were isolated from adipose and connective tissues and cut into arterial rings of
3 to 4 mm in length. These segments were attached to two wires (40 mm) connected to an iso-
metric force transducer (DMT610M, Danish Myo Technology), containing oxygenated (95%
0,, 5% CO,) HEPES buffer at 37°C. The artery segments were stretched eventually to an opti-
mal resting tension of 2.0g, which was maintained throughout the experiment. The segments
were equilibrated for 2 h before vasorelaxation measurements were performed.

After the equilibration period, the artery segments were exposed to HEPES buffer contain-
ing 60 mM potassium (mM: NaCl 29.8, KCI 120.1, MgCl,-6H,0 1.2, CaCl, 2.5, Glucose 11.1,
HEPES 5, pH 7.35-7.45) until reproducible contractile responses were obtained. After washing
with HEPES bulffer, segments of thoracic aortas were pre-contracted with norepinephrine (NE,
10~° mol/L). Once a stable contraction was achieved, increasing concentrations of acetylcholine
(ACh, 10°-10"° mol/L) were added to the chamber to obtain cumulative concentration-
response curves. Subsequently, the thoracic aortas were washed, balanced to basic tension and
the above steps were repeated. Setting NE (10 °mol/L) the maximal contraction amplitude as
100%, changes in vascular tension were reflected by the percentage of ACh-induced vasodila-
tion and NE-induced maximum contraction.

Scanning electron microscope observation

Thoracic aortas were sliced into 3-mm-long sections approximately. The wall was slit carefully with
ophthalmic scissors, unfolded on a filter paper, and transferred to 3% glutaraldehyde for 2 h. Seg-
ments of thoracic aortas were washed with 0.1 M PB buffer for 10 min 3 times, and stored in 0.1M
PB solution at 4°C. Before observation, samples were generally fixed with osmium, dehydrated, dried
and sprayed with gold. The scanning electron microscope was used, setting the voltage to 25kV.

Hematoxylin-Eosin staining

Thoracic aortas were fixed in 4% paraformaldehyde, and embedded in paraffin using tissue
embedding machine (Leica EG 1150 H, Germany). The arteries were sectioned in the vertical
plane into 4-um-thick fragments. Briefly, sections were prepared orderly by dewaxing, staining
and dehydration. The morphology of endothelial cells was observed under the microscope
(Leica, Germany).

Measurement of 3-nitrotyrosine (NT)

Immunohistochemical staining was used to examine 3-nitrotyrosine expression. Briefly, thoracic
aortas were removed and stored in 4% paraformaldehyde for less than 48 h. Fixed thoracic aortas
were dehydrated and embedded in paraffin, and 4-um-thick sections were obtained and mounted
on glass slides. Antigen was retrieved using a microwave method (citric acid buffer, PH 6.0).
Endogenous catalase was inactivated with 3% hydrogen peroxide for 10 min at room tempera-
ture. The sections were stained with primary antibody (anti-3-nitrotyrosine (NT), Abcam) at 4°C
overnight and peroxidase-conjugated affinipure secondary antibody (Santa Cruz) at 37°C for 30
min, consecutively. 3-Nitrotyrosine was detected with diaminobenzidine (DAB). Protein quanti-
fication was performed using ordinary optical microscope (Leica, Germany).

Immunofluorescence was also performed as described previously followed by visualization
under an inverted fluorescence microscope (OLYMPUS, Japan).
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Flow cytometry

In brief, 100 pL of peripheral blood was incubated with a three-fold volume of red cell lysate on
ice for 15 min. After centrifugation of 450 g at 4°C for 10 min, the supernatant was discarded
and two-fold volume of red cell lysate was centrifuged again to precipitate the white blood
cells. Samples were then incubated with 400 puL PBS buffer containing 2 uL fluorescein isothio-
cyanate (FITC)-conjugated CD34 (1:200, Santa Cruz) or phycoerythrin (PE)-conjugated CD31
(1:200, Santa Cruz) antibodies in the dark and were subjected to flow cytometry using the
LSRFortessa Flow cytometer (Becton Dickinson, New Jersey, USA). Cells positive for CD34"/
CD31" within the lymphocyte population were characterized as EPCs.

Culture and treatment of EPCs

Density gradient centrifugation was used to isolate mouse bone marrow progenitor cells. EPCs
surface markers VE-Cadherin (Santa Cruz), CD133 (Santa Cruz), VEGFR-2 (Santa Cruz)
(three primary antibody dilutions of 1:100, and a fluorescent secondary antibody dilution of
1:500) and uptake of Dil-ac-LDL (Molecular Probes) as well as binding function with FIT-
C-UEA-1(Sigma-Aldrich) were identified.

Second to fourth generation cells were selected in the experiment. Cells in 96-test plate were
randomly divided into: control group, SIN-1 hydrochloride (peroxynitrite donor, 3-Morpholino-
sydnonimine hydrochloride, Sigma-Aldrich, USA) treatment and SIN-1+FeTMPyP (10 umol/L)
groups. Treatment group was supplemented with different concentrations of SIN-1 (0, 200, 400,
600, 800, and 1000 umol/L) with 1% FBS for 24 h. The appropriate concentration for subsequent
experiments was determined by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] assay, based on the cleavage of tetrazolium salts by mitochondrial succinate reductase
in viable cells to form formazan dye. After treatments, MTT (5 mg/mL) was added to each well
and incubated for 4 h at 37°C and the formazan crystals were dissolved in DMSO. The absor-
bance was measured at 490 nm and the cell viability expressed as optical density with reference
to the control. Subsequently, LDH and TUNEL methods were performed to detect the necrosis
and apoptosis. Cells were incubated with homocysteine (2000 umol/L, 24 h) or pretreated with
FeTMPyP (10 umol/L), to evaluate the cell viability by MTT.

Western blot

Phospho-eNOS expression in EPCs was measured by western blot. Total proteins were
obtained from cells using cell lysis buffer and were quantified with BCA Protein Assay Kit
(Thermo Scientific). 50 pg of proteins were subjected to 8% SDS-PAGE and then transferred
onto a PVDF membrane. Primary antibodies against anti-phospho-eNOS (Ser 1177) monoclo-
nal (1: 1000, EnoGene) and anti-B-actin monoclonal (1: 1000, Cell Signaling Technology) were
incubated at 4°C overnight. Next, the membranes were blotted with the horseradish peroxi-
dase-conjugated anti-rabbit IgG for 1 h (1: 3000, Beijing Zhongshan Golden Bridge Biotechnol-
ogy). The membranes were washed and proteins were detected using a Western Blotting
Luminol Reagent systerm and autoradiography.

Matrigel Assay

Thaw the Matrigel (BD) at 4°C overnight preventing it to room tempreture. Add 70 uL of
Matrigel to each well of 96-well plate and then leave the Matrigel to solidify at 37°C for 30 min-
utes. 3x10* EPCs were seeded on top of the Matrigel layer in 200 uL of culture medium. Next,
the cells were incubated at 37°C in 5% CO, [17,18]. Subsequently, the tube network was
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observed by brightfield microscope during 12 h period. These images were analyzed using
MetaMorph Software.

Statistical analysis

SPSS v13.0 was used for all statistical analysis and all data were presented as the

means * standard deviation (SD). Repeated measures ANOVA followed by Bonferroni post
hoc test was used to assess the statistical differences of vascular responses to ACh among
groups. One-way analysis of variance (ANOVA) followed by Bonferroni post hoc test was used
to analyze the others. P value < 0.05 was considered significant.

Results
1. The plasma homocysteine level was significantly increased

The Wistar rats were fed with 2.5% methionine diet for 16 weeks to establish rat hyperhomo-
cysteinemia model. The bar chart revealed that the level of plasma homocysteine was signifi-
cantly increased, indicating that the rat hyperhomocysteinemia model was reliable. Anti-
peroxynitrite treatment significantly decreased plasma homocysteine level (Fig 1).

2. Both endothelium-dependent vasorelaxation and morphology of
thoracic aortas changed in hyperhomocysteinemia rats, and anti-
peroxynitrite treatment significantly alleviated endothelial injury

In order to probe the change in vascular function with hyperhomocysteinemia, we detected the
ACh-induced vasorelaxation in the thoracic aortas. ACh is an endothelium-dependent vasodi-
lator that relaxes NE-induced vasoconstriction in control rats. Endothelium-dependent vasore-
laxation in hyperhomocysteinemia rats was lower than in control rats (P<0.01). FeTMPyP, a
peroxynitrite scavenger, increased endothelium-dependent vasorelaxation compared with
hyperhomocysteinemia rats (Fig 2A). The endothelium of thoracic aortas in hyperhomocystei-
nemia rats was apparently damaged, although the cell arrangement of smooth muscle cells was
not altered. The injury to thoracic aortas in control and HHcy + FeTMPyP group was not obvi-
ous. The endothelium was basically complete, and the smooth muscle cells were normally

40 1

304

Plasma Hcy concentration
(nmol/L)

>

T
Con HHcy HHcy+FeTMPyP

Fig 1. Assay of plasma homocysteine level. The plasma homocysteine level of rats was significantly
increased after they were fed with 2.5% methionine diet for 16 weeks. Treatment with ONOO™ scavenger
FeTMPyP decreased the homocysteine level. Data were expressed as meantSD; n = 6—10. **P<0.01
versus Control; #P<0.05 versus HHcy. Control: normal rats; HHcy: hyperhomocysteinemia; FeTMPyP:
ONOO' scavenger.

doi:10.1371/journal.pone.0158672.g001
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arranged (Fig 2B). Additionally, endothelial cells of hyperhomocysteinemia rats were atro-
phied, deformed, and even desquamated. The damaged endothelial cells and the adhered
fibrin-like material were visible (Fig 2C).

3. 3-nitrotyrosine expression in thoracic aortas was elevated in
hyperhomocysteinemia rats, and anti-peroxynitrite treatment lowered
the NT expression

Due to the instability of preoxynitrite and difficulty of direct detection in vivi, 3-nitrotyrosine
(NT) is known as a footprint of preoxynitrite production. The expression of NT in thoracic
aortas in hyperhomocysteinemia group was significantly higher than in control rats. FeTMPyP
significantly decreased NT expression compared to hyperhomocysteinemia rats (Fig 3).

4. EPCs amount in peripheral blood was reduced in hyperhomocysteinemia
rats, and anti-peroxynitrite treatment reversed this reaction

The number of circulating EPCs was assessed by flow cytometry. The scatter plots suggested a
significant reduction of circulating EPCs (CD34"/CD31") amount in peripheral blood of
hyperhomocysteinemia rats compared with control. FEFTMPyP significantly increased the
amount of circulating EPCs (Fig 4).

5. Identification of bone marrow-derived EPCs

To explore the effect of nitrative stress on EPCs in vitro, we cultured endothelial progenitor
cells from mouse bone marrow. EPCs were identified as well-circumscribed monolayers of
cells with cobblestone morphology under inverted microscopy (Fig 5A). The uptake of Dil-ac-
LDL by endothelial progenitor cells, FITC-UEA-1 binding (Fig 5C), surface marker (VE-Cad-
herin, VEGFR-2), stem cell marker CD133 (Fig 5D) were positive and the potential of tube for-
mation (Fig 5B) was tested, which manifesting a successful culture of endothelial progenitor

*k

604{-@- Con
- HHcy
—— HHcy+FeTMPyP
100 T T 1 T 1 1

-10 -9 -8 -7 -6 -5 -4
ACh (log mol/L)

relaxation(%)

#H

Thoracic aortas

Con HHcy HHcy+FeTMPyP

Fig 2. Endothelium-dependent vasorelaxation and morphology change of thoracic aorta. Both endothelium-
dependent vasorelaxation and morphology of thoracic aorta were measured in hyperhomocysteinemia rats, and anti-
peroxynitrite treatment significantly alleviated endothelial injury induced by hyperhomocysteinemia. (A) ACh-induced
endothelium-dependent vasorelaxation. Data were expressed as mean+SD; n = 6—10. Differences between the groups
were assessed by repeated measures ANOVA followed by Bonferroni post hoc test. **P<0.01 versus Control; *P<0.01
versus HHcy. (B) HE staining. Bar represented 50 pm; (C) Scanning electron microscopic observation of thoracic aortas
in which the arrows showed the damaged endothelial cells and fibrin-like material. Bar represented 50/10 pm.

doi:10.1371/journal.pone.0158672.9002
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HHcy+FeTMPyP 7

DAPI

Con HHcy HHcy+FeTMPyP

Fig 3. NT expression in thoracic aortas. The level of NT in thoracic aortas was lifted in response to
homocysteine which was inhibited by FeTMPyP. (A) Immunohistochemistry staining. Bar represented 50 um;
(B) Immunofluorescence staining. Bar represented 100 ym. n = 3. HHcy: hyperhomocysteinemia; FeTMPyP:
ONOO  scavenger; NT: 3-nitrotyrosine.

doi:10.1371/journal.pone.0158672.g003

cells. Furthermore, in order to rule out the possibility of monocytes contamination in vitro cul-
tured EPCs, we detected the surface marker (CD14) of monocytes. There was no CD14" posi-
tive cell appeared in cultured EPCs.

6. Peroxynitrite donor SIN-1 induced EPCs injury in vitro, and anti-
peroxynitrite pretreatment prevented the adverse effect of SIN-1

MTT assay was used to determine the cytotoxicity of different concentrations of peroxynitrite
donor SIN-1 on the EPCs. SIN-1 (800 pmol/L) significantly reduced the cell survival rate of

Specimen_001-C10-PF Specimen_001-H4-PF Specimen_001-F6-PF

e
=

N
'S

e
9

Amount of CD34 T/CD31% cells(%)
o
[—)

Con HHcy HHcy+FeTMPyP

Fig 4. Flow cytometry analysis of endothelial progenitor cells (EPCs). The amount of circulating EPCs
(CD31*/CD34") in peripheral blood was significantly reduced in hyperhomocysteinemia rats, and anti-
peroxynitrite treatment reversed this reaction. Data were expressed as means+SD; n = 4-6. *P<0.05 versus
Control; #P<0.05 versus HHcy. HHcy: hyperhomocysteinemia; FeTMPyP: ONOO" scavenger; EPCs:
endothelial progenitor cells.

doi:10.1371/journal.pone.0158672.g004
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DAPI

Marker

« 100um s SR 100um * 100am

Fig 5. Identification of mouse bone marrow-derived endothelial progenitor cells (EPCs). (A) Microscopic
photographs of EPCs. (B) EPCs Matrigel assay. (C) Dil-ac-LDL uptaking and UEA-1 binding of EPCs were
positive with immunofluorescence staining. (D) The Markers of EPCs [CD133, VEGFR-2 and VE-Cadherin] were
positive with immunofluorescence staining. (E) The marker of monocytes. Bar represented 100 um.

doi:10.1371/journal.pone.0158672.9g005
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Fig 6. Peroxynitrite donor SIN-1 induced EPCs injury in vitro, and anti-peroxynitrite pretreatment prevented the
adverse effect of SIN-1. (A) SIN-1 (800 pmol/L) significantly reduced the cell survival rate of EPCs, and was selected as
the effective stimulation concentration for further study. Pretreatment with peroxynitrite scavenger FeTMPyP (10 pmol/L)
prevented the adverse effect of SIN-1 on the survival of EPCs. The LDH activity (B), TUNEL staining (C) were increased
as well as the total tube length (D), the expression of phospho-eNOS (E) were decreased with SIN-1 treatment, which
could be reversed by FeTMPyP. *P<0.05, **P<0.01 versus Vehicle; P<0.05, #P<0.01 versus SIN-1 (800umol/L). n = 5.
SIN-1: ONOO™ donor; FeTMPyP: ONOO™ scavenger.

doi:10.1371/journal.pone.0158672.9006

EPCs, and was selected as the effective stimulation concentration for further study. Pretreat-
ment with peroxynitrite scavenger FeTMPyP (10 umol/L) prevented the adverse effect of SIN-
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SIN-1+FeTMPyP

Con _SIN-1

DAPI

) “-
Merge---

Fig 7. NT expression in EPCs. Cells were treated with SIN-1 (800 umol/L) or FeTMPyP (10 pmol/L) for 24 h.
The level of NT was determined using immunofluorescence. The results prompted that EPCs NT expression
was increased in the presence of SIN-1 which could be reduced by FeTMPyP. Bar represented 100 pm. SIN-
1: ONOO™ donor; FeTMPyP: ONOO™ scavenger.

doi:10.1371/journal.pone.0158672.g007

1 on the survival of EPCs (Fig 6A). LDH activity demonstrated apparently increased necrosis
in EPCs following SIN-1 treatment, which was inhibited by FeTMPyP pretreatment (Fig 6B).
TUNEL staining showed a similar trend of apoptosis (Fig 6C). And, treatment with FeTMPyP
reversed the phospho-eNOS expression and the ability of tube formation induced by SIN-1(Fig
6D and 6E).

7. Expression of NT in EPCs was elevated following SIN-1 treatment
which was revered by FeTMPyP

Immunofluorescence was employed in the examination of NT expression in EPCs. The results
revealed a significantly elevated expression of NT in endothelial progenitor cells following
SIN-1 treatment. In contrast, hardly any fluorescence signal of NT was observed with FeTM-
PyP treatment compared with SIN-1 treatment alone (Fig 7).

8. Anti-peroxynitrite pretreatment reversed the homocystein- induced
EPCs injury

The preceding experiments showed that peroxynitrite induced injury of EPCs in vitro. We next
determined the effect of homocysteine on EPCs. MTT was applied after treating with homocys-
teine for 2 h in 2000 pmol/L. There was a significant decrease of EPCs survival rate in homo-

cysteine group, and pretreatment with FeTMPyP significantly improved the survival rate of
EPCs (Fig 8).

Discussion

Different degrees of endothelial dysfunction have been reported in a range of experimental
hyperhomocysteinemia animal models. However, the underlying mechanism of endothelial
dysfunction associated with elevated plasma homocysteine remains poorly understood [19,20].
In this study, we introduced the effect of nitrative stress on vascular endothelial injury during
the development of hyperhomocysteinemia.

Nitric oxide (NO) represents important signal molecules in various physiological condi-
tions, such as vasodilatation, cell growth and angiogenesis [21,22,23]. However, endothelium-
dependent vasodilation was reduced by decreased NO bioavailability, which was related to
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Fig 8. MTT assay of EPCs on the role of homocysteine. The survival rate of homocysteine group was
significantly decreased, and improved significantly after pretreatment with FeTMPyP. *P<0.05 versus
Vehicle; #P<0.01 versus Hey. n = 5-8. SIN-1: ONOO™ donor; FeTMPyP: ONOO" scavenger.

doi:10.1371/journal.pone.0158672.g008

elevated peroxynitrite in pathological conditions [24,25]. The 3-nitrotyrosine (NT) is a marker
of nitrative stress [26,27], which is generated by the reaction between tyrosine residues or free
tyrosine and peroxynitrite. Recent studies have reported that Hcy increased the synthesis of
inducible nitric oxide synthase (INOS) and ROS [28], generating large quantities of peroxyni-
trite, which were consistent with our present results that the NT expression of thoracic aorta in
hyperhomocysteinemia rats was significantly increased. Peroxynitrite decomposition products
contributed to pathological outcomes involving tissue damage [29], tyrosine nitration of pro-
tein [30], as well as superoxide dismutase (SOD) inactivation [31,32]. These reports were in
keep with our observations that anti-peroxynitrite treatment mitigated endothelial dysfunction
significantly. Endothelium-dependent vasodilation dysfunction results from the excessive deg-
radation of NO in hyperhomocysteinemia following inactivation of SOD by high levels of per-
oxynitrite [33]. Removal of peroxynitrite partially or completely improves vasodilation as SOD
converts superoxide into NO [34]. Further, in hyperhomocysteinemia, oxidation of cysteine by
endothelial nitric oxide synthase (eNOS) results in decreased NO activity [35]. There are
reports that nitrative stress induces alterations and inactivation in potassium conductivity,
leading to vasodilation dysfunction mediated by endothelium-derived hyperpolarizing factor
[36]. Thus, our foregoing studies have shown a potential relationship between hyperhomocys-
teinemia-mediated endothelial dysfunction and nitrative stress.

Endothelial progenitor cells (EPCs) from peripheral blood monocytes have been propagated
as a novel approach in the diagnosis and follow-up of vascular developments in cardiovascular
diseases and endothelial dysfunction [37-40]. Decline in circulating EPCs may be linked to car-
diovascular events. Endothelial cells adjacent to the injured cells proliferate and migrate simul-
taneously. Peripheral blood circulating EPCs are mobilized to participate in the vascular repair
and neovascularization. The flow cytometry results suggest the number EPCs in peripheral
blood in hyperhomocysteinemia rats was significantly decreased. Treated with ONOOQO™ scaven-
ger FeTMPyP elevated the number EPCs in peripheral blood. However, the number of EPCs in
peripheral blood is low and accounts for only 0.01% cells of the peripheral blood, preventing
easy isolation [41,42]. We identified EPCs by counting the circulating CD34*/CD31 " cells.
CD34 is a primary marker associated with pro-vasculogenic subpopulation of hematopoietic
stem cell (HSCs), while CD31 possesses endothelial characteristics. However, mature endothe-
lial cells also express CD34" and circulating EPCs undoubtedly express a variety of typical
endothelium-like markers [43]. Therefore, by equating EPCs with CD34"/CD31" cells, our
present approach is theoretically defective, partially. Our current data of EPCs numbers were a
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little higher than theoretical estimates. As a marker of immature cells, CD133 is better than
CD34 [44] and only exists in hematopoietic cells. In subsequent experiments, we will select
CD133 as a more representative progenitor cells marker. Despite this limitation, further we
successfully isolated EPCs from bone marrow of mice, and explored the direct effect of nitrative
stress on EPCs by culturing bone marrow-derived EPCs in vitro. Our data showed that peroxy-
nitrite decreased the cell survival rate, and induced apoptosis and necrosis of EPCs. The find-
ings in this study establish that peroxynitrite directly damages EPCs. Until now, it is intriguing
that the direct effect of nitrative stress on EPCs was not reported. Here, we have shown for the
first time that nitrative stress directly contributed to the injury of EPCs.

In a word, this study indicates that nitrative stress play a role in vascular endothelial injury
in hyperhomocysteinemia, as well as induce endothelial progenitor cells injury directly. Our
data presented here highlight the mechanism of hyperhomocysteinemia-induced endothelial
injury, and offer a new insight into the risk factors of cardiovascular disease. Additional experi-
ments will be carried on to explore the specific mechanisms involved in EPCs exposed to nitra-
tive stress.
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