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ABSTRACT The identification of statistical SNP-SNP interactions may help explain the genetic etiology of
many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due
to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology
Research on Adult Health and Aging (GERA) study to search for SNP-SNP interactions associated with
10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among
approximately N = 300,000 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) $
0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophy-
tosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N =
45,171 subjects were included after quality control steps were applied. These data were divided into
discovery and replication subsets; the discovery subset had . 80% power, under selected models, to
detect genome-wide significant interactions (P , 10212). Interactions were also evaluated for enrichment
in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No inter-
action in any disease was significant in both the discovery and replication subsets. Enrichment analysis
suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be
nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role
in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants,
and/or involve complex models of interaction that are not captured well by the methods that were utilized.
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Gene-gene interaction, also known as epistasis, is the phenomenon
where the phenotypic effect of variation at one genetic locus depends on
variation at other loci (Cordell 2002). Epistasis is thought to be biolog-
ically prevalent and to contribute to themissing heritability problem for
complex human disease (Lunzer et al. 2010; Huang et al. 2012; Zuk
et al. 2012; Hemani et al. 2013). As a result, a significant amount of
effort has been invested into attempting to identify epistatic effects in
human traits (Hemani et al. 2014; Wei et al. 2014; Murk et al. 2015).
The study of epistasis is challenged by its high-dimensional nature,

which on a genome-wide scale can result in a very large search space
and significant difficulties in attaining sufficient statistical power to
detect effects. To overcome this challenge, most studies of epistasis have
restricted their search space to relatively small numbers of single nu-
cleotide polymorphisms (SNPs), often focusing on those located in
previously identified trait-relevant candidate genes (Murk et al. 2015).
However, this type of approach will exclude the vast majority of the
genetic search space and thus potentially miss a large number of
interacting genes.

We aimed to conduct well-powered, genome-wide searches for
epistasis at the pairwise SNP level (i.e., to identify SNP-SNP interac-
tions), using data from the GERA study (Hoffmann et al. 2011a,b). This
study involved a large number of subjects (N = 78,486 initially avail-
able) who were genotyped using genome-wide SNP arrays, and who
had health outcome data available for a number of electronic medical
records-derived medical conditions. In addition, we sought to identify
SNP characteristics that were enriched among replicated interactions,
which could inform strategies to reduce the search space in smaller
datasets.

To perform the exhaustive searches for interaction, two different an-
alytical approaches were used: FastEpistasis and BOOST. FastEpistasis
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is a computationally efficient but imprecise method to screen for
interactions, and is intended to be used in conjunction with follow-up
analysis by slower butmore precise methods, such as logistic regression
(Purcell et al. 2007; Ueki and Cordell 2012). BOOST is another com-
putationally efficientmethod that has been found to have greater power
than FastEpistasis for some models of interaction, particularly models
that do not have main effects (Wan et al. 2010). The use of these two
different methods could therefore allow greater flexibility in detecting
multiple different forms of interaction.

MATERIALS AND METHODS

Study dataset
Authorized access to data from the GERA study was obtained (dbGaP
Study Accession: phs000674.v1.p1), and use of these data was approved
by the Yale Human Investigation Committee. This study is described
in detail elsewhere (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000674.v1.p1) (Hoffmann et al. 2011a,b; Kvale
et al. 2015). Briefly, the study was comprised of 78,486 subjects who
were members of the Kaiser Permanente Medical Care Plan, Northern
California Region, and who participated in the Kaiser Permanente
Research Program on Genes, Environment, and Health (RPGEH)
survey study. All subjects were 18 or more years of age at the start of
the RPGEH survey in 2007, were members of the aforementioned
medical care plan for at least 2 yr prior, and provided broad consent
for the use of their data in research. Genotype data were derived from
custom-designed Affymetrix Axiom genome-wide SNP microarrays
(Hoffmann et al. 2011a,b). Four different chips were designed, and
subjects were assigned to a particular chip depending on his or her
race/ethnicity categorization (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/GetPdf.cgi?id=phd004309). In the present study, we in-
cluded all subjects who were genotyped on the EUR (“Non-Hispanic
White”) chip (counts before quality control: N = 62,318 subjects
and N = 670,176 SNPs available).

Health outcomes were binary-coded (yes or no) variables represent-
ing various medical conditions, as derived from Kaiser Permanente
Electronic Medical Records. These conditions were defined based on a
subject having at least two medical diagnoses within an ICD-9-based
diseasecategory.These conditionsand the ICD-9codes thatwereusedto
define them are listed here: http://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/GetPdf.cgi?id=phd004308. Individual-level diagnostic codes
were not available (i.e., only the derived binary variables were present
in the dataset). We excluded from potential analysis the conditions
“Cancer” and “Psychiatric,” as it was judged that these conditions were
too broadly defined for the objectives of the present study. We also
excluded any conditions for which we had less than 50% power to
detect an interaction (based on Quanto-derived estimations to detect
an interaction OR $ 1.50, at an a of 10212; see power estimation
methods below). After these exclusions, the conditions “asthma,”
“allergic rhinitis,” “cardiac disease,” “depression,” “dermatophytosis,”
“diabetes, type 2,” “dyslipidemia,” “hypertensive disease,” “hemor-
rhoids,” and “osteoarthritis” (N = 10 conditions) were included as
outcomes for analysis.

Additional variables included from the dataset included birth year
category, sex, and genetic structure principal components (10 compo-
nents total). The principal components were previously calculated
and provided by the original GERA study investigators; details of this
are reported here: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
GetPdf.cgi?id=phd004309. Birth year category was defined as one of
14 possible time periods (category 1: birth year# 1923; categories 2–14:
5-year categories, starting with 2 being the period 1924–1928). We

defined “minimum age” as the difference in years between the time
of survey (2007) and the last year of the birth year category. For exam-
ple, the minimum age for a subject with a birth year category of 2 was
defined to be 2007 2 1928 = 79 years.

Sample quality control (QC)
Subjects were excluded if they (i) had an ambiguous SNP-estimated
sex; (ii) had a subject call rate , 95%; (iii) were selected for exclusion
due to relatedness with other subjects; (iv) had a reported race/ethnicity
other than “white” or did not have principal components available
for the EUR chip; and (v) were a PCA outlier, defined as having a
value . 6 standard deviations on any one of the 10 principal com-
ponents. Ambiguous SNP-estimated sex was defined as having an
X-chromosome homozygosity estimate (F) between 0.2–0.8. There
were 17 subjects for whom the unambiguous SNP-estimated sex dif-
fered from the reported sex; in such cases, the SNP-estimated sex was
considered to be the true sex. To assess subject relatedness, pi-hat (pro-
portion identical by descent) was estimated using the dataset after being
pruned for linkage disequilibrium (LD) (N = 358,590 SNPs). Pi-hat was
calculated for every possible pair of subjects; for pairs with pi-hat $
0.20, one subject of the pair was randomly excluded. The numbers
of subjects excluded at each QC step are listed in Supplemental
Material, Table S1.

Case/control definitions
Cases and controlswere defined after sample quality control procedures
were completed. For each of the 10outcomes included for analysis, cases
were subjects who were coded as having the respective condition, while
controls were subjects without it. Controls were excluded if their birth
year category exceeded the 99.5 percentile birth year category of cases
(except in the caseof asthma, allergic rhinitis, anddermatophytosis). For
example, for osteoarthritis cases, the 99.5 percentile birth year category
was 10 (minimum age of this category: 39 years); therefore, all controls
with a birth year category of 11 or higher (i.e., those younger than
39 years of age) were excluded. This was performed in order to exclude
controls that were not of a sufficient age to be of comparable risk for the
condition. No exclusions based on age were made for asthma, allergic
rhinitis, and dermatophytosis, since these conditions are common in
children. The number of controls excluded based on age are shown in
Table S2. In the final analyses, across the different conditions, the
numbers of cases ranged from 5549–24,047, and the numbers of con-
trols ranged from 20,018–39,154.

SNP quality control
Tencopiesof thedataset, one for each includedoutcomecondition,were
created, and SNPQC procedures were performed within each condition-
specific dataset. SNPs were excluded if they (i) could not be mapped to
the hg19 reference genome; (ii) had a SNP call rate, 98% overall or in
cases or controls separately; (iii) had a minor allele frequency (MAF),
0.15 (this was specified because there was little power to detect an
interaction involving SNPs that were less common than this); (iv) were
nonautosomal; or (v) had a test for deviation from Hardy-Weinberg
equilibrium with P-value , 1025, among controls. The numbers of
SNPs excluded at each QC step are listed in Table S3.

Discovery and replication datasets
After sample and SNPQC, each outcome-specific dataset was randomly
divided into a discovery and a replication dataset. These divisions
were made such that the targeted size of each replication dataset was
1000 cases and 3000 controls. These numbers were chosen because they
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provided . 80% power for nominal replication (based on Quanto-
derived estimations to detect an interaction OR $ 1.50, at an a of
0.05; see power estimation methods below). The final numbers of
subjects in each discovery and replication dataset are shown in
Table S2.

Genomic inflation
At the level of marginal (individual-SNP) effects, test statistic inflation
due to population stratification or other sources was assessed via
calculations of the genomic inflation factor l. Values of l greater than
1.05 were considered evidence of test statistic inflation. Marginal test
statistics were derived using genome-wide single-SNP logistic regres-
sion analyses performed within all 10 sets of discovery and replication
datasets. The cardiac disease (l = 1.14), dermatophytosis (l = 1.23),
type 2 diabetes (l = 1.08), dyslipidemia (l = 1.11), and hypertensive
disease (l = 1.30) data showed evidence of inflation (Table S4). For
cardiac disease and dermatophytosis, this inflation was largely removed
after adjusting for the first two principal components. For the other
conditions, adjustment for the first two components either had no
effect (type 2 diabetes) or reduced but did not remove the inflation
[dyslipidemia (l = 1.07) and hypertensive disease (l=1.10)]. Adjust-
ment for the full 10 principal components yielded no further improve-
ment in inflation (data not shown). All principal components were
those that were provided with the GERA dataset. Since subjects were
genotyped using one of two different kits, we also sought to determine
whether the type of kit had any effect on test statistic inflation. In our
final analyses (after all exclusions), 1.5% of all subjects were genotyped
on the less commonly used kit; when these subjects were excluded, the
observed values of l decreased by 0.02 or less, which was determined to
be a negligible amount (data not shown). As a result, no exclusions
based on kit type were made in the final analyses.

Interaction test statistic inflation was visually evaluated using
quantile-quantile plots. To do this, a random selection of approxi-
mately 10,000SNPswasobtained fromeachcondition-specificdataset,
and all possible pairs of SNPs (approximately 5· 107 pairs) were tested
for interaction using the FastEpistasis analytical approach (described
below). Observed vs. expected-under-the-null 2log P-values were
plotted, and no evidence of inflation was observed (Figure S1; shown
only for the discovery datasets).

Analytical approaches
All SNPswere diallelic. The analytical referent allele was themajor allele
(by allele frequency in the discovery dataset), while the nonreferent
allele (which may also be known as the “alternative” or “coded” allele)
was the minor allele. To assess marginal effects, logistic regression
models were used, with SNPs coded additively (based on the number of
copies of the nonreferent allele). Unadjusted and adjusted (for birth
year category, age, and the first two principal components) analyses
were performed for all condition-specific datasets. For ranking of SNPs
by marginal effect P-value, the adjusted analyses in the discovery data-
sets were used.

To assess interactions on a genome-wide scale, all pairwise interac-
tions among all postQC SNPs were assessed in each condition-specific
discovery dataset using two different approaches: FastEpistasis and
BOOST (as implemented in the version of Plink listed below). To avoid
spurious evidence of interaction due to linkage disequilibrium between
SNPs, an interaction was excluded if its two SNPs were located within
1Mbof each other. From these genome-wide analyses, interactionswith
an interaction P-value , 1027 were selected for follow-up. For inter-
actions selecting from FastEpistasis analyses, the follow-up consisted of

reanalysis of the selected interactions using logistic regression model-
ing, in both the discovery and replication datasets. Unadjusted and
adjusted (for birth year category, age, and the first two principal com-
ponents) logistic regression analyses were performed. In these models,
SNPs were coded additively, and the nonreferent allele was the minor
allele in the discovery dataset. Models included main effects for each
SNP and an interaction term for the SNPs; statistical significance was
based on an explicit test of the interaction term. For interactions se-
lected from BOOST analyses, the follow-up consisted of analysis of the
selected interactions in the replication dataset, also using BOOST. For
final ranking of interactions by P-value, the adjusted analyses of the
logistic regression modeling, or the BOOST analyses, from the discov-
ery datasets were used.

Statistical significance and replication
Nominal significance was defined as P , 0.05. Bonferroni correction
was used to determine strict statistical significance. For marginal
effects, genome-wide significance was defined as P-value , 1027

(i.e., 0.05 corrected for tests of the approximately 300,000 SNPs
included in each condition-specific marginal analysis). Marginal
effect significance was declared based on P-values from the analyses
that were adjusted for birth year category, sex, and the first two
principal components. For interactions, genome-wide significance
was defined as interaction P-value, 10212 (i.e., 0.05 corrected for
tests of the approximately 4.5 · 1010 interactions evaluated in each
condition-specific analysis). Interaction significance was declared
based on P-values from the logistic regression (adjusted) or
BOOST analyses. For the enrichment analyses, significance was
defined as P-value, 0.0004 (i.e., 0.05 corrected for 120 enrichment
tests).

For marginal effect analyses and interactions assessed with lo-
gistic regression (i.e., interactions that were followed-up after the
FastEpistasis analyses), an effect was considered replicated if it had
both a P-value, 0.05 and a consistent direction of effect (with that
of the discovery dataset, based on a marginal effect odds ratio or
interaction odds ratio, respectively) in the replication dataset. For
interactions assessed using BOOST, an interaction was considered
replicated only if it had a P-value , 0.05 in the replication dataset
(directions of effects were not generated in these analyses and thus
were not be compared).

Analytical software
Quality control procedures, marginal effects testing, and genome-
wide interaction tests (FastEpistasis and BOOST) were performed
using Plink 1.90 b (https://www.cog-genomics.org/plink2) (Chang
et al. 2015). To assess the accuracy of epistasis tests made using Plink
1.90, we compared its test results to those of similar analyses made using
Plink 1.07 for a sample of interactions, and found concordant results
(Figure S2). Logistic regression tests for epistasis were performed using
CASSI Genome-Wide Interaction Analysis Software v2.50 (https://www.
staff.ncl.ac.uk/richard.howey/cassi/).

Data and reagent availability
File S1 provides a description of all interactions selected for follow-up
(https://figshare.com/s/01e151ea20ecb5cdb8db; DOI: 10.6084/m9.
figshare.3113551). File S2 provides additional methodological de-
tail. Figure S1 depicts quantile-quantile plots for interactions in the
discovery datasets. Figure S2 provides a comparison of epistasis analysis
results derived from Plink 1.07 and Plink 1.90. Table S1 contains sub-
ject quality control data. Table S2 contains disease-specific subject
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counts. Table S3 contains SNP quality control data. Table S4 contains
genomic inflation data for marginal effects. Table S5 contains
database search terms for identifying disease-related genes. Table
S6 contains SNP annotation counts. Table S7 contains power anal-
yses for the discovery datasets. Table S8 contains power analyses
for the replication datasets. Table S9 contains the penetrance table
for epiSIM power simulations. Table S10 contains estimates of
phenotypic variance explained by additive genetic variance of
the included SNPs. Table S11, Table S12, Table S13, Table S14,
Table S15, Table S16, Table S17, Table S18, Table S19, and Table
S20 describe the top 10 marginal effects for each studied condition.
Table S21, Table S22, Table S23, Table S24, Table S25, Table S26,
Table S27, Table S28, Table S29, and Table S30 describe the en-
richment analyses for each condition. Table S31 describes the Bio-
Grid interactions.

RESULTS

Dataset description
The 10 conditions included as outcomes for analysis, and case/control
characteristics for each condition, are shown in Table 1. A majority of
the subjects were women, and the median age of the subjects was at or
above 59 years of age. All subjects were classified as being of white
race/ethnicity. Assuming a logistic regression model, most of the dis-
covery data offered greater than 80% power to detect an interaction
with genome-wide significance (assessing all possible pairwise interac-
tions among approximately N = 300,000 SNPs, or N = 4.5 · 1010

interactions), assuming an interactions odds ratio of $ 1.50 for SNPs
with MAF of$ 0.15 (Table S7). The exceptions to this are the data for
depression, dermatophytosis, and type 2 diabetes, which only had
greater than 50% power. All replication datasets had greater than
80% power to detect the same kind of interaction at a nominal signif-
icance of P , 0.05 (Table S8). Estimates of the proportion of pheno-
typic variance explained by additive genetic variance of the included
SNPs ranged from 3.6% (dermatophytosis) to 24.6% (diabetes, type 2)
(Table S10).

Marginal effects
Genome-wide tests of marginal effects (i.e., the effects of SNPs consid-
ered individually) were conducted across all 10 conditions (see Table 2
for a summary, and Table S11, Table S12, Table S13, Table S14, Table
S15, Table S16, Table S17, Table S18, Table S19, and Table S20 formore
extensive analyses). Among the most significant SNPs for each condi-
tion, five were genome-wide significant (with P-values ranging from
5.75 · 1028 to 1.83 · 10237), three of which were replicated (Table 2).
The genome-wide significant SNPs tended to be in or near well-known
or highly plausible disease-relevant genes, such as IL1RL1 (rs2160203)
in allergic rhinitis (Li et al. 2015), HLA-DQB1 (rs17612802; 6.9 kb
distant) in asthma (Li et al. 2010), TCF7L2 (rs4506565) in type
2 diabetes (Zeggini and McCarthy 2007), APOB (rs1367117) in
dyslipidemia (Di Taranto et al. 2015), and KCNK3 (rs1275985) in
hypertensive disease (Girerd et al. 2014). However, no significant
marginal effects were found for cardiac disease, depression, derma-
tophytosis, hemorrhoids, or osteoarthritis.

Genome-wide search for interactions
The discovery datasets of all 10 conditions were subjected to
exhaustive genome-wide searches for pairwise interactions, using
both the FastEpistasis (with follow-up via logistic regression) and
BOOST analytical approaches. Only one interaction met the
criteria for being declared genome-wide significant (interaction
P , 10212 from the adjusted logistic regression analysis or
from the BOOST analysis). This was the interaction between
rs4456135 and rs12162346 for the outcome of dermatophytosis
(P = 4.29 · 10213, logistic regression); however, this was non-
significant and in opposite direction in the replication dataset
(Table 3). For each condition, the most significant interaction,
and the most significant nominally replicated interaction, are
listed in Table 3 and Table 4 for FastEpistasis and BOOST,
respectively. The rank number (by interaction significance) of
the most significant nominally replicated interactions ranged
from 1 (hemorrhoids; BOOST analysis) to 100 (cardiac disease;
FastEpistasis analysis). All followed-up interactions (i.e., those with

n Table 1 Subject characteristics

Condition Dataset N, Cases N, Controls
Min. Age (Years), Range Min. Age (Years), Median Male, %

Cases Controls Cases Controls Cases Controls

Allergic rhinitis Discovery 10,258 30,933 18–84 18–84 64 59 31.1 37.2
Replication 976 3004 18–84 18–84 59 59 29.8 35.9

Asthma Discovery 6486 34,669 18–84 18–84 64 59 28.3 37.1
Replication 988 3028 18–84 18–84 64 59 26.3 37.4

Cardiac disease Discovery 11,069 28,979 34–84 34–84 69 59 50.1 30.5
Replication 1004 3013 34–84 34–84 69 59 46.9 31.2

Depression Discovery 4824 36,162 24–84 24–84 59 64 24.6 37.3
Replication 978 2992 24–84 24–84 59 59 24.3 36.9

Dermatophytosis Discovery 5163 36,083 18–84 18–84 64 59 43.6 34.2
Replication 989 2936 18–84 18–84 64 59 45.2 35.2

Diabetes, type 2 Discovery 4563 35,573 34–84 34–84 64 59 49.4 33.9
Replication 986 2943 34–84 34–84 64 59 48.8 33.7

Dyslipidemia Discovery 23,061 17,021 34–84 34–84 64 59 40.2 29.8
Replication 986 2997 34–84 34–84 64 59 38.3 30.5

Hemorrhoids Discovery 6199 34,356 29–84 29–84 64 59 40.7 34.8
Replication 1006 3117 29–84 29–84 64 59 41.6 34.0

Hypertensive disease Discovery 21,713 18,332 34–84 34–84 69 54 40.1 31.6
Replication 984 3036 34–84 34–84 64 59 38.1 30.8

Osteoarthritis Discovery 15,454 23,578 39–84 39–84 69 59 31.9 38.7
Replication 961 2985 39–84 39–84 69 59 32.5 38.8

Min. age, the minimum possible age of a subject (see the Materials and Methods section).
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FastEpistasis or BOOST P , 1027 in the discovery datasets) are
described in File S1.

Enrichment analysis
We next attempted to determine if there was an enrichment of nom-
inally replicated interactionswith particular SNP annotations (based on
six possible categories; see the Supplemental Materials), among all
followed-up interactions. These results are shown inTable S21, Table
S22, Table S23, Table S24, Table S25, Table S26, Table S27, Table
S28, Table S29, and Table S30. The only annotation category that
showed evidence for enrichment was that of “marginal” (SNPs with
a marginal effect P , 0.05 in the discovery dataset of the respective
condition). Both cardiac disease and hypertensive disease showed
strictly significant (P , 0.0004) evidence for this type of enrichment,
while dyslipidemia also showed nominally significant evidence
(P, 0.05) for the same. For example, in cardiac disease (analyzed by
logistic regression; Table S23), among interactions where both SNPs
had the “marginal” annotation, 20.0% were nominally replicated;
while among interactions where neither of the SNPs had this anno-
tation, only 2.5% were nominally replicated.

However, no annotation strategy could have been used to success-
fully narrow the search space in order to find a replicated, significant
interaction. This can be seen in Table S21, Table S22, Table S23, Table
S24, Table S25, Table S26, Table S27, Table S28, Table S29, and Table
S30, comparing entries in the columns “Min Int P” with prefix “R” (the
smallest P-value among all replicated interactions matching the stated
annotation type) and “Thresh” (a hypothetical significance threshold,
defined as 0.05 corrected for the number of interactions that would
have resulted had the search been limited to interactions matching
the stated annotation type). For example, in cardiac disease, there were
N = 16,284 SNPs with the “marginal” annotation (Table S6). An ex-
haustive pairwise analysis of just these SNPs would result in 1.3 · 108

evaluated interactions and a significance threshold of P, 3.77 · 10210.
The most significant replicated interaction among all of these had an
actual P-value of 1.09 · 1027 (Table S23), and thus would not have been
considered significant. Therefore, although we can detect a possible en-
richment among interactionswithmarginal effects, itmay not be possible
to use this filtering approach alone to identify which of the interactions
are actually be genuine; effect sizes may be too small to detect.

BioGRID interactions
Finally, we sought to determine whether any interaction that met the
criteria for follow-up involved genes (or their products) that have been
previously reported tophysically or genetically interact, as curated in the
BioGRID database. Across all analyzed conditions, there were three
BioGRID interactions among the followed-up interactions for the
FastEpistasis analyses, and two for the BOOST analyses (Table S31).
However, none of these interactions were nominally replicated.

DISCUSSION
To our knowledge, this study presents one of the largest (by subject
count) searches for SNP-SNP interactions yet conducted for human
disease. Despite this, and the use of two different analytical methods, we
failed to detect a significant, replicable interaction after exhaustively
searching through 45 billion possible interactions in each of 10 different
complex diseases. One possible explanation for this is that no interactions
exist for these conditions involving SNPs with a MAF$ 0.15 operating
under the interactionmodels specified in the power analyses. If SNP-SNP
interactions do contribute to the conditions that were analyzed, then they
are likely of weak effect and/or involve lower-frequency SNPs, which willn
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be very challenging to study. Statistical power drops off rapidly as the
interaction odds ratio goes from 1.50–1.25; even at a modest significance
level of P, 1027, we did not have power to detect an interaction with an
odds ratio of 1.25 for any condition (Table S7).

In addition, SNP annotation by functionality (exonic function,
regulatory function, and disease-relevant eQTL) and gene assignment
(disease-relevant gene and any gene) failed to result in any appreciable
enrichment in replicated interactions, suggesting that these methods
alone may not be useful in trimming the epistasis search space. Only
SNPs with marginal significance showed evidence for enrichment, for
some outcomes. Interestingly, this is consistent with a recent suggestion
that “epistatic effects that seem to be statistically robust have large
marginal effects” (Wei et al. 2014). Furthermore, among all interactions
that met follow-up criteria, few involved genes were reported to interact
in the BioGRID database, and none of these few were nominally rep-
licated. This suggests that robust statistical SNP-SNP interactions do
not correspond to gene pairs whose products are known to interact
physically (since the majority of interactions listed in the BioGRID data
were identified based on protein-protein interactions).

Apart from the nonexistence of strong (large effect size) interactions,
there are a number of possible alternative explanations for our observed
lack of detection. The first is that some of the included conditions may
have been too broadly defined to capture a strong association signal,

since they were defined based on having two or more of several possible
ICD-9 codes within a diagnostic class, and it was not possible to ascertain
narrower phenotypes. Thismight particularly have been a problem for
the outcome of “cardiac disease,”which was constructed out of a large
of number of disparate codes (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/GetPdf.cgi?id=phd004308). Moreover, it may be possible
that associations will differ depending on age of onset, which we did
not have information on. The etiology of some of the conditions (e.g.,
dermatophytosis and hemorrhoids, which had few entries in the Ge-
netic Association Database and the DisGenNET database; Table S5)
may simply have a weaker genetic basis than others, which could also
explain a lack of association. For half of the conditions (allergic rhinitis,
asthma, type 2 diabetes, dyslipidemia, and hypertensive disease), strong
marginal effects involving well-known disease-relevant genes were
found, which supports the validity of the analytical approach for these
conditions. However, no strictly significantmarginal effects were found
for the other half (cardiac disease, depression, dermatophytosis, hem-
orrhoids, and osteoarthritis), which could be attributable to the afore-
mentioned problems. This is also suggested by the observation that the
additive genetic variance captured by the included SNPs was low for
some conditions (Table S10). In addition, the datasets for depression,
dermatophytosis, and type 2 diabetes had lower power in general than
the other conditions (Table S7), which could also explain a lack of

n Table 4 Most significant interactions (overall and among those that were nominally replicated), by condition; BOOST

Condition/Rank
SNP1 SNP2 Discovery

P
Replication

P Rep.? Anno1 Anno2 Gene1 Gene2RSID Chr A1 A0 RSID Chr A1 A0

Allergic rhinitis
1 rs13403689 2 T G rs11086806 20 G T 3.92E-11 1.52E-01 No G G OSBPL6 CHD6
31 rs7581504 2 A G rs11086806 20 G T 7.50E-10 4.97E-02 Yes G, M G OSBPL6 CHD6

Asthma
1 rs1461773 6 A G rs1362930 7 T C 2.55E-11 6.31E-01 No G OPRM1
30 rs6722509 2 C T rs11709714 3 A G 8.78E-10 3.73E-02 Yes G G OR6B3 CP

Cardiac disease
1 rs12943579 17 G A rs886617 22 T C 6.54E-11 7.48E-01 No G SEC14L6
26 rs2580405 2 T G rs2355635 10 C T 4.51E-10 3.72E-02 Yes

Depression
1 rs2651975 12 C A rs9940287 16 T C 4.85E-11 6.67E-02 No G TMCC3
18 rs6414384 3 G A rs10843021 12 T C 6.16E-10 2.27E-02 Yes G KCNAB1

Dermatophytosis
1 rs74378451 10 G A rs1536032 13 A G 1.20E-12 9.44E-01 No G M RNLS
18 rs400883 4 G T rs12897227 14 A G 3.22E-10 2.61E-03 Yes G G ANK2 KTN1

Diabetes, type 2
1 rs1327614 1 G A rs12895385 14 C T 2.33E-11 6.92E-01 No
2 rs11900922 2 C T rs770116 12 T C 2.69E-11 7.99E-03 Yes D, G NAV3

Dyslipidemia
1 rs7646670 3 T C rs72841214 17 T C 2.80E-11 6.73E-01 No
10 rs251162 5 G A rs3783322 14 G A 2.84E-10 4.95E-02 Yes G EML1

Hemorrhoids
1 rs11684491 2 G A rs6792001 3 A G 1.18E-11 2.97E-02 Yes

Hypertensive
disease

1 rs3128854 6 A G rs75377761 6 C T 1.09E-11 5.66E-01 No G G OR2H1 COQ3
15 rs2310357 4 T C rs4449525 5 G A 2.51E-10 1.56E-02 Yes R, G SORBS2

Osteoarthritis
1 rs57799846 1 A G rs8046139 16 C T 1.85E-11 5.33E-01 No G KCNK1
14 rs4408841 3 A G rs4858960 3 A C 2.78E-10 1.69E-02 Yes

For each condition, the most significant of all interactions is listed, followed by the most significant interaction that was nominally replicated. Interactions were ranked
by significance in the BOOST analysis (discovery). Numbers in the leftmost column indicate the overall ranks of the interactions for the respective condition. Blanks in
the “Anno” or “Gene” columns indicate no annotation or gene assigned to the respective SNP. SNP, single nucleotide polymorphism; Discovery P, P-value from the
discovery BOOST analysis; Replication P, P-value from the replication BOOST analysis; Rep.?, whether or not the interaction was nominally replicated; Anno1/Anno2,
annotation assigned to SNP1 or SNP2, respectively; Gene1/Gene2, gene assigned to SNP1 and SNP2, respectively; RSID, reference SNP cluster ID; Chr, chromosome
number; A1, nonreferent allele; A0, referent allele; G, any-gene; M, marginal; D, disease-gene; R, regulatory.
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interactions for these conditions in particular. Furthermore, we ex-
cluded interactions involving SNPs located within 1Mb of one another,
to prevent the analysis of SNPs in linkage disequilibrium; however, this
may have also excluded genuine interactions involving close-proximity
SNPs. Additionally, power was estimated assuming a limited number of
interaction models and no noise in the data; as such, it is likely that the
analytical approaches (FastEpistasis, BOOST, and logistic regression)
had low power to detect interaction models that are not captured well
by these methods. Finally, epistasis may involve higher orders of in-
teraction that may not be apparent in the second-order (pairwise)
interactions that were examined in this study.

Limitations of the enrichment analysis include the fact that the
exonic and regulatory annotations only considered directly typed SNPs,
and that the eQTL and disease gene annotations assumed that typed
SNPswere within a short distance of an eQTL (6 1 kb) or a disease gene
(6 5 kb). Although these choices were made in order to limit the
number of annotated SNPs, they could potentially miss SNPs that were
in linkage disequilibrium with these features but located a farther dis-
tance away. In addition, the disease gene annotations relied on litera-
ture curation databases that may have different levels of completeness
or validity for different conditions. It is also possible that other anno-
tation methods not considered here (such as the use of Biofilter (Bush
et al. 2009)) may have greater success than we found.

Given the development of statistical methodologies that enable the
computationally efficient evaluation of vast numbers of interactions,
and the increasing availability of very large genetic association databases,
it is becoming increasingly feasible to search for SNP-SNP interactions
on a genome-wide scale. However, based on the experiences found in
the present study, these interactions are likely to have small effect sizes,
involve low-frequency variants, and/or involve complex models of
interaction, which may require alternative methods of detection.
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