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Abstract

The increase in incidence of obesity and chronic diseases and their health care costs have raised 

the importance of quality diet on the health policy agendas. The healthy eating index is an 

important measure for diet quality which consists of 12 components derived from ratios of 

dependent variables with distributions hard to specify, measurement errors and excessive zero 

observations difficult to model parametrically. Hypothesis testing involving data of such nature 

poses challenges because the widely used multiple comparison procedures such as Hotelling’s T2 

test and Bonferroni correction may suffer from substantial loss of efficiency. We propose a 

marginal rank-based inverse normal transformation approach to normalizing the marginal 

distribution of the data before employing a multivariate test procedure. Extensive simulation was 

conducted to demonstrate the ability of the proposed approach to adequately control the type I 

error rate as well as increase the power of the test, with data particularly from non-symmetric or 

heavy-tailed distributions. The methods are exemplified with data from a dietary intervention 

study for type I diabetic children.
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 1. Introduction

The increase in incidence of obesity and chronic diseases and their health care costs have 

raised the importance of quality diet and healthy eating behavior on the health policy 

agendas. Healthy diet plays a critical role in promoting long-term health, such as managing 

diabetes and reducing risk of cardiovascular disease, since many chronic diseases are 

modifiable with the help of balanced diets and other behavioral changes. The healthy eating 

index (HEI) [1] is an important measure for diet quality that assesses conformance to federal 

dietary guidance. The index consists of 12 components, each of which corresponds to a 

specific food category, and is quantified with a truncated score by rescaling the ratio of the 
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amount of food in a specific category to the amount of energy intake. The HEI data often 

involve unavoidable measurement errors from inaccurate food recalls, excessive zero 

observations due to episodic consumption of certain foods, and unjustifiable distribution 

assumptions on the ratios, all of which make the statistical analysis challenging.

Motivated by a dietary intervention study for children with type 1 diabetes, investigators are 

interested in testing whether diet quality can be improved through active dietary 

intervention, as compared to the usual standard care. The commonly used Hotelling’s T2 test 

or Bonferroni’s correction are usually efficient when multivariate normality assumption 

holds. Violation of the assumptions may result in substantial loss in the power of the tests, 

especially for data with non-symmetric or heavy-tailed distributions, which is the case in our 

intervention study.

In the present paper, we propose a marginal rank-based inverse normal transformation 

approach to comparing multidimensional outcomes such as dietary quality data. The 

method, as described in Section 2, first normalizes data via an inverse normal transformation 

of ranks, and then applies an existing test procedure such as the Hotelling’s T2 to the 

transformed data. Extensive simulations were conducted in Section 3 to demonstrate that the 

proposed rank-based inverse normal transformation method effectively remedies the 

conservatism of a test in controlling type I error rate caused by skewness and heavy tail 

density of the distribution, and increases the power of the test for a variety of non-normally 

distributed data. In Section 4, the proposed rank-based inverse normal transformation 

method is exemplified with data from the dietary intervention study for type 1 diabetic 

children. The paper ends with some discussions in Section 5.

 2. The rank-based inverse normal transformation approach

Suppose that a clinical trial enrolls n1 independent subjects randomized to treatment 1 

(intervention group) and n2 independent subjects randomized to treatment 2 (control group). 

There are K correlated outcome variables of interest (endpoints) to be examined. Let Xijk 

represent the measurement on the kth endpoint for the jth subject in the ith group (k=1, … ,K, 

j=1,…, ni, i=1,2). The vectors of observations, Xij = (Xij1, … , Xijk), are assumed to be 

independently distributed with expected value E(Xijk)=μik (i=1,2) and (for simplicity) 

common variance-covariance matrix defined by, Cov(Xijk, Xijk′) = σkk′ (k, k′=1,2, … K).

Since higher HEI scores reflect better diet quality, we expect higher HEI scores in the 

intervention group for all components. To evaluate how diet quality of the children in the 

intervention group is improved over that in the control group, we test the following 

hypothesis:

The proposed marginal rank-based inverse normal transformation method is a way to 

transform the modified marginal rank of a multivariate sample to its corresponding normal 

quantile. The main idea is to get the normal scores by converting each observation to its rank 

among all observations for each variable, then use the information of sample quantile with a 
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fractional offset to adjust the minimum and maximum observations to avoid infinite value 

after transformation. To be more specific, let rjk represent the rank of the jth observation 

among the N=n1 + n2 combined observations, X11k, … , X1n1k; X21k, … , X2n2k, of the kth 

variable from the two treatment groups. Denote by c the value of the fractional offset. The 

transformed value Yjk for the jth observation of the kth variable is then given by eq. (1) 

below:

(1)

In the present paper, we will focus on the most commonly used fractional offset value c=3/8 

as recommended by Blom [2] in our simulation and data examples. Other fractional offset 

values are also recommended, such as those in [3] (c = 1/3) and [4] (c = 1/2). Choices in [4] 

and [5] will not make much difference to the expected normal scores, because the 

transformed values are virtually linear transformations of Blom’s [2, 3]; see also [6].

The marginal rank-based inverse normal transformation approach then applies a multivariate 

test procedure to the post-transformation data {Yijk} instead of the original data {Xijk}.

In recent years it has been witnessed more frequent use of inverse normal transformation in 

genetic association studies [7–15]. A thorough review and further evaluation of its 

performance is provided in [6] in the context of genetic association studies which presents 

situations where the transformation gains or loses efficiency in term of type I error and 

power. It is worth noting that up to date, application of the method has mainly focused on 

univariate outcome. Its performance remains to be evaluated when used to compare 

multidimensional outcomes simultaneously between independent groups, such as in a 

clinical trial setting with multiple primary endpoints.

 3. Simulations

We conducted extensive simulations to compare the operating characteristics (type I error 

and power) of the proposed method to that of two widely used, and typical, test procedures, 

the Hotelling’s T2 and the Bonferroni’s correction, the former being known for its 

dependence on multivariate normality and the latter for its conservatism in controlling type I 

error rates.

The Hotelling's T2 test statistic for two-sample comparison of their mean vectors is defined 

as in eq. (2)–(4) below:

(2)

(3)
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(4)

where Yij are vectors with dimension K,  and  are the sample variance-covariance 

matrices calculated from each group. With multivariate normality or large samples, under 

the null hypothesis of common mean vectors, the two-sample Hotelling's T2 statistic has or 

approximately so a chi-square distribution with K degrees of freedom. For small samples, 

we can simply transform the two-sample Hotelling's T2 statistic into an F-statistic:

(5)

Compared to other procedures, the Bonferroni’s correction procedure is simple to perform 

but can be very conservative in controlling the type I error rates. It simply applies the two-

sample t-test (or other appropriate tests) to each variable separately with a common 

significant level α/K. The global null hypothesis is rejected if the result of the t-test of any 

variable comes out significant.

The performance of the proposed marginal rank-based inverse normal transformation 

method was evaluated with Hotelling’s T2 test and Bonferroni’s correction applied to both 

original data and post-transformation data. Our aim is to demonstrate that a test procedure 

(Hotelling’s T2 test or Bonferroni’s correction) when applied to the transformed data 

outperforms the same procedure when applied to the original data.

Our simulation studies considered two samples with various dimensions and sizes. For each 

case, type I error and test power were simulated before and after the data were transformed 

with inverse normal transformation method. In the simulation, the first sample was assumed 

to come from the intervention group, and the second from the control group. We considered 

one-sided t-test for Bonferroni’s correction and assumed that an outcome variable tends to 

be larger on average in the first sample. A common correlation structure among multiple 

outcome variables was assumed for the two samples. Data from seven typical multivariate 

distributions were generated to examine the performance of the methods with various 

sample sizes and dimensions.

To explore how our method works on symmetric and light-tailed distributions, the first three 

distributions were selected from the multivariate exponential power distribution family with 

location parameter Σ, scale parameter _ and shape parameter β. The distributions in this 

family are all symmetric and their tails become lighter when the shape parameter grows 

larger. This family of distributions include the multivariate Laplace (MVL) distribution 

(when β=1), the multivariate normal (MVN) distribution (when β=2) and the multivariate 

uniform (MVU) distribution (when β → ∞). For the simulation, all three distributions have 

finite first and second moments, and for the control group, were assumed to be
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(6)

Secondly, multivariate gamma (MVG) distributions and multivariate log-normal (MVLN) 

distributions were considered to explore the robustness of the inverse normal transformation 

method on distributions with different levels of skewness. The MVG distribution we used is 

induced by Xijk = Uijk + Uij0, k=1,2,…,K, where Uij0, Uij1, Uij2,…,Uijk are independent 

univariate gamma (α,β) variables. The rate parameter β was set to 2 to ensure that the 

marginal distribution of X is Gamma; the shape parameter α was set to be from 0.1 to 4 to 

reflect different skewness of the marginal distribution. The MVLN distribution we used is 

simply an exponential transformation from MVN distribution with location parameter equal 

to μ, scale parameter to σ *Σ, with σ ranging from 1 to 2 to get different skewness of the 

marginal distribution.

To evaluate the performance of the inverse normal transformation method on heavy-tailed 

distributions, we further considered multivariate t (MVT) distributions with 2 degrees of 

freedom (df=2) and multivariate Cauchy (MVC) distributions that have heavier tail density 

than MVT distributions.

 3.1. Type I error rate

Simulated type I error rates based on 10000 replicates are presented in Table 1.1–1.3 to 

evaluate whether the proposed marginal inverse normal transformation method improves 

controllability over type I error rate as compared to Hotelling’s T2 test and Bonferroni’s 

correction, for various scenarios of distributions and sample sizes. The nominal level of 

significance was set to be 0.05.

Results in Table 1.1–1.3 clearly demonstrate that for highly skewed or heavy-tailed 

distributions, the proposed marginal rank-based inverse normal transformation approach 

effectively remedies the conservatism in controlling type I error rate in that when the 

original test has a type I error rate away from the nominal level, the transformation approach 

brings the type I error rate back to be closer to the nominal level. Moreover, the proposed 

method increases the power of the test for a variety of non-normally distributed data. Table 

1.1 also examines the impact of correlation on type I error with data from normal-like 

distributions (eliminate the potential influence of skewness and tail density). As expected, 

the Bonferroni’s correction becomes more conservative as the correlation gets larger, which 

cannot be corrected by the marginal rank-based inverse normal transformation approach. 

Hotelling’s T2 test appears to maintain a type I error around the nominal level as correlation 

increases when applied to either the original data or the post-transformation test. A closer 

examination of the results also reveals the following observations concerning type I error 

rates.

 3.1.1 Symmetric and light-tailed distributions with various correlations—
Table 1.1 presents simulated type I error rates for MVN, MVL and MVU distributions, all 
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are members of the multivariate exponential power distribution family, and are symmetric or 

relatively light-tailed. Overall, the improvement in type I error rates for these distributions 

are minimal from the marginal rank-based inverse normal transformation method.

For multivariate distribution with relatively low correlation among variables (ρ=0.1), all 

results already yielded a type I error rates very close to nominal level. For this situation, 

there is no effect of marginal rank-based inverse normal transformation method on either 

test.

For multivariate distribution with increasing correlation among variables (ρ= 0.5 or 0.9), 

data from multivariate exponential power distribution family ensure the influence on type I 

error is solely caused by the high correlation among variables (excluding the potential effect 

of skewness or heavy tail density). The simulation results show that increasing of correlation 

among variables will cause greater conservatism on type I error of Bonferroni’s correction, 

which cannot be fixed by the inverse normal transformation method; On the other hand, 

increasing correlation among variables doesn’t have obvious impact on type I error of 

Hotelling’s T2 test, neither does the inverse normal transformation method.

 3.1.2 Skewed distributions—Simulated type I error rates are presented in Table 1.2 

for MVG and MVLN (ρ = 0.3) distributions, both skewed. When applied to the original data 

both Hotelling’s T2 test and Bonferroni’s correction become more conservative as the 

skewness of the distribution grows. In contrast the proposed marginal rank-based inverse 

normal transformation method provides a much better control over type I error rates. 

Furthermore, the improvement of the inverse normal transformation method on controlling 

type I error becomes more substantial when the skewness of the distributions increases. For 

MVG distribution with shape parameter α=0.1 (skewness of the marginal distribution is 

6.32), the improvement is pretty obvious, especially for small sizes. Before transformation, 

the type I error rates can be so conservative that they are even below 0.01. After 

transformation, the type I error rates of Bonferroni’s correction are all greater than 0.03, thus 

considerably correcting the conservatism with the original data. The type I error rate of 

Hotelling’s T2 test with post-transformation data is satisfactorily close to 0.05. Similar 

trends were found for MVLN distribution in controlling type I error rates and correcting for 

conservatism. Note that setting σ=2 for the MVLN yields a skewness of 414.36 for the 

marginal distribution, extremely high as compared to others. Both Hotelling’s T2 and the 

Bonferroni correction, when applied to the transformed data, produced type I error rates 

much closer to the nominal level of 0.5. (As demonstrated in 3.1.1, that the type I error of 

Bonferroni’s correction applied to the transformed data is still lower than the nominal level 

0.05 is caused by the non-zero correlation between variables, which cannot be fixed by our 

proposed method. More results on the influence of correlation on type I error rates are 

presented in supplemental materials.) The improvement is more obvious for data from more 

skewed distributions.

 3.1.3 Heavy-tailed distributions—For heavy-tailed MVT (ρ = 0.3) distribution with 

df=2 and MVC (ρ = 0.3) distribution, the simulated type I error rates are tabulated in Table 

1.3. Once again, conservatism occurs, especially for Bonferroni’s correction under MVC, 

and more serious so as the tail density grows larger. When applied the test procedures to the 
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data transformed by the inverse normal transformation, the conservatism was adequately 

corrected, resulting in type I error rates much closer to the desired nominal level. (Again, 

extra conservatism of Bonferroni’s correction is caused by the non-zero correlation between 

variables.) The improvement is seen to be considerable for data from distributions with 

heavier tail density.

 3.2. Power of the Test

Simulations were conducted to evaluate whether the marginal inverse normal transformation 

method also maintains satisfactory power as compared to its counterpart (the same test 

procedure applied to the untransformed data), as well as to other tests. To this end, the 

alternative distribution was obtained by adding a positive constant value Δ to the 

corresponding null distribution F0(x), so that the mean values were elevated but the 

variances remain unchanged. Again, 10000 Monte Carlo simulations on the grid of Δ∈ [0, 

1.2] were conducted. For demonstration, the simulated power under various alternatives is 

plotted against Δ in Figure 1 for K=10 and sample sizes n1=n2=200. For the first three 

symmetric and light-tailed distributions (normal, Laplace, uniform), the powers of the tests 

are almost identical.

For skewed distributions (gamma, lognormal), the power of both tests increases faster to 1 

when the test procedures are applied to the transformed data, especially for the ones with 

larger marginal distribution skewness (gamma with α = 0.01 and lognormal with α = 2). 

Similar phenomenon was observed for distributions with heavy-tailed density (multivariate 

T and Cauchy distribution). For example, for the multivariate Cauchy distribution, when the 

two samples’ mean difference equal to 0.8, both Bonferroni’s correction and Hotelling’s T2 

produce powers about five times larger than the powers of their corresponding counterparts.

In summary, for all seven representational distributions, the marginal inverse normal 

transformation method improves or at least maintains the tests’ controllability of type I error 

and power. Substantial improvement is observed for highly-skewed or heavy-tailed 

distributions.

 4. An example: Comparison of dietary quality data

The CHEF (Cultivating Healthy Environments in Families with Type 1 Diabetes) study [15] 

is a randomized behavioral intervention trial among children with type 1 diabetes to promote 

increased consumption of carbohydrates from low glycemic index, nutrient-dense whole 

foods, and decreased consumption of highly processed carbohydrate-containing foods. The 

intervention consisted of a number of family-based and group-based sessions, including 

behavioral techniques and educational content. Dietary data were collected at 6 time points 

during the 18-month study duration based on 3-day diet records. One primary objective is to 

compare between the intervention and usual care groups the total scores of the Healthy 

Eating Index-2005 (HEI2005; an index measuring conformance to the 2005 United States 

Dietary Guidelines for Americans). At the end of accrual, a total of 136 participants were 

enrolled into the study with n1= 66 in the intervention group, and n2 = 70 in the usual care 

group.
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As aforementioned, the total HEI score is the summation of the scores of the 12 individual 

components, and simultaneous comparison of part or all of these individual components is 

also of primary interest. (Indeed, one may argue that comparison of total HEI score is one 

way to address the issue.) To best demonstrate our methods, we consider comparing between 

the intervention and usual care the changes of dietary quality from baseline to the last 

follow-up (18 months) of various subgroups of the HEI components. For a specific food 

category an HEI component corresponds to, we use the difference in actual ratio rather than 

its truncation for comparison. Thus for the kth food category of the jth subject in the ith 

treatment group, we have, in term of the notations in Section 2,

Table 2 presents the test results from Hotellin’s T2 test and Bonferroni correction applied to 

the original data and the data after the inverse normal transformation. For the selected 

combination of food categories, the inverse normal transformation method shows that the 

intervention significantly (at 5% level of significance) improves the dietary quality over the 

usual care; in contrast, the usual Hotellin’s T2 test and Bonferroni correction both failed to 

show such significance.

 6. Discussion

In clinical trials with the same treatment effect direction on all endpoints, our marginal rank-

based inverse normal transformation method provides adequate control over type I error and 

maintains power as well as or better than its counterpart, especially for distributions with 

heavy tail or skewness. The method is essentially a nonparametric procedure which is robust 

against distribution assumptions. Our simulation studies and the dietary quality data example 

demonstrate that the proposed method was able to detect meaningful significant differences 

while its counterpart failed to do so.

In this paper, we mainly consider three possible features of a distribution that might cause 

loss of efficiency of a test: high skewness and heavy tail density of the marginal 

distributions, and high correlations among variables. Distributions with even only one 

feature may result in considerable conservatism for some tests on type I error, as well as loss 

in power. Our simulation focused on investigating whether the proposed inverse normal 

transformation method can remedy the conservatism of the tests caused by these features 

from non-normal data, while in the meantime maintain satisfactory power. For distributions 

with high skewness and/or heavy tail density, we found that the transformation approach 

effectively remedies the conservatism of a test by bringing the type I error rate substantially 

closer to the nominal level. When the tests already have type I error close to that of a 

normal-like distribution, the inverse normal transformation method does not help much in 

term of either type I error or power. It is worth pointing out that, if the conservatism of the 

Bonferroni’s correction is caused by high correlation among variables, then the 

improvement from the transformation approach is minimal.
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Our investigation focuses on the popular Hotelling’s T2 test and the Bonferroni correction. 

Other multivariate test procedures developed in the literature can also be applied to the 

transformed data by the inverse normal transformation. While it remains to be seen on its 

efficiency, we believe the proposed approach provides a good alternative to the existing 

procedures. Besides, most distributions we studied in this paper have dependence structure 

among variables (i.e. copula) similar to the multivariate normal/elliptical distribution. The 

results of some extra study of marginal rank-based inverse normal transformation method on 

data from distributions with other dependence structures (such as the Archimedean copula) 

in some rare extreme cases are not very promising on controlling type I error and 

maintaining power; results on INT method on Clayton Copula with several marginal 

distributions can be found in supplemental materials). For distributions other that those we 

studied, a normal/elliptical distribution test might be necessary before using INT approach.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1a
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Figure 1b

Figure 1. 
Simulated power for tests on data with K=10 and n1=n2=200. The solid line indicates the 

power curve of the test applied on the original data, the dashed line indicates the power 

curve of the the test applied on the post-transformation data.
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Table 2

Analysis of Dietary Quality Data

Variable Combination Bon Bon (INT) T-sq T-sq (INT)

Whole Fruit, Meat and Beans, SOFAAS 0.05375 0.04587 0.07790 0.04835

Vegetables, Meat and Beans, Saturated Fat 0.05375 0.04587 0.10155 0.04999

Sodium, Vegetables, Meat and Beans 0.05375 0.04587 0.09438 0.03482

Whole Fruit, Vegetables, Meat and Beans 0.05375 0.04587 0.07046 0.03057

Vegetables, Meat and Bean, SOFAAS 0.05375 0.04587 0.09511 0.04321
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