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SUMMARY

AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The 

downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are 

ill-defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate 

hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron 

activity is regulated by state-dependent synaptic plasticity; fasting increases dendritic spines and 

excitatory synaptic activity, feeding does the opposite. The signaling mechanisms underlying this, 

however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase 

activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in 

AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for 

fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation 

target mediating this plasticity is p21-activated kinase. This provides a signaling and 
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neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-

dependent plasticity.

 INTRODUCTION

AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine 

kinase stimulated by both decreased cellular energy status and increased calcium (Hardie et 

al., 2012). In the hypothalamus, it is inhibited by leptin (Andersson et al., 2004; Dagon et 

al., 2012; Minokoshi et al., 2004) and activated by fasting (Minokoshi et al., 2004), ghrelin 

(Andersson et al., 2004; Andrews et al., 2008; Lopez et al., 2008), and neuronal activity 

(Hawley et al., 2005; Kawashima et al., 2012). Notably, manipulation of AMPK activity in 

the hypothalamus affects energy balance (Andersson et al., 2004; Claret et al., 2007; 

Minokoshi et al., 2004). However, the neurobiological mechanism and downstream AMPK 

target responsible for these effects are not known.

In this context, hypothalamic agouti-related peptide (AgRP)-expressing neurons, and their 

excitatory synaptic inputs, are of interest. AgRP neurons are activated by fasting (Takahashi 

and Cone, 2005), and once engaged, they induce intense hunger and reduce energy 

expenditure (Aponte et al., 2011; Gropp et al., 2005; Krashes et al., 2011; Luquet et al., 

2005). Chemogenetic activation or inhibition of the excitatory neuronal drive to AgRP 

neurons stimulates/inhibits hunger, respectively (Krashes et al., 2014). Indeed, synaptic 

plasticity of these excitatory afferents is an important control point. Fasting, ghrelin and low 

leptin increases excitatory synapses, dendritic spines and excitatory synaptic activity in 

AgRP neurons (Liu et al., 2012; Pinto et al., 2004; Yang et al., 2011), and this fasting-

induced plasticity, which requires NMDA receptors on AgRP neurons, contributes 

importantly to activation (Liu et al., 2012).

AMPK in AgRP neurons could trigger this plasticity because a) it is activated in the 

hypothalamus by fasting and by ghrelin, although it is not known if this occurs specifically 

in AgRP neurons, b) when stimulated pharmacologically in isolated neurons, brain slices, or 

in vivo in mice, it increases AgRP neuronal activity (Kohno et al., 2008; Kohno et al., 2011) 

and excitatory input to AgRP neurons (Yang et al., 2011), although the later was reported to 

be mediated by AMPK in the presynaptic neurons, and c) of significant interest, p21-

activated kinase (PAK), a known inducer of spinogenesis and excitatory synaptic plasticity 

(Hayashi et al., 2004; Kreis and Barnier, 2009; Penzes et al., 2003), was recently identified 

in an unbiased chemical genetic screen in cultured cells as a novel AMPK substrate (Banko 

et al., 2011). In the present study, we use neuron-specific approaches to test the following 

two hypotheses: 1) a postsynaptic AMPK → PAK pathway drives state-dependent excitatory 

synaptic plasticity in AgRP neurons, and 2) the plasticity brought about by this AMPK → 

PAK pathway accounts for effects of AMPK on energy balance.
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 RESULTS

 Fasting Increases AMPK Activity in AgRP neurons

AMPK activity in the hypothalamus, including the arcuate nucleus (ARC), is higher in 

fasted versus refed mice (Minokoshi et al., 2004). However, since AgRP neurons are just one 

of many subpopulations of neurons in the ARC, and since the other neurons have opposite or 

unrelated functions, it is unknown if fasting increases AMPK activity specifically in AgRP 

neurons. To monitor activity selectively in AgRP neurons, we constructed a cre-dependent 

adeno-associated virus (AAV) expressing FLAG-tagged α2 AMPK (Figure 1A) and 

stereotaxically injected it into the arcuate nucleus of Agrp-IRES-Cre mice (Figure 1B). Mice 

were then studied in the fed or fasted state (food was removed at 9 AM and assays were 

performed 24 hrs later). AgRP neuron-specific α2 AMPK was then immunoprecipitated 

(Figure 1C) and assayed for kinase activity as described previously (Dagon et al., 2012; 

Minokoshi et al., 2004). Of note, AMPK activity was increased more than two-fold in AgRP 

neurons of fasted versus fed mice (Figure 1D). Thus, marked fasting-feeding regulation of 

AMPK occurs specifically in AgRP neurons.

 Stimulation of AMPK Activity in AgRP neurons Drives Plasticity

To stimulate AMPK selectively in AgRP neurons, we constructed and stereotaxically 

injected cre-dependent AAV co-expressing mCherry and a constitutively active (CA) mutant 

(H150R) of the γ1 subunit of AMPK (Minokoshi et al., 2004) into the arcuate nucleus of 

Agrp-IRES-Cre mice (Figure 1E, 1F). We chose this mutant over constitutively active 

truncated α2 AMPK lacking the autoinhibitory domain to preserve the normal subcellular 

localization of activated AMPK. Expression occurred in a pattern consistent with AgRP 

neurons (Figure 1G) and increased α2 AMPK activity in the arcuate nucleus (Figure 1H). To 

assess effects of AMPK activation on synaptic plasticity, we injected AAV-DIO-CA-AMPK 

unilaterally into the arcuate nucleus of Agrp-IRES-Cre, Npy-hrGFP mice (Figure 1I) and 

then assessed various parameters, within the same mice in the ad libitum fed state, in CA-

AMPK-expressing (mCherry+, hrGFP+) versus “control” non-expressing (hrGFP+) AgRP 

neurons (Figure 1J). As AgRP neurons co-express neuropeptide Y (NPY), the Npy-hrGFP 
BAC transgene allows visualization of AgRP neurons (van den Pol et al., 2009). We 

employed 2-photon laser scanning microscopy combined with whole-cell patch clamp 

electrophysiology (Kozorovitskiy et al., 2012) to analyze synaptic plasticity of AgRP 

neurons (Figure 1K). CA-AMPK expression in fed mice increased dendritic spines (Figure 

1L, 1M) and the frequency of mEPSCs (Figure 1N, 1O) but not their amplitude (Figure 1P). 

CA-AMPK expression also activated AgRP neurons as judged by their depolarization 

(Figure 1Q, 1R) and increased firing rate (Figure 1Q, 1S). Furthermore, in animals 

bilaterally injected with AAV-DIO-CA-AMPK, the amount of food eaten (Figure 1T), body 

weight (Figure 1U), and body fat (Figure 1V) also increased. Thus, activation of AMPK in 

AgRP neurons increases dendritic spines and excitatory synaptic transmission, AgRP neuron 

firing rate, and consequently hunger.

 Inhibition of AMPK Activity in AgRP Neurons Blocks Fasting-Induced Plasticity

To inhibit AMPK activity selectively in AgRP neurons, we next constructed and 

stereotaxically injected cre-dependent AAV co-expressing mCherry and dominant negative 
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(DN) kinase dead (K45R) α2 AMPK (Minokoshi et al., 2004) into the arcuate nucleus of 

Agrp-IRES-Cre mice (Figure 2A, 2B). Expression occurred in a pattern consistent with 

AgRP neurons (Figure 2C) and lowered total α2 AMPK activity in the arcuate nucleus 

(Figure 2D) where AgRP neurons are located. Of note, DN-AMPK expression did not cause 

death of AgRP neurons (Figure S1). To assess effects of AMPK inhibition on synaptic 

plasticity, we injected AAV-DIO-DN-AMPK unilaterally into the arcuate nucleus of Agrp-
IRES-Cre, Npy-hrGFP mice (Figure 2E) and then assessed various parameters, within the 

same mice, in DN-AMPK-expressing (mCherry+, hrGFP+) versus “control” non-expressing 

(hrGFP+) AgRP neurons (Figure 2F). In control AgRP neurons, as previously observed (Liu 

et al., 2012), fasting increased dendritic spines (Figure 2G, 2H) and the frequency of 

mEPSCs (Figure 2I, 2J), but not their amplitude (Figure 2K). Fasting also activated control 

AgRP neurons as judged by their depolarization (Figure 2L, 2M) and increased firing rate 

(Figure 2L, 2N). Notably, these effects of fasting on both synaptic plasticity and activation 

of AgRP neurons were absent in DN-AMPK-expressing AgRP neurons (Figure 2G–2N). 

Also, in animals bilaterally injected with AAV-DIO-DN-AMPK, the amount of food eaten 

following 24-hr fasting was reduced (Figure 2O). Thus, activation of AMPK in AgRP 

neurons is both sufficient (CA-AMPK studies, Figure 1) and necessary (DN-AMPK studies, 

Figure 2) for fasting-induced effects on plasticity, AgRP neuron activation, and consequently 

hunger.

 AMPK Phosphorylates PAK2 and Regulates its Activity in Neurons

We then considered AMPK targets that could regulate synaptic plasticity. A recent unbiased 

screen for α2 AMPK substrates identified p21-activated protein kinase (specifically the 

PAK2 isoform) (Banko et al., 2011), a known post-synaptic driver of excitatory synaptic 

plasticity (Hayashi et al., 2004; Kreis and Barnier, 2009; Penzes et al., 2003). PAKs are 

serine/threonine kinases regulated by GTPases of the Rac1 and Cdc42 family (Bokoch, 

2003). The group 1 members of PAKs (PAKs 1, 2 and 3) are typified by a common N-

terminal autoinhibitory domain (AID) and are highly homologous throughout (Bokoch, 

2003). AMPK phosphorylates serine 20 of PAK2, and this appears to be necessary for 

AMPK-induced phosphorylation of the PAK2 substrate, myosin regulatory light chain 

(MRLC) (Banko et al., 2011). Of note, a phosphorylation site mapping program (http://

scansite.mit.edu) strongly suggests that AMPK also phosphorylates PAK1 (on serine-21), 

but likely not PAK3 (on serine-20), which lacks an AMPK phosphorylation consensus motif 

(Banko et al., 2011). We performed RT-PCR on disassociated, single AgRP neurons and 

detected Pak1, Pak2 and Pak3 mRNAs, respectively, in 100%, 50% and 90% of AgRP 

neurons (Figure 3A). We focused our efforts on PAK2 because of the availability of reagents 

that readily detect its serine-20 phosphorylation, and prior work establishing that it is a 

downstream target of AMPK (Banko et al., 2011).

In the arcuate nucleus, fasting, which increases AMPK activity (Figure 3B), increased 

serine-20 phosphorylation of PAK2 (Figure 3C), and also threonine-508/505 

phosphorylation of the PAK target, LIM kinase 2 (LIMK2) (Figure 3D). Of note, this 

fasting-induced increase in LIMK phosphorylation occurred specifically in AgRP neurons 

(Figure 3E). Importantly, PAK2 co-precipitates with α2 AMPK from protein lysates of the 

arcuate nucleus indicating that the two interact in cells within the arcuate nucleus (Figure 
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3F). We next injected into the mediobasal hypothalamus an adenovirus expressing, 

independently of cre, HA-tagged CA-γ1 AMPK (Minokoshi et al., 2004). As shown in 

Figure 3G, CA-γ1 AMPK in the hypothalamus increased phosphorylation of PAK2 and 

LIMK2. We further constructed an AAV viral vector expressing DN-AMPK and mCherry 

independently of cre and similarly injected it into the mediobasal hypothalamus (Figure 3H). 

As shown in Figure 3I–K, hypothalamic expression of DN-AMPK significantly attenuated 

fasting-induced phosphorylation of LIMK2, as evidenced by either immunofluorescence 

(Figure 3I, 3J) or western blotting (Figure 3K). Thus, increased AMPK activity is required 

for fasting-induced phosphorylation of the major PAK target, LIMK2. Using the 

immortalized hypothalamic cell line, GT1-7 (Mellon et al., 1990), we confirmed that two 

known activators of AMPK, reduced energy state (glucose starvation) and a cell permeable 

AMP analogue (AICAR), increased serine-20 phosphorylation of PAK2 (Figure 3L) and 

phosphorylation of acetyl CoA carboxylase on the well-known AMPK phosphorylation site. 

Likewise, expression of CA-AMPK also increased serine-20 phosphorylation (Figure 3M). 

Finally, AMPK activation by AICAR increased phosphorylation of the PAK2 target, LIMK2 

(Figure 3N, “Empty” lanes), and overexpression of wild-type PAK2 greatly augmented this 

effect (Figure 3N, PAK2WT lanes). Importantly, this augmentation was not seen following 

overexpression of a phospho-defective S20A mutant of PAK2 (Figure 3N, PAK2S20A lanes). 

In total, these studies and those of Banko et al. (Banko et al., 2011) demonstrate that AMPK 

phosphorylates serine 20 on PAK2, that this is associated with increased phosphorylation of 

the PAK2 targets LIMK2 (this study) and MRLC (Banko et al., 2011), and that the ability of 

serine 20 to be phosphorylated by AMPK is necessary for AMPK-induced increased activity 

of PAK2 on LIMK2 (this study) and MRLC (Banko et al., 2011). Furthermore, our study 

demonstrates that AMPK regulation of PAK2 occurs in neurons. Of note, given the sequence 

homology between PAK1 and PAK2, such AMPK regulation may also occur for PAK1, 

which was not assessed in the current study due to unavailability of antibodies against 

serine-21 phosphorylated PAK.

 Inhibition of PAKs Blocks Fasting- and AMPK-Mediated Plasticity in AgRP Neurons

Since all three PAKs are expressed in AgRP neurons (Figure 3A) and since PAK1, in 

addition to PAK2, could mediate the effects of AMPK on synaptic plasticity in AgRP 

neurons, we generated a cre-dependent AAV co-expressing EGFP and the autoinhibitory 

domain (AID) of PAK1(DN-PAK). Of note, overexpressed DN-PAK binds to the catalytic 

domain of all three group 1 PAKs, preventing their activation (Hayashi et al., 2004). Hence, 

DN-PAK will inhibit all three PAKs in AgRP neurons. This DN-PAK virus was then 

stereotaxically injected into the arcuate nucleus of Agrp-IRES-Cre mice (Figure 4A, 4B). 

Expression of AAV-DIO-DN-PAK, as indicated by EGFP fluorescence, occurred in a pattern 

consistent with AgRP neurons (Figure 4C). To assess effects of PAK inhibition on synaptic 

plasticity, we injected AAV-DIO-DN-PAK into the arcuate nucleus of Agrp-IRES-Cre mice 

and assessed various parameters, in the fasted state, in DN-PAK-expressing neurons. Control 

AgRP neurons for these studies were from uninjected fasted Npy-hrGFP mice. Of note, PAK 

inhibition of AgRP neurons in fasted mice decreased dendritic spines (Figure 4D, 4E) and 

greatly reduced the frequency of mEPSCs (Figure 4F, 4G), but not their amplitude (Figure 

4H). In addition, PAK inhibition decreased the activity of AgRP neurons as judged by their 

hyperpolarization (Figure 4I, 4J) and decreased firing rate (Figure 4K). To determine if PAK 
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activity was required for AMPK’s effects on plasticity, we injected one side of the ARC with 

AAV-DIO-CA-AMPK alone and the other with a 1:1 mix of both AAV-DIO-CA-AMPK and 

AAV-DIO-DN-PAK (Figure 4L, 4M). Importantly, in ad libitum fed Agrp-IRES-Cre mice, 

the ability of CA-AMPK to increase mEPSC frequency (Figure 4O left bar, CA-AMPK 

alone, as previously seen in Figure 1O) was blocked by simultaneous inhibition of PAK 

(Figure 4O right bar, CA-AMPK + DN-PAK). Finally, in Agrp-IRES-Cre mice bilaterally 

injected with AAV-DIO-DN-PAK, body weight (Figure 4Q) and the amount of food eaten 

following a fast was significantly reduced (Figure 4R). These studies demonstrate that 

activation of group 1 PAKs is required for the stimulatory effects of AMPK on excitatory 

synaptic plasticity.

 DISCUSSION

In the present study, we demonstrate the following: 1) AMPK activity in AgRP neurons is 

increased by fasting; 2) this is both necessary and sufficient for fasting-induced spinogenesis 

and excitatory synaptic plasticity; 3) in neurons AMPK phosphorylates PAK and leads to 

increased phosphorylation of a downstream substrate of PAK (LIMK2); and 4) this 

activation of PAK by AMPK mediates fasting- and also AMPK-mediated excitatory 

plasticity. Upregulation of synaptic activity by this AMPK → PAK pathway is likely 

consequential because chemogenetic activation of the excitatory neuronal inputs to AgRP 

neurons drives hunger (Krashes et al., 2014), and NMDAR deletion in AgRP neurons, which 

prevents fasting-induced synaptic plasticity, reduces hunger (Liu et al., 2012). Furthermore, 

stimulation of excitatory neurotransmission in AgRP neurons by CA-AMPK promotes 

hunger. Conversely, inhibition of glutamatergic neurotransmission by DN-AMPK or DN-

PAK suppresses hunger. Thus, regulation of synaptic plasticity by the AMPK → PAK 

pathway in AgRP neurons is important in controlling hunger. In total, these findings 

establish a signaling (AMPK → PAK) and neurobiological basis (postsynaptic regulation of 

glutamatergic neurotransmission in AgRP neurons) for AMPK regulation of energy balance.

A prior study concluded that a site of action by which AMPK regulates state-dependent 

plasticity is presynaptic, i.e. within the excitatory afferent axon terminals (Yang et al., 2011). 

There are, however, differences between the two studies that are worth noting. First, the 

prior study largely examined ghrelin-stimulated plasticity while our study focused on 

fasting-induced plasticity. Second, the means of altering AMPK and timescales for 

observing effects are different; the prior study used AMPK pharmacologic activators 

(AICAR and ZMP) and an inhibitor (compound C) and looked at effects following addition 

of these drugs to brain slices, while our study used genetic tools (CA-AMPK and DN-

AMPK) delivered directly to postsynaptic AgRP neurons in vivo and then looked at effects 

ex vivo. Third, the prior study inferred a presynaptic role for AMPK by excluding a 

postsynaptic role, while our study directly tested and demonstrated a postsynaptic role for 

AMPK. As our study focused on postsynaptic AMPK and did not address the role of 

presynaptic AMPK, our findings do not exclude an additional presynaptic site of action. 

That said, we believe postsynaptic regulation of plasticity is important for the following 

reasons: a) postsynaptic NMDA receptors on AgRP neurons are required for fasting-induced 

plasticity (Liu et al., 2012), b) PAK, a known postsynaptic regulator of spinogenesis and 

excitatory synaptic plasticity(Kreis and Barnier, 2009), is phosphorylated and activated by 
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AMPK ((Banko et al., 2011) and the present study), and c) by direct genetic manipulation of 

AMPK in postsynaptic AgRP neurons, we demonstrate that postsynaptic AMPK is both 

necessary and sufficient for fasting-induced plasticity.

How then does fasting activate AMPK in AgRP neurons? While AMPK is regulated by 

cellular energy status (Hardie et al., 2012), this would seem to be an unlikely regulator in 

this scenario. Alternatively, intracellular calcium, which is known to drive synaptic plasticity 

(Bloodgood and Sabatini, 2007), could be responsible. Prior studies have established that 

increased calcium and subsequent activation of CAMKKβ, an upstream AMPK-kinase, can 

increase AMPK activity (Anderson et al., 2008; Hardie et al., 2012; Hawley et al., 2005; 

Kawashima et al., 2012; Mairet-Coello et al., 2013). In neurons, intracellular calcium is 

increased by NMDA receptor activation, neuronal firing and ghrelin, and these three 

manipulations have been shown to activate AMPK via CAMKKβ (Anderson et al., 2008; 

Andersson et al., 2004; Andrews et al., 2008; Hardie et al., 2012; Lopez et al., 2008; Yang et 

al., 2011). In this context it is of interest that AgRP neurons abundantly express the receptor 

for the fasting-induced hormone ghrelin (Willesen et al., 1999; Zigman et al., 2006), and that 

fasting-induced synaptic plasticity in AgRP neurons requires functional NMDA receptors on 

AgRP neurons (Liu et al., 2012). With regards to the source of glutamate which would 

activate these NMDA receptors, we have found that AgRP neurons receive strong excitatory 

drive from the paraventricular nucleus (PVH) and that this input is important in activating 

AgRP neurons and causing hunger (Krashes et al., 2014). Taken together, this leads to the 

hypothesis that increased calcium, secondary to elevated ghrelin, NMDA receptor action and 

increased neuronal firing, activates CaMKKβ and its downstream target AMPK, and that this 

is responsible for fasting-induced plasticity in AgRP neurons. Given the widespread 

expression of NMDA receptors, CaMKKβ, AMPK and PAK, it is tempting to speculate that 

the AMPK → PAK → plasticity pathway reported here will operate in circuits both within 

and also beyond the hypothalamus. If true, this would have important implications for many 

processes where plasticity plays a key regulatory role, one example being learning and 

memory.

Finally, it is possible that other targets in addition to PAK may be involved in AMPK-

mediated synaptic plasticity. In this light, mitochondrial homeostasis and perhaps also 

mitochondrial distribution are of interest since they can affect neuronal activity (Dietrich et 

al., 2013; Li et al., 2004; Schneeberger et al., 2013) and can be regulated by AMPK 

(Toyama et al., 2016). If such pathways do indeed play a role, they appear to require PAK as 

PAK inhibition prevents AMPK-mediated synaptic plasticity (Figure 4O).

 EXPERIMENTAL PROCEDURES

 AAV viral expression

AAV viruses were packaged at BCH Viral Core or UNC Viral Core and stereotaxically 

injected into the arcuate nucleus of Agrp-IRES-Cre mice. See Supplemental Information for 

the detail.
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 Electrophysiology and two-photon imaging

Whole-cell patch-clamp recordings were obtained from fluorescent protein-identified AgRP 

neurons in acute coronal slices. Cells were filled with Alexa Fluor594 (10–20μM) and 

imaged using a home-built two-photon laser-scanning microscope (810–840 nm). See 

Supplemental Information for the detail.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AMPK stimulates excitatory synaptogenesis in AgRP neurons
(A–D) Schematics of AAV-DIO-Tag-α2AMPK (A) and stereotaxic injection (B), 

immunoprecipitation from arcuate lysates of fed mice (C), and AgRP neuron α2AMPK 

activity immunoprecipitated with the anti-Flag antibody from the arcuate nucleus of fed and 

fasted Agrp-IRES-Cre mice (D) (nfed=10 and nfasted=11).

(E–H) Schematics of constitutively active AAV-DIO-CA-AMPK (E) and stereotaxic 

injection (F), immunofluorescence of mCherry (G), and arcuate α2AMPK activity 

immunoprecipitated with anti-α2AMPK antibody from ad libitum fed mice (H) (n=8).
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(I–S) Following unilateral injection of AAV-DIO-CA-AMPK (I), immunofluorescence (J), 

example of two-photon imaging of an AgRP neuron (K), examples and summary of 

dendritic spines (L and M), mEPSCs (N–P), and firing properties (Q–S) are shown (n=10 

neurons from 3 mice).

(T–V) Following bilateral injection of AAV-DIO-CA-AMPK, daily food intake (T), body 

weight (U), and body fat mass (V) (n=8).

Data are mean ± SEM and * indicates p<0.05 with unpaired two-tailed student’s t-test.
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Figure 2. AMPK is required for fasting-induced synaptic plasticity in AgRP neurons
(A–D) Schematics of dominant negative AAV-DIO-DN-AMPK (A) and stereotaxic injection 

(B), immunofluorescence of mCherry (C), and arcuate α2AMPK kinase activity from ad 
libitum fed mice (D) (n=8).

(E–N) Following unilateral injection of AAV-DIO-DN-AMPK (E), immunofluorescence (F), 

examples and summary of dendritic spines (G and H), mEPSCs (I–K), and firing properties 

(L–N) are shown (nfed=9 and nfasted=11 neurons from 3 mice per group) in fed or fasted 

mice.

(O) Following bilateral injection of AAV-DIO-DN-AMPK, food eaten following 24-hr 

fasting (n=8).

Data are mean ± SEM and * indicates p<0.05 with unpaired two-tailed student’s t-test (D 

and O) and with unpaired one-way ANOVA test (H, J, K, M, and N).
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Figure 3. AMPK phosphorylates and stimulates PAK signaling
(A) Single cell RT-PCR in AgRP neurons

(B–D) Arcuate α2AMPK activity (B) and total and phosphorylated PAK2 (Ser20) (C) and 

LIMK2 (Thr505) (D) in arcuate lysates from fasted and 6-hr refed wildtype mice (nrefed=9 

and nfasted=8).

(E) Immunofluorescence of arcuate p-Thr505LIMK2 from fed and 24-hr fasted Npy-hrGFP 
mice.

(F) Immunoprecipitation of PAK2 and α2AMPK from arcuate lysates of fed wildtype mice.

(G) Phosphorylation of PAK2 (Ser20) and LIMK2 (Thr505) in the arcuate of fed wildtype 

mice following bilateral injection of HAtag-CA-AMPK adenovirus (n=5).

(H–K) Schematics of cre-independent AAV-DN-AMPK and stereotaxic injection into 

mediobasal hypothalamus (MBH) (H), immunofluorescence of mCherry (red) and p-
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Thr505LIMK2 (green) from fasted non-viral infected control mice (I) and AAV-DN-AMPK 

injected mice (J), and the ratio of total and phosphorylated LIMK2 (Thr505) in the arcuate 

lysates as detected with western blot from fasted and 6-hr refed mice following AAV-DN-

AMPK injection (K)(n=8).

(L–N) Total and phosphorylated ACC (Ser79), PAK2 (Ser20) and LIMK2 (Thr505) in GT1-7 

cells following glucose starvation or AICAR treatment (L), or transfection of CA-AMPK 

(n=9) (M), or transfection of PAK2WT and PAK2S20A mutants with 1 mM AICAR treatment 

(N). Proteins are normalized to GAPDH.

Data are mean ± SEM and * indicates p<0.05 with unpaired two-tailed student’s t-test.
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Figure 4. PAK is required for fasting- and AMPK-stimulated synaptic plasticity
(A–C) Schematics of dominant negative AAV-DIO-DN-PAK (A) and stereotaxic injection 

(B), and immunofluorescence of EGFP (C) in Agrp-IRES-Cre mice.

(D–K) Examples and summary of dendritic spines (D and E), mEPSCs (F–H), and firing 

properties (I–K) in 24-hr fasted Npy-hrGFP control and AAV-DIO-DN-PAK virus-injected 

Agrp-IRES-Cre mice.

(L–P) Schematic of AAV-DIO-CA-AMPK and AAV-DIO-DN-PAK viral injection (L), 

immunofluorescence (M), and example and summery of mEPSCs (N–P).
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(Q and R) Body weight (Q) and food eaten following 24-hr fasting (R) from mice bilaterally 

injected with AAV-DIO-DN-PAK (n=8).

Data are mean ± SEM (n=10 neurons from 3 mice per group in E, G, H, J, K, O, and P) and 

* indicates p<0.05 with unpaired two-tailed student’s t-test.
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