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Abstract

The difference in restricted mean survival times between two groups is a clinically relevant 

summary measure. With observational data, there may be imbalances in confounding variables 

between the two groups. One approach to account for such imbalances is estimating a covariate-

adjusted restricted mean difference by modeling the covariate-adjusted survival distribution, and 

then marginalizing over the covariate distribution. Since the estimator for the restricted mean 

difference is defined by the estimator for the covariate-adjusted survival distribution, it is natural to 

expect that a better estimator of the covariate-adjusted survival distribution is associated with a 

better estimator of the restricted mean difference. We therefore propose estimating restricted mean 

differences with stacked survival models. Stacked survival models estimate a weighted average of 

several survival models by minimizing predicted error. By including a range of parametric, semi-

parametric, and non-parametric models, stacked survival models can robustly estimate a covariate-

adjusted survival distribution and, therefore, the restricted mean treatment effect in a wide range of 

scenarios. We demonstrate through a simulation study that better performance of the covariate-

adjusted survival distribution often leads to better mean-squared error of the restricted mean 

difference although there are notable exceptions. In addition, we demonstrate that the proposed 

estimator can perform nearly as well as Cox regression when the proportional hazards assumption 

is satisfied and significantly better when proportional hazards is violated. Finally, the proposed 

estimator is illustrated with data from the United Network for Organ Sharing to evaluate post-lung 

transplant survival between large and small-volume centers.
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 1. Introduction

Patients with end-stage lung disease may be eligible for lung transplantation after other 

treatment options fail. Unfortunately, post-lung transplant survival is poor, especially in 

comparison to other solid organ transplants, with one and three-year graft survival of 79% 

and 64%, respectively. Given the poor prognosis, understanding the factors related to post-

transplant survival remains an important but controversial task. For example, previous 

research has suggested that transplant center volume, which we define as the number of lung 

transplants performed at a center over the preceding two years, is associated with post-

transplant survival [1, 2]. However, previous research has relied on estimators based on the 

proportional hazards assumption, which is potentially violated in lung transplantation [2]. 

We therefore develop a causal estimator of the restricted mean treatment effect between low 

and high volume centers that extends beyond proportional hazard scenarios.

In the absence of censoring, the difference in post-transplant survival time between high and 

low volume centers could be summarized by the difference in mean survival time. The mean 

for a non-negative random variable is defined as , where S(t) = P(T > t) is 

the survival function of the random variable T. However, the estimate of the mean is not 

defined when Ŝ(t) > 0 for all observed t, a situation regularly experienced with even light 

censoring. Furthermore, no consistent estimator exists for E{T} when S(tmax) > 0, where 

tmax is the maximum follow-up time. Thus, a different summary measure is required as 

substantial censoring is experienced in lung transplantation.

The τ-restricted mean is an alternative summary measure which, by truncating observations 

at some time point τ, is always estimable in the presence of right-censored survival times 

[i.e., ] [3]. By choosing a value for τ within the observed follow-up 

time, the restricted mean is an estimable summary measure with a direct interpretation and 

close relationship to the mean. For example, the average difference in post-transplant 

survival over one year between high-volume and low-volume centers is the difference in 

one-year restricted means. However, estimating the difference of the restricted mean survival 

time with data from observational studies, such as the data available in the lung 

transplantation example, is difficult due to potential confounding. In particular, the 

difference in the area under the Kaplan-Meier survival curve up to time τ is not necessarily a 

consistent estimator of the causal restricted mean difference between the two treatment 

groups.

To account for imbalances in potential confounders between the two treatments, several 

researchers have proposed estimating the covariate-adjusted restricted mean difference by 

modeling the covariate-adjusted survival distribution (i.e., estimating the conditional survival 

function), and then marginalizing over the covariate distribution to estimate the restricted 

mean difference. This is referred to as the “regression” approach throughout the rest of the 

paper. For such an approach, the model for the covariate-adjusted survival distribution 

defines the estimator of the restricted mean difference.

The covariate-adjusted survival distribution is often assumed to follow a proportional 

hazards model. For example, Karrison [4] proposed modeling the survival time distribution 
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as a proportional hazards model with a piecewise constant baseline hazard function. As a 

natural alternative, Zucker [5] proposed a proportional hazards model with an unspecified 

baseline hazard function, i.e., a Cox proportional hazards model [6]. Both Karrison and 

Zucker assume that the proportional effect of the covariates on the hazard is the same for 

each treatment. Chen and Tsiatis [7] relax this assumption by estimating separate baseline 

hazard functions and covariate effects for each treatment.

Unfortunately, the proportional hazards assumption may not hold in many applications. For 

example, centers with greater lung transplant volume are more likely to perform bilateral 

lung transplants as opposed to single lung transplants, and the type of lung transplant is 

well-known to violate the proportional hazards assumption [8]. As such, current approaches, 

which rely on the proportional hazards assumption, may produce biased and inefficient 

estimates of the restricted mean difference between high volume and low volume centers. As 

an alternative, we could estimate the survival distribution with an accelerated failure time 

model, but the estimator would then be biased if the accelerated failure time assumption is 

violated. Rather than rely on a single parametric or semi-parametric model, we pursue a 

flexible estimator of the conditional survival function and, therefore, of the restricted mean 

difference that performs well across a wide range of situations for a given sample size.

In particular, we investigate ‘stacked survival models’ for estimating the conditional survival 

function. Stacking finds a weighted average of several conditional survival function 

estimators by minimizing predicted error [9]. Since the minimization is based on predicted 

error, stacking can include parametric models, semi-parametric models and non-parametric 

models. This allows more weight to be given to the model that most accurately estimates the 

underlying survival function for a given situation and sample size. Wey et al. [9] 

demonstrated that stacked survival models is competitive with parametric models and the 

Cox proportional hazards model for estimating the conditional survival function when 

assumptions are satisfied, but performs better when assumptions are violated. Since better 

estimators of the conditional survival function should lead to a better estimator of the 

restricted mean difference, we show that the mean-squared error of the restricted mean 

difference estimator is bounded, in part, by the mean-squared error of the conditional 

survival function estimator. Therefore, our goal is improving the estimation of the restricted 

mean difference in a wide range of scenarios by estimating the conditional survival function 

with stacked survival models.

Section 2 introduces the estimator of the restricted mean treatment effect and bounds the 

mean-squared error (MSE) of the restricted mean treatment effect by the mean-squared error 

of the conditional survival function. Section 3 outlines the application of stacked survival 

models to restricted mean treatment effect estimation. A simulation study evaluates the finite 

sample performance of the proposed estimator in Section 4, which is then applied in Section 

5 to an observational registry of post-lung transplantation survival from the United Network 

for Organ Sharing. Concluding remarks are presented in Section 6.
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 2. Proposed Estimator

Throughout the paper, random variables and observed variables are distinguished by capital 

and lower case letters, respectively. The treatment or condition, which the restricted mean 

survival is compared across, is denoted by ai, where i denotes the subject, and follows the 

Bernoulli random variable A (i.e., A = {0, 1}). Additional covariates, denoted by vector xi, 

are measured at the beginning of the study and follow the distribution of the random variable 

X. For this paper, we define the non-negative survival time random variable as T = T0 · I (A 
= 0) + T1 · I (A = 1), where T0 and T1 are the possibly unobservable survival time random 

variables had a patient received treatment 0 and 1, respectively. We assume that there are no 

unmeasured confounders; that is, the set of potential outcomes, (T0, T1), is conditionally 

independent of A given X, i.e., (T0, T1) ⊥ A | X, where ⊥ denotes statistical independence. 

The censoring time is ci, which follows the distribution of the continuous non-negative 

random variable C and is assumed to be conditionally independent of (T0, T1) (i.e., (T0, T1) 

⊥ C | {X, A}). Hence a sample of right censored survival data for n patients is {yi, δi, ai, xi}, 

i = 1,…, n, where yi = min(ti, ci) and δi = I(ti < ci).

Now let S(A=a)(t|X = x) = P(T > t|X = x, A = a) and G(A=a)(t|X = x) = P(C > t|X = x, A = a) 

be, respectively, the treatment-specific conditional survival functions for the covariate-

adjusted survival and censoring distributions for treatment a. For brevity, we write 

throughout that S(A=a)(t|X = x) = S(a)(t|x) and G(A=a)(t|X = x) = G(a)(t|x).

 2.1. Restricted Mean Treatment Effects

Following the outline of Chen and Tsiatis [7], we estimate the restricted mean for each 

treatment group with the “regression” approach, which involves modeling the covariate-

adjusted survival time distribution. In particular, the restricted mean for treatment a is 

defined as

(1)

where (1) holds due to the assumption that (T0, T1) ⊥ A|X. It is important to note that the 

outer expectation in (1) is taken with respect to the marginal, rather than conditional, 

covariate distribution.

After estimating the treatment-specific conditional survival functions, S(a)(t|x), we estimate 

the expectation over the covariate space with the empirical covariate distribution. Thus, the 

estimator for the τ-restricted mean of the potential outcome Ta is
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(2)

where Ŝ(a)(t|xi) is the estimate of S(a)(t|xi). In practice, a closed form solution of equation (2) 

may not exist, and we approximate equation (2) by

(3)

where t(j) are the ordered event times, i.e., t(j) – t(j−1) ≥ 0 for all j = 1…, n, and Nτ is one 

more than the number of event times less than τ. If no event time equals τ (i.e., t(j) ≠ τ for all 

j = 1,…, n), then t(Nτ) = τ and t(Nτ−1) is the largest event time less than τ. For two treatments, 

the estimated difference in restricted mean survival time is

(4)

which also corresponds to the difference in the area under the estimated survival curves for 

the two potential outcomes up to time τ.

 2.2. Influence of Treatment-Specific Conditional Survival Functions

There is a clear connection between the restricted mean treatment effect and the treatment-

specific conditional survival functions. We formalize this connection by placing an upper 

bound on the MSE of the restricted mean treatment effect estimator (abbreviated as MSErm) 

that depends, in part, on the MSE of the estimators for the treatment-specific conditional 

survival functions (abbreviated as MSEcsf).

Theorem 1 Define the MSERM for γ̂ as MSE[γ̂(τ)] = E[γ̂(τ) – γ(τ)]2, then

where  is the MSECSF for treatment a, 

 is the 

covariance between the treatment-specific conditional survival functions, and 

 is the 

interaction of bias between the treatment-specific conditional survival functions. The 

unconditional expectations are over the random variable for the covariate space (X) and the 

sampling distribution of the conditional survival function estimator (LS).
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The inequality (see the Supporting Information for the proof) illustrates that MSERM should 

be associated with MSECSF. However, the last term indicates potential exceptions to the 

relationship that depend on the association between the estimators for the treatment-specific 

conditional survival functions. For example, a positive correlation between the treatment-

specific conditional survival functions will tighten the bound on MSERM, which could result 

in a surprisingly good MSERM despite a relatively poor MSECSF. In contrast, a negative 

correlation between the treatment-specific conditional survival functions may result in a 

surprisingly poor MSERM despite relatively good MSECSF. Thus, the behavior of the 

separate treatment-specific conditional survival functions may loosen the association 

between MSERM and MSECSF. Finally, mean-squared error decomposes into a squared bias 

term and a variance term, which implies the following corollary

Corollary 2 Define Bias[γ̂(τ)] = E{γ̂(τ) – γ(τ)} and Var[γ̂(τ)] = E{γ̂(τ) – Eγ̂(τ)}2 as, 

respectively, the bias and variance of the restricted mean treatment effect, then

since Var[γ̂(τ)] > 0.

Thus, the performance of the treatment-specific conditional survival functions places an 

upper bound on both traditional measures of performance (i.e., bias and MSE) for the 

restricted mean treatment effect. The bound on the squared bias, or absolute bias, is less tight 

than the bound on MSERM due to a positive, and potentially large, variance term. Therefore, 

we would expect a stronger association between MSERM and MSECSF than the association 

between the bias of the restricted mean treatment effect and MSECSF. The simulation study 

in Section 4 presents an empirical demonstration of this relationship.

 3. Stacked Survival Models

Since the performance of the restricted mean treatment effect estimator is related to the 

performance of the treatment-specific conditional survival function estimator, we propose 

estimating restricted mean treatment effects with stacked survival models. By minimizing 

predicted squared survival error, stacked survival models estimate a weighted combination 

of survival models that can span parametric (e.g., Weibull model), semi-parametric (e.g., 

Cox proportional hazards model), and non-parametric models (e.g., random survival forests). 

For estimating conditional survival functions, non-parametric estimators can be preferred to 

parametric and semi-parametric estimators due to relaxed assumptions. However, even when 

misspecified, parametric and semi-parametric estimators can possess better operating 

characteristics in small sample sizes due to smaller variance than non-parametric estimators. 

Fundamentally, this is a bias-variance tradeoff situation and, by minimizing predicted error, 

stacking estimates an optimal combination of survival models that balances the bias-variance 

trade-off of each estimator for a given sample size. For example, Wey et al. [9] illustrate that 
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stacked survival models effectively estimate a conditional survival function across a wide 

range of situations.

In uncensored settings, stacking estimates the optimally weighted average of several 

candidate models by minimizing predicted squared error [10]. However, predicted squared 

error is often poorly defined in censored settings due to potentially unobserved event times. 

Therefore, a different loss function is required that is tailored to censored data. Wey et al. [9] 

show that the Brier Score has a direct relationship with the definition of mean-squared error 

for a conditional survival function estimate presented in Section 2.2 and evaluate stacked 

survival models that minimize the Brier Score [11] over a grid of time points. In addition, 

they show that, under certain conditions, stacking survival models with the Brier Score is 

uniformly consistent for the true conditional survival function. In contrast to Wey et al. [9], 

this paper appropriately modifies stacked survival models to estimate restricted mean 

treatment effects within an inference setting. In addition, we assess the improvement in the 

restricted mean treatment effect through stacked survival models.

The Brier Score [11] measures the predicted squared error of a conditional survival function 

at a particular time point. Following Lostritto et al. [12], the estimated Brier Score for a 

given estimator of the conditional survival function for treatment a at a single time point t 
can be written as

(5)

where Zi(t) = I(ti > t), Δi(t) = I(min{ti, t} ≤ ci), Ĝ(a)(·|xi) is the estimated conditional survival 

function of the censoring distribution for subjects that received the ath treatment, Γa is the set 

of patients that received treatment a, and |Γa| is the number of patients that received 

treatment a. For a fixed time t, censored observations with ci > t will contribute to the Brier 

Score, but the censored observations with ci < t will only contribute to the Brier Score 

indirectly through the estimation of G(a)(Ti(t)|xi).

The conditional survival function for each treatment group is estimated by a separate stacked 

survival model with the same set of m candidate models, i.e., the models included in the 

stack. Each model has a corresponding treatment-specific conditional survival function 

estimate, say , for k = 1,…, m. The set of candidate survival models influences the 

performance of the final conditional survival function estimator. Thus, as recommended by 

Breiman [10] and Wey et al. [9], we include a ‘diverse set’ of candidate survival models. We 

note, however, that the stacked survival model could include other combinations of survival 

models. Since the goal is estimating the entire conditional survival function up to time τ, 

stacked survival models minimize the sum of  over a set of time points, say {t1, …, 

ts}. The estimated stacking weights for the m models are the solution to the weighted least 
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squares problem with the additional constraints that  for k = 1,…, m and 

:

(6)

where  is the survival estimate from the kth model while leaving the ith 

observation out during the fitting process, which is implemented by leaving the ith 

observation out in the fitting process, i.e., leave-one-out cross-validation. This ensures that 

stacking does not reward models that over-fit the data.

After minimizing equation (6), the stacked estimate of the conditional survival function for 

treatment a is

(7)

where  is the kth survival model estimated with all observations on treatment a. The 

treatment-specific restricted means and the restricted mean treatment effects are then 

estimated with equations (3) and (4), respectively.

We estimate confidence intervals with the jackknife [13], which can be estimated during the 

leave-one-out cross-validation step for minimizing equation (6). Thus, we only need to 

minimize equation (6) an additional n times to estimate the standard error of the restricted 

mean treatment effect. In contrast, a bootstrap estimator for γ̂(τ) would require running the 

entire process to minimize equation (6), including the estimation of , on each 

bootstrapped data set, which is computationally expensive. Finally, let γ̂(τ)(−i) be the 

restricted mean treatment effect from leaving the ith observation out during the fitting 

process, then the jackknife variance estimate of the restricted mean treatment effect is 

. A 95% confidence interval is 

then estimated through a Normal approximation with .

Remark 1. The Brier Score measures agreement at only one particular time point. As such, 

the set of values, {t1, …, ts}, over which the Brier Score is minimized [see equation (6)] has 

implications for performance. In particular, care should be taken to avoid picking only very 

small, or very large values. Wey et al. [9] recommend at least nine evenly spaced quantiles 

of the observed event distribution to ensure good estimation of the conditional survival 

function. The effect of the set of time points over which the Brier Score is minimized is 

investigated in the Supporting Information.
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Remark 2. Wey et al. [9] show that, given the stack contains a uniformly consistent 

estimator of the conditional survival function, the stacked estimator is uniformly consistent 

for the underlying conditional survival function. Therefore, when at least one model within 

the set of candidate survival models is correctly specified, γ̂(τ) is consistent for the true 

restricted mean treatment effect by the dominated convergence theorem [14]. The proposed 

estimator is, therefore, consistent in a wider range of scenarios than previous methods that 

assume a proportional hazards model to estimate the conditional survival distribution.

 4. Simulation Study

 4.1. Set-up

The simulation study evaluates the finite sample performance for estimating the causal 

restricted mean treatment effect with stacked survival models. We consider six different 

data-generating scenarios, indexed by q, for the covariate-adjusted survival distribution of 

the potential outcomes. When q = 1, 2 then , where 

; when q = 3, 4 then , where 

; when q = 5, 6 then  which corresponds to a 

log-Normal distribution with a variance of 0.5. The covariate effects are

where Φ(·) is the cumulative distribution function of a standard normal distribution (i.e., the 

non-linear effect is a ‘smooth step function’). The censoring distributions are defined 

similarly with  replaced by , and are designed to achieve a marginal censoring rate of 

approximately 20% to 30%. The censoring distributions are

For brevity, we refer to scenarios 1 and 2 as, respectively, the linear and non-linear 

exponential scenarios; scenarios 3 and 4 as, respectively, the linear and non-linear gamma 

scenarios; and scenarios 5 and 6 as, respectively, the linear and non-linear log-normal 

scenarios.
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The covariate distribution is a four-dimensional multivariate normal with mean zero, unit 

variances, and a positive AR(1) correlation structure with ρ = 0.4. To mimic observational 

studies with confounding, the treatment assignment depends on the covariate distribution. In 

particular, the probability of receiving treatment, i.e., P(ai = 1|x) = pi, is defined as logit(pi) = 

0.5 × (x1 + x2 + x3 + x4), where logit(x) = 1/[1 + exp(−x)].

Each simulation scenario evaluates performance for τ = 50 with 1,000 replications and a 

sample size of 300. All simulations were run in R version 3.0.0 [15]. The stacking weights 

are estimated by minimizing the Brier Score over nine equally spaced quantiles of the 

observed events with the constrained minimization problem solved by the alabama 

package, which uses an augmented Lagrangian and adaptive barrier algorithm for 

minimizing equation (6) [16]. For the simulations in this paper, Ĝ(a)(·|xi) is estimated with 

an unconditional treatment-specific Kaplan-Meier survival estimator. In these scenarios, 

stacked survival models remain consistent; see the Supporting Information for a sketch of 

the proof.

For the stacked survival models, we consider a mixture of parametric, semi-parametric, and 

non-parametric candidate survival models. The parametric models are the Weibull model 

and log-Normal model with only linear main effects. Both models are special cases of an 

accelerated failure time model, while the Weibull is also a special case of a proportional 

hazards model. The semi-parametric models are two versions of the Cox model. The first 

Cox model has only linear main effects, while the second Cox model uses penalized splines 

for main effects with the roughness penalty set to 0.5. The survival package estimates 

both the parametric and semi-parametric models [17]. The non-parametric model is random 

survival forests (RSF), which is estimated with the randomForestSRC package with 1,000 

trees grown [18]. For RSF, the confidence intervals are estimated with the jackknife after 

bootstrap [19], which saves computational resources by not regrowing the forest for each 

observation and instead uses the trees that do not include the ith observation. We consider 

two different versions of the stacked estimator: the set of candidate survival models with and 

without RSF. This is important as RSF substantially increases the computational burden of 

stacked survival models. Thus, we want to characterize the level of improvement in 

estimating the restricted mean treatment effect by including RSF in the set of candidate 

survival models.

The different methods for estimating the restricted mean differ in their approach to 

estimating the treatment-specific conditional survival functions in equation (3). We are most 

interested in comparing the Stacked estimator to a Cox proportional hazards model with 

linear main effects (referred to as the ‘Cox estimator’) and a Cox proportional hazards model 

with penalized splines (referred to as the ‘Splines estimator’) due to their role in previous 

methods for estimating restricted mean treatment effects. The Cox estimator was proposed 

by Chen and Tsiatis [7], while the Splines estimator is a straightforward extension of the 

Cox estimator that should be more robust in a variety of situations. For the sake of 

completeness, we also present the performance of the restricted mean treatment effect for the 

other models in the set of candidate survival models.
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The methods are compared on the basis of percent relative bias, i.e., 100 × [Eδ̂(τ) — δ(τ)]/

δ(τ), and the ratio of mean squared error (MSE) to the Cox estimator, where MSE = E{δ̂(τ) 

— δ(τ)}2. Confidence interval performance is assessed with two measures: the ratio of 

average jackknife standard error to the Cox estimator and coverage probability. We also 

present the ratio of ‘integrated squared survival error’ (ISSE) to the Cox estimator for each 

method: , which 

corresponds to the average of the mean-squared error of the treatment-specific conditional 

survival functions presented in Section 2.2. All expectations are approximated by averaging 

across 1,000 replications.

 4.2. Results

Tables 1 and 2 present the results of the exponential and gamma settings, respectively. The 

Stacked estimator without random survival forests (RSF) possesses similar bias and MSE 

than the Stacked estimator with RSF across the different scenarios with the non-linear log-

Normal scenario possessing the largest difference. Since RSF has substantial computational 

costs, we focus on comparing the Stacked estimator without RSF to the competing 

estimators.

In the exponential setting (Table 1), the Stacked estimator possesses similar, or slightly 

more, bias than the Cox estimator for the linear scenario and similar, or more, bias than the 

Splines estimator for both linear and non-linear scenarios. The Stacked estimator has 

approximately ∼ 4% less bias and 20% lower MSE than the misspecified Cox estimator in 

the non-linear scenario. In addition, the Stacked estimator possesses approximately 15 – 

20% lower MSE than the Splines estimator. Finally, the Stacked estimator possesses an 

approximately 3 – 10% lower standard deviation than the Splines estimator for both linear 

and non-linear scenarios. The Stacked estimator is therefore competitive in the exponential 

setting with linear effects and more efficient than both the Cox and Splines estimators in the 

non-linear scenario.

In the gamma setting (Table 2), the Stacked estimator possesses 5%–9% less relative bias 

than the Cox estimator and 3% – 5% less relative bias than the Splines estimator for both 

linear and non-linear scenarios. In addition, the Stacked estimator possesses 10% – 20% 

lower MSE than the Cox estimator and 25% lower MSE than the Splines estimator. The 

Stacked estimator has approximately 3% lower standard deviation than the Cox estimator 

and 10 – 15% lower standard deviation than the Splines estimator. The performance of the 

Stacked estimator is similar in the log-Normal setting (Table 3): the Stacked estimator has 

similar, or lower, bias than both the Cox and Splines estimators with 10 – 25% lower MSE 

than the Cox or Splines estimators. The results of the gamma and log-Normal settings 

demonstrate the ability of the Stacked estimator to also perform well in non-proportional 

hazard settings.

Wey et al. [9] motivated stacking with the goal of balancing, for a given sample size, the low 

variance of potentially misspecified parametric models with robust but potentially inefficient 

semi-parametric and non-parametric models. This is illustrated in the simulation study here. 

In the linear exponential scenario, the Stacked estimator possesses similar MSE as the 
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correctly specified Cox and Splines estimators, which is likely due to the inclusion of a 

correctly specified parametric Weibull model. Yet, even when the Weibull model is 

misspecified in the non-linear gamma scenario, the Stacked estimator still performs better 

than both the Cox and Splines estimators despite the lack of a correctly specified model. 

This ability to adaptively find a good balance between the low variance of potentially 

misspecified parametric models with the more robust, but still potentially misspecified, 

semi-parametric models (e.g., a Cox model with penalized splines) is the most appealing 

aspect of stacked survival models.

Section 2.2 argues that performance of the treatment-specific conditional survival functions 

will be more tightly associated with MSE of the restricted mean treatment effect than bias. 

In general, this relationship was observed in the simulation study for the parametric and 

semi-parametric models although RSF possessed significant departures. In particular, RSF 

occasionally had the best MSE for the restricted mean treatment effect despite possessing 

worse ISSE than the Cox model in every scenario. These exceptions are likely due to, for 

example, bias terms in the same direction for the restricted means of individual treatments, 

which leads to the bias terms canceling out for the restricted mean treatment effect despite 

relatively large MSECSF terms for the treatment-specific conditional survival functions.. It is 

well recognized that non-parametric approaches usually possess lower bias while having 

higher variance. However, when taking a difference such as with a restricted mean treatment 

effect, the bias can cancel between the treatment-specific conditional survival function 

estimates which may place higher priority on conditional survival function estimators with a 

lower variance.

Remark 3. The Supporting Information contains several additional investigations into the 

simulation study: a larger sample size, the choice of time points over which the stacking 

weights are determined, and the impact of a misspecified censored distribution.

 5. Effect of Center Volume in Lung Transplantation

It is well-known that higher center volume is associated with better graft survival in lung 

transplantation (i.e., time to death or retransplantation) [1, 2, 8, 20]. However, previous 

studies have only estimated the hazard ratio outside of a causal framework. Therefore, we 

estimate the restricted mean treatment effect of post-transplant survival between high 

volume centers (more than 100 lung transplants over the past two years [20]) and low 

volume centers (less than, or equal to, 100 lung transplants over the past two years) with 

data from an observational registry of post-lung transplant survival.

The United Network for Organ Sharing (UNOS) collects patient information, donor 

information and survival status of every solid organ transplant performed in the United 

States. This analysis only includes lung transplants performed between January 1, 2008 and 

December 31, 2011 in adult recipients receiving their first lung-only transplantation. Many 

of the covariates collected by UNOS possess imbalances between low volume and high 

volume centers (see Table 1 in the Supporting Information), which indicates potential 

confounding of the restricted mean treatment effect. We therefore adjust for potential 

confounding with several patient related covariates: gender, age, lung allocation score, native 
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disease grouping (obstructive, vascular, cystic and restrictive), distance walked in six 

minutes, ventilator use, level of oxygen use, and type of transplant (single versus bilateral 

lung transplant). In addition, we adjust for several donor related covariates: age over 55 

years, African American race, smoking history greater than 20 pack years, and height 

difference between donor and recipient. The event of interest is time to death or 

retransplantation. A total of 5, 499 transplanted patients were included in this analysis with 

approximately 76% censoring.

This is a particularly demonstrative example due to the questionable applicability of the 

proportional hazards assumption in lung transplantation. In particular, the type of lung 

transplant is well-known to violate the proportional hazards assumption, e.g., see Thabut et 

al. [2]. In addition, proportional hazard tests for our particular data set suggests non-

proportional hazards among the native disease grouping, height difference between donor 

and recipient, and ventilator use. Thus, we may improve estimation of the restricted mean 

treatment effect by allowing for models that extend beyond proportional hazards through 

stacked survival models.

The stacked survival model includes two versions of the Cox model, a Weibull model, a log-

Normal model, and random survival forests. Each model includes the entire set of covariates 

due to expected associations with survival. The height difference between donor and 

recipient is expected a priori to possess a non-linear relationship with survival. In particular, 

donors and recipients with similar heights are expected to possess the best survival while 

larger height differences are expected to possess worse survival. Thus, the Weibull, log-

Normal, and the first Cox model fit linear main effects to all continuous covariates except 

the height difference between donor and recipient, which is fit with a quadratic main effect. 

A second Cox model fits penalized splines to each continuous covariate, which provides 

additional flexibility in the case that covariates possess unexpected non-linearity. For RSF, 

the minimum number of observations in each node is selected by minimizing predicted error 

as implemented in the randomForestSRC package whereas the package default is used for 

the number of randomly selected splits. The 95% confidence intervals are estimated with the 

leave-one-out jackknife.

Table 4 presents the one-year and three-year estimated causal restricted mean treatment 

effects between high volume and low volume centers in addition to the estimated treatment-

specific model weights for each survival model. There is notable variability in the estimated 

model weights between the two treatment groups. Specifically, the Cox model without 

splines receives no weight for low volume centers but a weight of 0.339 for high volume 

centers. In contrast, the Cox model with splines consistently receives weight regardless of 

center volume: 0.225 and 0.275 for low and high volume centers, respectively. Similarly, 

RSF receives a large proportion of weight regardless of center volume: 0.532 and 0.386 for 

low and high volume centers, respectively. Additionally, the log-Normal model receives no 

weight for high volume centers but receives a weight of 0.243 for low volume centers. 

Regardless, as noted by Wey et al. [9], the estimated model weights are not an indication of 

a correct model due to potential instability in the minimization procedure from similar 

estimated conditional survival functions. Instead, the model weights help describe the 

process of combining individual survival models within the stack.
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The stack estimates a seven day and twenty-five day difference between large and small 

centers for, respectively, the one-year and three-year restricted mean treatment effects. This 

treatment effect is neither the smallest nor the largest restricted mean treatment effect 

compared to the individual survival models, which reflects in part the weight given to the 

smallest difference and largest differences among the candidate survival models. The stacked 

estimator also balances the wide confidence intervals of the non-parametric RSF estimator 

with the more narrow confidence intervals of the parametric and semi-parametric estimators.

We are particularly interested in comparing the stacked estimator to the Cox model without 

splines due to its role in previously proposed methods [7]. The stack estimates an 

approximately 30% larger difference between large and small centers although the 

confidence interval is wider than the Cox model for both one-year and three-year restricted 

mean treatment effects. The larger difference between large and small centers for the one-

year restricted mean treatment effect is clinically meaningful as earlier survival is indicative 

of peri-operative and early post-operative mortality, which is relatively high for lung 

transplantation. However, the wide confidence interval that includes zero contrasts with 

previous studies that have found differences between centers based on center volume [1, 2]. 

Broadly, this difference could be due to estimating the restricted mean treatment effect 

instead of the hazard ratio, or the estimation of the casual rather than associational effects. In 

addition, the stacked estimator gives substantial weight to the non-parametric RSF estimator 

which possesses wider confidence intervals than the parametric and semi-parametric models. 

Thus, the stacked estimator could also be capturing additional variability. Regardless, the 

stacked estimator suggests that large centers possess better survival over one and three years 

although there is more uncertainty than suggested by previous studies.

 6. Concluding Remarks

We explore improving the estimation of causal restricted mean treatment effects through 

better estimation of the conditional survival function. In most application areas, there is little 

a priori information to suggest an appropriate distributional assumption for the survival time 

or functional form of the covariates. This motivates flexibly estimating restricted mean 

treatment effects for observational studies with stacked survival models, which can 

effectively estimate the conditional survival function in a wide range of scenarios [9]. The 

simulation study illustrates that stacked survival models achieve similar mean-squared error 

(MSE) of the restricted mean treatment effect in proportional hazards scenarios as the 

estimator based on a Cox proportional hazards model [7]. In addition, when the proportional 

hazards assumption is violated, stacked survival models can substantially reduce the bias and 

MSE of the causal restricted mean treatment effect compared to the estimator based on a 

Cox proportional hazards model. Thus, stacked survival models can robustly estimate 

restricted mean treatment effects in a wide range of scenarios.

As noted in Section 4.2, the Stacked estimator can gain additional flexibility by including 

random survival forests (RSF) although inclusion of RSF did not noticeably improve the 

performance of the restricted mean treatment effect in the simulation study. The Supporting 

Information demonstrates that similar differences in performance exist at larger sample sizes 

when RSF is included in the stack for the scenarios considered in this paper. Regardless, the 
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relatively good performance of the Stacked estimator without RSF and the high 

computational costs associated with RSF precludes inclusion in every situation. Further 

investigation is warranted on the selection of survival models to include in the stack.

We also note that RSF requires decisions that have a potentially large impact on the 

performance of the conditional survival function estimate. For example, RSF requires 

selecting tuning parameters (e.g., the minimum size of each node) that can have large impact 

on the performance of the conditional survival function. In addition, the randomForestSRC 

and randomSurvivalForest packages have different definitions for the tuning parameter 

that controls the size of individual nodes. In particular, the randomForestSRC package 

requires that each node have a minimum number of unique time points (ignoring censoring 

status) in each node, while the randomSurvivalForest package requires that each node 

have a minimum number of unique event times in each node. This difference can lead to 

noticeably different performance in the same scenarios with the same tuning parameter 

values. The impact of these tuning parameters and associated definitions deserve further 

investigation.

There are limitations for estimating restricted mean treatment effects with stacked survival 

models. First, it is difficult to evaluate the final stacked survival model as the minimization 

procedure acts as a ‘black box’. Thus, the fit of the final stacked survival model can be 

difficult to assess in practice. Second, stacked survival models are potentially 

computationally expensive depending on the models included in the stack. For example, 

random survival forests significantly inflate the computational costs of stacked survival 

models compared to including only parametric and semi-parametric survival models. Wey et 

al. [9] provides a more detailed description of the potential computational costs associated 

with stacked survival models. Third, stacked survival models based on the Brier Score 

require specifying a model for the censoring distribution to estimate the stacking weights. 

This is avoided by current estimators of the restricted mean treatment effect such as the 

method proposed by Chen and Tsiatis [7]. However, the simulation study demonstrates that 

the stacked survival models based on the Brier Score perform relatively well even when the 

censoring distribution is incorrectly modeled. Finally, an issue for any estimator of restricted 

mean treatment effects, the value of τ for restricted mean treatment effects can be difficult to 

select in practice although emphasis should be given to values that are clinically meaningful.

The proposed approach for stacked survival models minimizes the Brier Score for 

combining different estimators of the conditional survival function. However, different loss 

functions could be minimized for combining estimators of the conditional survival function. 

For example, Polley and van der Laan [21] note estimators could be combined based on 

discrete conditional hazard functions, which indirectly estimates the conditional survival 

function. This approach would also avoid specification of the censoring distribution although 

extensions to continuous survival times present additional challenges due, in part, to the 

unbounded nature of the hazard function.

There are two main approaches to estimating the causal restricted mean treatment effect: the 

“regression approach” pursued in this paper and an approach based on inverse-probability 

weighting (IPW) for treatment assignment and censoring [22, 23]. The IPW approach 
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requires forming models for the censoring and treatment distributions. The “regression” 

approach is a more efficient estimator of the restricted mean difference when the conditional 

survival model has been correctly specified. However, the IPW approach is sometimes 

preferred because standard methods that estimate the conditional survival distribution may 

be overly restrictive (e.g., the Cox proportional hazards model). The flexibility of stacked 

survival models may mitigate some of the concerns of the “regression” approach by 

allowing additional flexibility across a variety of data generating mechanisms.

There has been recent research on using model averaging to account for uncertainty in the 

confounders of the treatment-outcome relationship [24, 25]. However, previous work has 

assumed that the structure of the relationship between the covariates and outcome was 

known (e.g., linear relationship between covariates and log-hazard) although in practice 

there is usually little evidence to support a priori assumptions on the survival distribution 

and the functional form of the covariate. We demonstrate that principally averaging different 

model structures can lead to substantially better performance in the estimation of the causal 

restricted mean treatment effect. Thus, an interesting avenue for future research would be to 

consider the selection of covariates based on both the outcome and treatment models under 

varying distributional assumptions and functional forms for the outcome model.

A conditional survival function is required by many methods besides restricted mean 

treatment effects: for example, censored quantile regression [26], time-dependent ROC 

curves [27], inverse probability-of-censoring weighted estimators [28], model-free contrast 

approaches [29], and dynamic treatment regime methods [30]. Similar to restricted mean 

treatment effect estimation, all of these methods have traditionally used a single Cox model 

or a non-parametric method to estimate the conditional survival function. The improvement 

in estimation of restricted mean treatment effects shown here demonstrates that stacked 

survival models deserve consideration for a wide spectrum of methods.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 4

The estimated one-year and three-year restricted mean treatment effect (in days) with 95% confidence 

intervals (in parenthesis) and the stacking weights by center volume [ie., ] for each survival model in the 

lung transplant example. The stacked model includes random survival forests (RSF).

Model Restricted Mean Treatment Effect with 95% CI

Estimated Model Weights

Low Volume Centers High Volume Centers

One Year

Cox 5.0 (-0.4, 10.4) 0.000 0.339

Cox with Splines 6.0 (0.6, 11.3) 0.225 0.275

log-Normal 8.0 (2.4, 13.6) 0.243 0.000

Weibull 6.5 (1.2, 11.8) 0.000 0.000

RSF 5.5 (-14.1, 25.0) 0.532 0.386

Stacked 7.3 (-4.0, 18.7) n/a n/a

Three Year

Cox 21.3 (-3.4, 46.0) 0.000 0.339

Cox with Splines 27.1 (2.2, 52.1) 0.225 0.275

log-Normal 24.8 (1.2, 48.4) 0.243 0.000

Weibull 23.9 (-0.3, 48.0) 0.000 0.000

RSF 26.1 (-51.2, 102.1) 0.532 0.386

Stacked 25.8 (-17.4, 68.3) n/a n/a
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