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Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson’s disease (PD), and the most common
disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are
highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2–G2019S mutation would alter
development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overex-
pression, we used mice expressing LRRK2–G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs
exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity
was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excit-
atory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase
inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent.
Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were
similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response
amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that
abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to
SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function.
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Introduction
Parkinson’s disease (PD) is a progressive neurological disorder
characterized by impairments in motor and nonmotor functions
of the dorsal striatum (Shiba et al., 2000; Goedert, 2001; Aarsland
et al., 2009; Gerfen and Surmeier, 2011; Erro et al., 2012). The

majority of inherited forms of PD are caused by mutations in the
gene encoding leucine-rich repeat kinase 2 (LRRK2), most of
which reside in the GTPase or kinase domains of LRRK2 (Paisán-
Ruiz et al., 2004; Zimprich et al., 2004; Di Fonzo et al., 2005; Khan
et al., 2005; Ozelius et al., 2006; Cookson, 2010). Although it is
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Significance Statement

Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson’s disease (PD) heritability. How such
mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming
and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal
development when activity plays a large role in permanently shaping neural circuits, our data show how the most common
PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum.
These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose
striatal circuitry to both motor and nonmotor dysfunction later in life.
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not clear how mutations in different enzymatic domains can give
rise to PD, many serve to increase kinase activity (West et al.,
2005, 2007; Greggio et al., 2006; Smith et al., 2006). The LRRK2–
G2019S mutation is the most prevalent, estimated to cause up to
42% of familial PD and 10% of sporadic PD (Healy et al., 2008;
Paisán-Ruiz et al., 2013), and it increases kinase activity by two-
fold to threefold (West et al., 2005; Jaleel et al., 2007). Disease
progression in LRRK2–G2019S carriers is clinically indistinguish-
able from idiopathic cases (Taylor et al., 2006; Healy et al., 2008;
Cookson, 2010), suggesting common disease mechanisms and
highlighting the need to identify and understand the neurobio-
logical actions of LRRK2–G2019S.

Although the effect of LRRK2 mutation on normal neuronal
function is poorly understood, recent research has provided im-
portant clues. fMRI data show altered functional connectivity
between cortex and striatum in asymptomatic human LRRK2–
G2019S carriers (Helmich et al., 2015), and although there is
disagreement over mechanism, loss-of-function studies of
LRRK2 or its orthologs in Caenorhabditis elegans, Drosophila, and
mouse support that wild-type (WT) LRRK2 can regulate devel-
oping synapse function (Sakaguchi-Nakashima et al., 2007; Shin
et al., 2008; Lee et al., 2010b; Piccoli et al., 2011; Matta et al., 2012;
Beccano-Kelly et al., 2014; Parisiadou et al., 2014). In brain,
LRRK2 is most highly expressed in striatal spiny projection neu-
rons (SPNs). Its expression levels rise dramatically over a period
of development that coincides with the ingrowth of corticostria-
tal inputs and a burst in excitatory synaptogenesis on SPNs (Tep-
per et al., 1998; Biskup et al., 2007; Westerlund et al., 2008;
Giesert et al., 2013) and continues to rise as neural activity plays a
prominent role in shaping persistent striatal circuit structure and
function (Biskup et al., 2007; Westerlund et al., 2008; Gerfen and
Surmeier, 2011; Kozorovitskiy et al., 2012). Together, these data
suggest that LRRK2 plays an important role in establishing and
shaping activity in corticostriatal circuits.

Based on the temporal and spatial expression patterns of
LRRK2, we hypothesized that the LRRK2–G2019S mutation
would alter development of excitatory synaptic networks in dor-
sal striatum. To test this, we used LRRK2 mutant knockin (KI)
mice to compare gain- and loss-of-LRRK2 kinase function. This
strategy circumvents confounding experimental factors, such as
protein overexpression and mixed expression of WT and mutant
LRRK2 proteins that have complicated interpretation of LRRK2
experiments performed in transgenic mouse models (Aarsland et
al., 2009; Dächsel et al., 2010; Li et al., 2010; Skibinski et al., 2014).
Our findings reveal that LRRK2–G2019S exerts a robustly abnor-
mal effect on corticostriatal synapses at postnatal day 21 (P21).
LRRK2–G2019S generates abnormally elevated excitatory activ-
ity and altered spine morphology in dorsal striatal SPNs that is
kinase dependent, a gain-of-abnormal activity that is outside the
normal role of LRRK2 function. Excessive activity is develop-

mentally transient and can be normalized by acute exposure to
LRRK2 kinase inhibitors or by removing cortical afferents. These
data show a clear biological outcome selectively attributable to
LRRK2 mutation and suggest that striatal circuits are fundamen-
tally altered by LRRK2–G2019S at early postnatal ages.

Materials and Methods
Animals
Treatment and use of all animals conform to animal welfare protocols
approved by the Mount Sinai Institutional Animal Care and Use Com-
mittee and are in strict accordance with National Institutes of Health
guidelines. Animals of both sexes were used in all experiments. Three
principal lines of mice were used in this study: (1) mice expressing a
homozygous KI G2019S gain-of-kinase activity mutation (hereafter ab-
breviated GSKI; West et al., 2005; Jaleel et al., 2007); (2) mice expressing
a homozygous KI D2017A mutation that renders LRRK2 kinase dead
(hereafter abbreviated DAKI); and (3) WT mice. The effect of G2019S
and D2017A mutations on LRRK2 are very well characterized. The
G2019S mutation appears to lock the kinase into a more active confor-
mation, increasing its activity by twofold to threefold (West et al., 2005;
Liu et al., 2011). The D2017A mutation prevents Mg 2� binding, desta-
bilizing interactions with ATP (Johnson et al., 1996; Nolen et al., 2004;
Ray and Liu, 2012) but preserving all other functional domains of the
protein (Jaleel et al., 2007; Ito et al., 2014). Kinase activating effects of
G2019S and inactivating effects of D2017A have been widely tested and
characterized (Jaleel et al., 2007; Nichols et al., 2009, 2010; Matta et al.,
2012; Ito et al., 2014). All mice are congenic on a C57BL/6NTac back-
ground (Fig. 1A).

To generate G2019S and D2017A KI mice, targeting vectors generated
using C57BL/6J BAC–DNA and having proximal loxP and frt-flanked
PGK–neomycin cassettes were inserted into intron 41; a distal loxP site
was inserted into intron 42 of the endogenous mouse LRRK2 gene. The
vectors were introduced into C57BL/6NTAc (Taconic Biosciences)-
derived embryonic stem (ES) cells, and successfully targeted ES cells were
injected into blastocysts. Chimeric mice were bred with an Flp deleter
strain to remove the neomycin cassette [C57BL/6NTac–Tg(CAG-
Flpe)2Arte] and then bred with C57BL/6NTac to remove the Flp trans-
gene. KI mice are crossed to WT C57BL/6NTac every fourth generation
to guard against genetic drift.

Additional experiments were conducted on heterozygous GSKI
mice expressing tdTomato under control of the dopamine receptor 1a
promoter (GSKI-Drd1aT). These mice were the F2 progeny of
crosses between homozygous GSKI mice and the reporter lines
B6.Cg–Tg(Drd1a–tdTomato)6Calak/J (strain 016204; The Jackson
Laboratory).

Genotype confirmation
The presence of GSKI and DAKI mutations were verified by PCR using
the primers 5�-CTG TGT GTT AAA GCT CCA GTT GCC TAC-3� (for-
ward) and 5�-AAA CAG TAA CTA TTT CCG TCG TGA TCC G-3�
(reverse), gel extracted, and sequenced (Genewiz) using the forward
primer to confirm mutation homozygosity in exon 41 (WT, CGGACT
ACGGGATC; G2019S, CGGACTACTCAATT; D2017A, CGGCATATG
GGATC). Homozygosity was confirmed via analysis of the sequencing
trace results.

The presence of the tdTomato or eGFP transgene was confirmed via
PCR using the following primers: for tdTomato, forward, 5�-CTT CTG
AGG CGG AAA GAA CC-3� and reverse, 5�-TTT CTG ATT GAG AGC
ATT CG-3�; for eGFP, forward, 5�-CCC GAA GCT TCT CGA GGC GCG
CCC TGT GCG TCA GCA TTT GCA A-3� and reverse, 5�-TCA GGG
TCA GCT TGC CGT AGG-3�. Bands of 600 bp indicate the presence of
the transgene.

Immunoblotting
Immunoblotting was performed on whole striatal lysates from GSKI,
DAKI, or WT (n � 3 mice per genotype per age) or striatal synaptoneu-
rosomes according to our previous descriptions (Nikitczuk et al., 2014).
Briefly, synaptoneurosomes were prepared from striata that were ho-
mogenized in ice-cold SynPER lysis buffer (100 �l/100 mg tissue) con-
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taining phosphatase (Life Technologies) and protease inhibitors (Roche)
via 3 � 5 s pulses with a Kontes pestal gun. Samples were then centrifuged
at 4°C at 1500 � g for 10 min. The supernatant was extracted and centri-
fuged at 4°C at 17,000 � g for 20 min, and the pellet was resuspended in
RIPA buffer with protease inhibitors (Roche). Protein concentration was
determined using a Bradford assay (Bio-Rad Laboratories). Protein (25
�g) from each animal was separated via 8% SDS-PAGE and transferred
to Immune-Blot-F PVDF membranes (Millipore) by wet electroblotting
at 4°C overnight (25 V). Membranes were rinsed in PBS (5 min), air dried
(5 min), and blocked with LI-COR Odyssey Blocking Buffer for 45 min at
room temperature (RT) and then incubated with primary antibodies for
1–2 h. The primary antibodies were directed against the following:
LRRK2 (c41-2, 1:1000; Epitomics), PSD95 (catalog #MA1045, 1:2000;
Thermo Fisher Scientific), actin (catalog #MAB1501, 1:4000; Millipore),
VGluT1 (AB5905, 1:1000; Millipore), VGluT2 (AB2251, 1:1000; Milli-
pore), and tyrosine hydroxylase (TH; catalog #22941, 1:1000; Immuno-
Star). All were diluted in LI-COR Odyssey Blocking Buffer containing
0.1% Tween 20 (Thermo Fisher Scientific). Membranes were washed and
incubated for 45 min with fluorophore-conjugated secondary antibodies
(DyLight 800 by Cell Signaling Technology and DyLight 680 by Pierce)
diluted in PBS with 50% Odyssey Blocking Buffer and 0.1% Tween 20,
washed again, and visualized with a LI-COR Odyssey CLX imager
(LI-COR Biosciences). Protein levels were determined via film densitom-
etry (NIH ImageJ) in which band intensity of the protein of interest was
normalized to an actin loading control within the same lane. This was
conducted three to five separate times. Data were compared using one-

way ANOVA with Dunnett’s post hoc tests; a p value �0.05 was consid-
ered statistically significant.

Immunofluorescence and histology
Mice (aged P21) of each genotype were perfused transcardially with 4%
paraformaldehyde, and their brains were cut on a freezing sliding mi-
crotome into a 35-�m-thick series of coronal sections through the dorsal
striatum. One set was stained with NeuroTrace 500/525 (Invitrogen) and
imaged on an Olympus MVX10 Stereoscope using a Hamamatsu C8484
camera. The others were processed for immunofluorescence using meth-
ods that have been detailed previously (Nikitczuk et al., 2014). Sections
were immunolabeled with antibodies directed against one of the follow-
ing: PSD95 (catalog #MA1045, 1:1000; Thermo Fisher Scientific),
VGluT1 (AB5905, 1:1000; Millipore), and VGluT2 (AB2251, 1:1000;
Millipore). Antibody binding was visualized by fluorophore-conjugated
secondary antibodies (Alexa Fluor 488 or Alexa Fluor 654; Abcam). Five
mice per genotype per time point were sectioned, and three single optical
images per section per mouse were imaged (1024 � 1024 pixels, 16 bit)
across dorsal striatum with a 100 � objective on a Zeiss LSM 780 confocal
microscope. Immunolabeled synaptic-like puncta were quantified with
NIH ImageJ using a thresholding function to capture for analysis all
immunolabeled puncta; subsequent comparisons of puncta size or
density across genotypes were made using a one-way ANOVA with Dun-
nett’s post hoc test; a p value �0.05 was considered statistically significant.
All image acquisition and quantification was conducted by an investiga-
tor blinded to genotype.

For DiI labeling, slices were prepared as for electrophysiology (see
below) and fixed in 4% paraformaldehyde, and DiI crystals were placed
into the dorsal striatum using a glass micropipette. After several weeks of
incubation, labeling was imaged using a Zeiss AxioImager.Z2 and a Zeiss
MRM camera.

Electrophysiology
Slice preparation. Mice were deeply anesthetized with isoflurane and de-
capitated. Brains were rapidly removed in ice-cold sucrose–artificial CSF
(aCSF) consisting of the following (in mM): 233.7 sucrose, 26 NaHCO3, 3
KCl, 8 MgCl2, 0.5 CaCl2, 20 glucose, and 0.4 ascorbic acid. Coronal slices
(350 �m) were cut with a Leica VT1000S vibratome and allowed to
equilibrate in recording aCSF at RT for �1 h before being transferred to
the recording chamber. The aCSF comprised the following (in mM): 117
NaCl, 4.7 KCl, 1.2 MgSO4, 2.5 CaCl2, 1.2 NaH2PO4, 24.9 NaHCO3, and
11.5 glucose. During recording, slices were maintained at 31°C and per-
fused (1.5 ml/min) with oxygenated aCSF (95% O2–5% CO2) in an
immersion chamber containing the GABAA receptor antagonist gaba-
zine (GBZ; 10 �M). For some experiments (see Results), immediately
after vibratome slicing, the dorsal striatum on one side was surgically
isolated from surrounding neocortex using a scalpel. After isolation, sec-
tions were maintained in oxygenated, ice-cold sucrose–aCSF and then
allowed to equilibrate at RT for 45 min before recording.

Whole-cell patch-clamp recordings. Dorsal striatal SPNs were visualized
on an upright epifluorescence microscope (BX50WI; Olympus) with a
40 � water-immersion lens and an IR-1000 infrared CCD monochrome
video camera (Dage-MTI). Whole-cell recordings from SPNs were per-
formed with glass micropipettes pulled from borosilicate glass capillaries
using a P-87 micropipette puller (Sutter Instruments). The pipette resis-
tance was 2– 4 M�. To record spontaneous EPSCs (sEPSCs; no TTX in
the bath), electrodes were filled with an intracellular solution containing
the following: 124 mM K-gluconate, 10 mM HEPES, 10 mM phosphocre-
atine di(Tris), 0.2 mM EGTA, 4 mM Mg2ATP, 0.3 mM Na2GTP, and 0.3%
biocytin. To isolate miniature EPSCs (mEPSCs), electrodes were filled
with similar K-gluconate-based intracellular solution to which was
added QX-314 (5 mM), whereas TTX (3 �M) was added to the bath.
Osmolarity of the intracellular solution was adjusted to 280 –290 mOsm,
and pH was adjusted to 7.3. Recordings were made using a Multiclamp
200B (Molecular Devices) in both voltage- and current-clamp mode.
Analog signals were low-pass filtered at 2 kHz and digitized at 5 kHz with
the use of a Digidata 1440A interface and pClamp10 software (Molecular
Devices). Gigaseal and additional access to the intracellular neuronal
compartment was achieved in voltage-clamp mode, with the holding

Figure 1. LRRK2 mutations and protein levels across genotypes. A, Nucleotide sequences
from the WT LRRK2 gene and the corresponding sequences of the G2019S (GS) (Gly to Ser) and
D2017A (DA) (Asp to Ala) mutations (underlined nucleotides) in exon 41. B, Nissl staining of
coronal sections through striatum from P21 mice shows similar cytoarchitecture across geno-
types. Scale bar, 2 mm. C, Western blotting for LRRK2 in striatal lysates taken from WT, GSKI, and
DAKI mice at the indicated ages. Labeling with anti-LRRK2 C41-2 antibody shows a 250 kDa
band present in WT, GSKI, and DAKI lanes. Labeling for actin (42 kDa) was used as loading
control. There were no significant changes in LRRK2 expression levels across genotypes (see
Results). D, Western blotting of P21 striatal lysates for TH shows similar levels across genotypes
(see Results).
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potential set at 	70 mV. Soon after rupturing the membrane, the intra-
cellular neuronal fluid reached equilibrium with the pipette solution
without significant changes in either series resistance or membrane ca-
pacitance values. Membrane voltage was kept at 	70 mV through all
voltage-clamp experiments (sEPSC and mEPSC). Fast compensation was
used to maintain the series resistance values below 12 M�. To electro-
physiologically identify SPNs after recording sEPSC activity in voltage-
clamp mode (5–10 min), we switched to current-clamp mode and
applied a series of depolarizing current pulses (10 s interpulse intervals,
500-ms-long pulses, 20 pA current intervals). This protocol allowed us to
confirm SPN identity electrophysiologically by characteristic action po-
tential firing patterns described previously (Fino et al., 2007). To confirm
that EPSC responses were glutamatergic, we applied NMDA and AMPA/
kainate receptor antagonists 2-amino-5-phosphovalerate (APV; 40 �M)
and 6-cyano-7-nitroquinoaxaline-2,3-dione (CNQX; 10 �M), respec-
tively, to the bath solution to block fast glutamatergic activity, followed
by washout of the glutamate receptor blockers and a return of normal
EPSCs within 10 –20 min. In some experiments, the specific LRRK2-
kinase inhibitor GNE-7915 (Estrada et al., 2012) was diluted in DMSO
and then added to the aCSF bath to a final concentration of 50 nM 30 min
before recording. Control slices were exposed to equivalent concentra-
tions of the diluent (DMSO) alone. Applied drugs were administered to
the slice via a peristaltic pump (Cole-Parmer), and pump speed was
adjusted so that solutions reached the slice 1.5 min after the start of
application. All drugs were purchased from Sigma-Aldrich except for the
LRRK2 kinase inhibitor, which was purchased from ChemiTek.

Identification of direct- and indirect-pathway SPNs. Mice (n � 3– 4 per
injection site) aged P18 were deeply anesthetized with isoflurane and
secured in a stereotaxic frame (David Kopf Instruments). Cholera toxin
subunit B conjugated to Alexa Fluor 488 (0.1% in PBS; Invitrogen) was
injected into either the substantia nigra pars reticulata [anteroposterior
(AP), 	3.0 mm; mediolateral (ML), �1.4 mm; dorsoventral (DV), 	4.1
mm], the target of direct-pathway SPNs, or the external segment of the
globus pallidus (AP, 	0.7 mm; ML, �2.0 mm; DV, 	3.2 mm), the target
of indirect-pathway SPNs, with a 32 gauge Hamilton syringe as described
previously (Friedman et al., 2015). Mice were returned to their home
cage for 72 h to allow for retrograde transport of the fluorescent tracer
and then killed for electrophysiological recording as described above.
Labeled cells were positively identified as direct- or indirect-pathway
SPNs on the basis of retrogradely transported fluorescence and targeted
for whole-cell recording.

Data analysis. Offline analysis was performed using Clampfit (Molec-
ular Devices) and Mini Analysis software (Synaptosoft). Only neurons
whose action potential firing patterns resembled those of typical SPNs
were analyzed (long depolarizing ramp before action potential threshold;
Dong et al., 2006). sEPSCs and mEPSCs were analyzed using Mini Anal-
ysis with thresholds set at 6 pA for amplitude and 15 pA for area. For all
datasets, Bartlett’s test for equal variances was performed; one-way or
two-way ANOVA was used when appropriate to compare more than two
groups with equal variances ( p 
 0.05), whereas sample groups with
significantly different sample variances ( p � 0.05) were further analyzed
using linear mixed effects models with random animal effect to account
for repeated measures within an animal. Log transformations were per-
formed on the outcome variables to stabilize the variance. The Holm
step-down procedure was applied to control type I error rate in experi-
ments with multiple comparisons between groups. A p value �0.05 was
considered statistically significant. Analyses used SAS statistical software
(version 9.4) or GraphPad Software Prism (version 5.01). When com-
paring two groups, a two-tailed Student’s t test was performed. Data
are presented as mean � SEM. When relevant, numbers used for
individual experiments is listed as n � numbers of cells (numbers of
mice). Cumulative probability distributions were compared using
Kolmogorov–Smirnov tests; p � 0.05 was considered significant.
Two-way ANOVA was used to analyze the effect of decortication on
sEPSCs to compare equal numbers of cells from equal numbers of
animals across conditions. Statistical tests and values are provided in
Data Dryad: http://dx.doi.org/10.5061/dryad.j5n50.

Dendrite imaging and analysis
All recorded SPNs were filled with biocytin contained within the patch
pipette. After recording, slices were immersed in 4% paraformaldehyde
overnight at 4°C, permeabilized with Triton X-100 (0.1%) for 2 h at RT,
and labeled with streptavidin-conjugated Alexa Fluor 594 (1:300; Jack-
son ImmunoResearch) at 4°C. Intracellularly filled SPNs were first im-
aged on a confocal LSM 780 (Zeiss) using a 20� objective and Nyquist
sampling criteria to generate 3D renderings of dendritic arbors and then
with a 63� objective using Nyquist sampling criteria to visualize den-
dritic protrusions. Z-stacks were deconvolved using AutoDeblur/
AutoVisualize X (MediaCybernetics). Dendrites were traced using Neu-
rolucida and analyzed using NeuroExplorer (both from MBF Biosci-
ence); protrusion density and morphology were assessed using
NeuronStudio (Rodriguez et al., 2006). Dendritic protrusions were cat-
egorized as filopodia if they were longer than 2 �m and thinner than 300
nm; those that were shorter than 2 �m and wider than 300 nm in diam-
eter were categorized as spines (Yuste and Bonhoeffer, 2004). Groups
were compared using two-tailed t tests; a p value �0.05 was considered
statistically significant. Spine-head diameter cumulative frequency dis-
tributions were compared using two-sample Kolmogorov–Smirnov
tests.

Results
LRRK2 gain- or loss-of-kinase activity mutations do not affect
cytoarchitecture or LRRK2 protein levels
To evaluate the effect of the PD-related LRRK2–G2019S muta-
tion on striatal synaptic circuit development, we used two KI
mouse lines that were generated at Eli Lilly laboratories: one car-
rying the GSKI mutation (gain-of-kinase function; Fig. 1A) and
the other carrying the DAKI mutation (that renders LRRK2 ki-
nase dead; Fig. 1A). Data from several laboratories concur that
the G2019S mutation increases kinase activity twofold to three-
fold (West et al., 2005; Jaleel et al., 2007), and a recent study us-
ing these GSKI mice demonstrated decreased levels of some
phospho-Rabs, putative physiological targets of LRRK2, during
in vivo administration of a LRRK2 inhibitor (Steger et al., 2016).
The D2017A mutation eliminates LRRK2 kinase activity by inter-
fering with obligatory interactions with Mg 2� (Jaleel et al., 2007;
Ito et al., 2014). The presence of the gene mutations was con-
firmed by sequencing. Mutant mice appeared grossly normal and
exhibited normal litter sizes and growth rates compared with WT
mice. Nissl-stained sections showed no notable differences be-
tween genotypes in cytoarchitecture of neocortex or striatum
(Fig. 1B). A previous study of a different kinase-dead point mu-
tation suggested that LRRK2 kinase-dead mutations may desta-
bilize LRRK2 protein in adulthood (Herzig et al., 2011). To test
whether LRRK2 destabilization occurred in our KI mice, we com-
pared levels of mutant and WT LRRK2 in striatal lysates but
found no significant differences in LRRK2 levels between groups
(Fig. 1C; ANOVA, p � 0.5784, F � 0.601, n � 3 animals each).
Comparing LRRK2 protein levels in whole-brain lysates across
genotypes yielded similar outcomes (data not shown). Addition-
ally, there were no significant differences across genotypes in
striatal levels of TH (Fig. 1D; ANOVA, p � 0.9948, F � 0.005, n �
3 animals each).

LRRK2–G2019S mutation significantly and transiently
increases frequency of sEPSCs in SPNs
To compare glutamatergic EPSCs across genotypes, we used
whole-cell patch-clamp recordings from dorsal striatal SPNs in
acutely prepared coronal slices (Fig. 2A). In mice, LRRK2 expres-
sion levels are similar in striosomes and matrix (Davies et al.,
2013; West et al., 2014), so we did not distinguish between these
compartments. SPNs were identified visually by their somal size
and confirmed electrophysiologically by their characteristic fir-
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Figure 2. G2019S mutation increases sEPSC frequency in dorsal striatal SPNs. A, Schematic of a coronal cross-section showing approximate locations of recording pipettes in dorsal striatum. B,
Example of current-clamp traces showing patterns of action potentials elicited by depolarizing current steps that are characteristic of SPNs. C, Confocal image of biocytin-filled SPN after whole-cell
recording. Inset shows dendritic spines characteristic of SPNs. D, Continuous voltage-clamp traces (holding at 	70 mV) showing sEPSCs recorded from WT and GSKI SPNs in the presence of GBZ
(10 �M; top pair of traces). All sEPSCs were blocked by glutamate receptor antagonists [middle pair of traces; APV (10 �M) and CNQX (40 �M)] and recovered after washout (bottom pair of traces).
E, Mixed bar graphs/scatter plots showing average frequencies of sEPSCs at P21 from WT (n � 15 SPNs, 5 mice), GSKI (n � 12 SPNs, 6 mice; ***p � 0.0001), (Figure legend continues.)
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ing patterns in response to depolarizing current steps (Fino et al.,
2007; Fig. 2B). All recorded cells were filled with biocytin, and
SPN identity was confirmed by post hoc visualization of dendritic
spines (Fig. 2C). EPSCs were isolated by bath application of
GBZ, which blocks fast GABAA receptor-mediated currents,
and confirmed to be glutamate receptor mediated because
they were eliminated entirely by bath application of the
AMPA/kainate and NMDA receptor antagonists CNQX and
APV, respectively (Fig. 2D).

We focused first on the effect of LRRK2 kinase activity on
action potential-dependent sEPSCs (no TTX in the bath) by
comparing responses across GSKI, DAKI, and WT SPNs at P14,
P21, and P60. At P14, which follows ingrowth of corticostriatal
axons (Sharpe and Tepper, 1998; Sohur et al., 2014), there were
no significant differences across genotypes in frequency (Table
1). In contrast, at P21, a time point that follows a burst in corti-
costriatal synaptogenesis (Tepper et al., 1998), GSKI SPNs dis-
played a significant fourfold increase in frequency of sEPSCs
compared with WT or DAKI SPNs (Fig. 2E,G; Table 1) and a
significantly shorter interevent interval (IEI) between sEPSCs
(Fig. 2H). There were no differences across genotypes in average
sEPSC amplitudes (Fig. 2F,G).

The sEPSC frequencies observed in GSKI SPNs also showed a
wider range compared with WTs. We asked whether the wider
range in frequencies reflected differential effects of the GSKI mu-
tation on direct- and indirect-pathway SPNs. To test this, fluo-
rescent retrograde labeling from the substantia nigra or globus
pallidus was used to identify and record from direct- or indirect-
pathway GSKI SPNs, respectively. There were no significant dif-
ferences in sEPSC frequency between direct- and indirect-
pathway identified GSKI SPNs [p � 0.6639, F � 1.739, Student’s
t test, n � 8 (3) direct-pathway SPNs and 9 (3) indirect-pathway
SPNs], indicating that the abnormally elevated EPSC frequency
caused by the G2019S mutation is not pathway specific. As a
second test, GSKI mice were crossed to a line of mice expressing
tdTomato in Drd1R (direct-pathway) SPNs, and sEPSCs were
recorded from tdTomato-positive (D1R) and tdTomato-negative
(presumptive D2R) SPNs. Here also, there were no differences in
sEPSC frequency between tdTomato-positive and tdTomato-
negative SPNs (p � 0.9850, F � 2.627, Student’s t test, n � 4
tomato-positive D1 SPNs and n � 3 tomato-negative SPNs). We

confirmed that heterozygous GSKI SPNs exhibited the same ele-
vated frequency of sEPSCs compared with homozygous GSKI
SPNs [2.080 � 0.3379 Hz (heterozygous; n � 12 [3]) and 1.926 �
0.2902 Hz (homozygous; n � 12 [6]), p � 0.7329, F � 1.356,
Student’s t test], which was expected because in humans, the
G2019S mutation is autosomal dominant (Zimprich et al., 2004).
Together, these data demonstrate that the effects of LRRK2–
G2019S do not differentially affect SPN subtypes.

By P60, sEPSC frequencies were similar across all genotypes
(Table 1), similar to what has been observed in adult mice over-
expressing LRRK2–G2019S (Beccano-Kelly et al., 2015). Our
data suggest that developmental abnormalities in synaptic neu-
rotransmission at P21 in GSKI mice may trigger compensatory
mechanisms as circuits mature.

The abnormally elevated sEPSC frequency in GSKI SPNs is
driven by the excessive kinase activity of the G2019S mutation
The G2019S mutation increases LRRK2 kinase activity (West et
al., 2005; Jaleel et al., 2007), suggesting that the effects on EPSCs
were kinase driven. It was not clear whether the mutation exag-
gerates a normal effect of LRRK2 on activity or whether the ex-
cessive activity represents a gain-of-abnormal function. To
distinguish between these possibilities, we used DAKI mutant
mice to compare sEPSCs between kinase-dead DAKI SPNs and
WT SPNs at P21. We found no significant differences in sEPSC
frequency, IEI, or amplitude between DAKI and WT SPNs (Fig.
2E–H), indicating that LRRK2 kinase activity is not necessary for
normal levels of spontaneous action potential-driven activity.
Moreover, the analysis demonstrates that the elevated sEPSC fre-
quency observed in G2019S SPNs is a gain-of-abnormal function
driven by excessive kinase activity.

Aberrant SPN activity in G2019S mutants could result from
ongoing and excessive kinase activity, but it is also possible that
the mutation sets in motion a series of earlier developmental
events that indirectly regulate activity. To test whether the effects
of the kinase are acute, we exposed GSKI SPNs to the LRRK2
kinase inhibitor GNE-7915 (Estrada et al., 2012). Acute treat-
ment of striatal slices with GNE-7915 (50 nM) effectively reduced
GSKI sEPSC frequency to levels indistinguishable from WT (Fig.
3A,B) but had no effect on activity in WT or DAKI mutant SPNs
(Fig. 3A,B). When coupled with the observation that sEPSCs did
not differ between DAKI and WT SPNs, the data indicate that,
under normal, nonpathophysiological conditions, the kinase
activity of LRRK2 is dispensable for spontaneous synaptic
neurotransmission and that the elevated frequency of sEPSCs in
GSKI SPNs represents a gain-of-abnormal function by the
G2019S mutation.

Action potential-dependent synaptic activity is particularly
affected by the G2019S mutation
sEPSCs include both action potential-generated synaptic activity
and spontaneous fusion of synaptic vesicles (mEPSCs). Action
potential-dependent vesicle fusion (sEPSCs) and spontaneous
vesicle fusion (mEPSCs) can involve different vesicle pools (Sara
et al., 2005; Kavalali, 2015) and produce distinct postsynaptic
consequences (Sutton et al., 2006, 2007), raising the possibility
that G2019S could be differentially affecting one or the other
modes of vesicle release. To examine specifically effects of the
G2019S mutation on spontaneous presynaptic vesicle release, we
recorded mEPSCs at P21 after the addition of TTX (3 �M) into
the bath to eliminate all action potential-mediated presynaptic
activity. Although we found a slight elevation in frequency of
mEPSCs in GSKI SPNs compared with the other genotypes, the

4

(Figure legend continued.) and DAKI (n � 10 SPNs, 5 mice; p 
 0.05), F � 14.93. F, Mixed
bar graphs/scatter plots showing average amplitudes of sEPSCs. There were no significant dif-
ferences across genotypes. p 
 0.05, F � 0.01. In E and F, linear mixed effects models were
used to compare groups (see Materials and Methods). G, Sample traces of sEPSCs recorded from
WT, GSKI, and DAKI. H, Cumulative probability distribution of IEIs of WT, GSKI, and DAKI sEPSCs.
***Kolmogorov–Smirnov test, WT versus GSKI, p � 0.0001 and WT versus DAKI, p � 0.45.
Scale bar (in C): top, 25 �m; bottom, 7 �m.

Table 1. Postnatal time course of average sEPSC frequency across genotypes

Genotypes compared Average sEPSC frequency (Hz) p value F value

P14
WT versus GSKI 0.87 � 0.10 versus 0.91 � 0.16 0.28 2.36
WT versus DAKI 0.87 � 0.10 versus 0.52 � 0.24 0.14

P21
WT versus GSKI 0.52 � 0.17 versus 1.93 � 0.24 �0.0001*** 14.93
WT versus DAKI 0.52 � 0.17 versus 0.59 � 0.25 0.65

P60
WT versus GSKI 0.90 � 0.21 versus 0.74 � 0.33 0.46 0.71
WT versus DAKI 0.90 � 0.21 versus 0.88 � 0.31 0.62

Values are means � SE. ***p � 0.0001.
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difference was not significant (Fig. 4A,C). Moreover, there were
no significant differences across genotypes in mEPSC ampli-
tudes, consistent with the sEPSC data (Fig. 4B,C). Thus, these
data indicate that the G2019S mutant LRRK2 affects action
potential-generated activity in particular, with only slight and
nonsignificant effects on spontaneous vesicle fusion.

Corticostriatal afferents underlie elevated frequency of
sEPSCs in GSKI mutants
We next sought to identify the source of the overly active gluta-
matergic afferents contributing to the elevated frequency of
sEPSCs in the G2019S mutants. The vast majority of extrinsic

glutamatergic inputs to striatum derive from neocortex and thal-
amus (Wilson et al., 1983; Gerfen, 1992), with a smaller glutama-
tergic contribution via corelease from intrinsic cholinergic
neurons (Higley et al., 2011). In coronal slices, thalamostriatal
inputs originate posteriorly and are removed, but some intact
corticostriatal inputs are preserved (Centonze et al., 2004), which
we confirmed by backlabeling cortical projection neurons after
DiI placement in dorsal striatum (Fig. 5A). We first ruled out
differences between genotypes in intrinsic excitability of
SPNs; there were no differences between WT and GSKI SPNs
in the number of action potentials elicited by depolarizing
current steps (Fig. 5B). Additionally, there were no significant
differences between genotypes in membrane capacitance
[WT, � � 21.73 � 0.954 pF; GSKI, � � 22.00 � 1.210 pF,
Student’s t test, p � 0.860, F � 1.169; WT, n � 11 (3); GSKI,
n � 9 (3)], resting membrane potential [WT, � � 	60.43 �
1.131 mV; GSKI, � � 	61.57 � 1.412 mV, Student’s t test, p �
0.539, F � 1.559; WT, n � 7 (2); GSKI, n � 7 (2)], or action
potential threshold [WT, � � 	27.9 � 2.689 mV; GSKI, � �
	30.17 � 1.237 mV, Student’s t test, p � 0.756, F � 3.126;
WT, n � 10 (6); GSKI, n � 7 (4)]. We next tested whether the
elevated frequency of glutamatergic synaptic events in GSKI
striatum reflected elevated activity of cortical inputs. We re-
corded sEPSCs from GSKI and WT SPNs in P21 acute coronal
slices in which the striatum of one side was surgically isolated
from the overlying cortex (Fig. 5C), thereby acutely disrupting
cortical input as described previously (Smeal et al., 2007).
sEPSC frequency recorded from GSKI SPNs on the surgically
isolated side was lowered to WT levels and was significantly
lower than that recorded from GSKI SPNs on the contralateral

Figure 3. LRRK2 kinase inhibitor blocks abnormal activity in GSKI SPNs. A, Mixed bar graphs/
scatter plots showing frequency of sEPSCs in WT (gray), GSKI (blue), and DAKI (pink) SPNs in the
presence of the diluent DMSO (circles) or GNE-7915 (50 nM) (squares). The inhibitor significantly
decreased the frequency of sEPSCs in GSKI SPNs to WT levels (**p � 0.001) such that there was
no significant difference in sEPSC frequency between DMSO-treated WT and GNE-7915-treated
GSKI SPNs ( p 
 0.05). GNE-7915 had no effect on sEPSC frequencies of WT SPNs or DAKI SPNs.
A one-way ANOVA with Bonferroni’s post hoc tests was used to compare groups, F � 8.755. B,
Sample traces showing WT (gray, top), GSKI (blue, middle), and DAKI (pink, bottom) sEPSCs in
the presence of DMSO (top trace of each pair) or GNE-7915 (50 nM, bottom trace of each pair).

Figure 4. mEPSCs are not significantly altered in GSKI SPNs. Mixed bar graphs/scatter plots
of averaged mEPSC frequencies (A) and amplitudes (B) at P21 from WT [n � 16 (7)] versus GSKI
[n � 20 (8)] and DAKI [n � 12(4)] SPNs. There was a slight, but nonsignificant, increase in GSKI
mEPSC frequency compared with WT ( p�0.0919, F�2.87). There was no difference between
DAKI and WT frequencies ( p �0.5095). B, No significant differences in mEPSC amplitudes were
evident (WT vs GSKI, p � 0.3386; WT vs DAKI, p � 0.9183, F � 0.66). In A and B, a linear mixed
effect model was used to compare groups (see Materials and Methods). C, Sample traces of
mEPSCs recorded from SPNs of the indicated genotypes.
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(intact) side of the same slices (Fig. 5 D, E). In contrast, there
were no differences in sEPSC frequency between the intact and
isolated sides in WT slices, indicating that effects seen in the
mutants were not attributable to an injury artifact (Fig. 5 D, E).
Together, these data suggest that corticostriatal activity is ab-
normally high in GSKI mice and contributes to the signifi-
cantly elevated frequency of sEPSCs recorded from SPNs.

Increased frequency of sEPSCs is not accounted for by
changes in synapse or spine number
The increased frequency of sEPSCs in GSKI mice could reflect
a greater number of excitatory synapses. We tested this possi-
bility in three complementary ways. First, we compared the
density of presynaptic and postsynaptic glutamatergic molec-
ular markers in immunolabeled sections through dorsal stria-
tum across all genotypes at P21. Immunolabeling for VGluT1
was used to label corticostriatal terminals, VGluT2 to label
thalamostriatal terminals (Fujiyama et al., 2004; Raju et al.,
2006), and PSD95 to label all glutamatergic postsynaptic sites.

There were no significant differences in the density of VGluT1-,
VGluT2-, or PSD95-labeled puncta or in the average puncta area
across genotypes (Fig. 6A). Second, we evaluated protein levels of
these synaptic molecular markers by Western blot of synaptoneuro-
somes prepared from P21 dorsal striatum. Consistent with the im-
munolabeling data, we found no changes in levels of these synaptic
proteins across genotypes (Fig. 6B). Third, because corticostriatal
afferents predominantly target dendritic spines (Kreitzer and
Malenka, 2008), we compared between GSKI and WT mice at
P21 the density of protrusions (spines and filopodia) on SPNs
after biocytin filling (Fig. 6C). Spines were distinguished from
filopodia based on length and width (protrusions were classi-
fied as spines if they were �2 �m in length and 
300 nm in
width; Yuste and Bonhoeffer, 2004). In accordance with our
immunohistochemical and biochemical findings, there were
no differences between genotypes in the overall density of
dendritic spines (Fig. 6C, left) or filopodia (Fig. 6C, right).
Additionally, there were no differences in average total den-
dritic length per cell between genotypes (Fig. 6D). Together,

Figure 5. Isolating dorsal striatum from cortex normalizes excessive frequency of sEPSCs in GSKI SPNs. A, Schematic showing the distribution of corticostriatal neurons (boxed region; yellow dots
in the expanded view) retrogradely labeled by DiI crystals placed into dorsal striatum in coronal slices. Layers are indicated by dashed lines and labeled by roman numerals at the bottom.
Photomicrograph of DiI backlabeled neurons is shown in inset (scale bar, 40 �m). B, Graph showing action potential firing properties of WT and GSKI SPNs in response to increasing current steps.
There were no significant differences in numbers of action potentials elicited between WT (n � 8) and GSKI (n � 4) SPNs (two-way ANOVA, p � 0.467, F � 0.54 for genotype; p � 0.959, F � 0.20
for genotype and injected current interaction). C, Schematic showing scalpel cuts (dotted red lines) used to acutely isolate the striatum of one side (isolated side) from the overlying neocortex. The
contralateral side was left intact (intact side); whole-cell recordings were made from both sides (position indicated by pipettes). D, Mixed bar graph/scatter plots showing average frequency of
sEPSCs from WT and GSKI SPNs in isolated and intact sides. Two-way ANOVA, **p � 0.0143, F � 7.68 for genotype interaction in isolated versus intact; ***p � 0.0005, F � 19.48 for decortication
effect, GSKI versus WT, n � 9 (4) per genotype (WT and GSKI) and condition (isolated and intact). E, Sample traces showing WT and GSKI sEPSCs recorded from SPNs in intact or isolated sides.
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these data indicate that there are no changes in synapse num-
ber in GSKI SPNs.

Dendritic spine-head size and distribution of postsynaptic
responses are abnormal in GSKI mutants
Strikingly, however, the G2019S mutation significantly increased
postsynaptic dendritic spine-head size compared with WT (Fig.
6E,F). Histograms and cumulative probability analysis demon-
strated that GSKI SPNs display dendritic spine-head widths that
were consistently and significantly shifted toward larger values
compared with WT SPNs (Fig. 6F). Because excitatory postsyn-
aptic responses are proportional to spine-head size (Harris and
Stevens, 1989; Takumi et al., 1999; Matsuzaki et al., 2004; Segal,
2005), we asked whether there was any functional correlation
between abnormal spine size and excitatory responses in GSKI
SPNs. Comparisons of histograms and cumulative probability
plots of sEPSC amplitudes also showed a rightward shift in GSKI
SPNs compared with WT responses (Fig. 6G), indicating an in-
creased probability of larger current amplitudes in G2019S mu-
tant SPNs. Together, these data reveal coordinated presynaptic
and postsynaptic structural and functional changes to developing
G2019S striatal circuits.

Discussion
Here we provide evidence for robust gain-of-abnormal func-
tion phenotypes early in postnatal striatal circuit development
caused by the PD-associated G2019S mutation in LRRK2.
These abnormalities affect developing neural circuits that par-
ticipate in the generation of PD-related symptoms later in life.
Three principal findings emerged. First, in G2019S mutant
SPNs, there is an abnormal and highly significant LRRK2
kinase-dependent increase in frequency of EPSCs. Action
potential-dependent activity is particularly high, appears to
arise principally from corticostriatal afferents, and peaks at
P21. Second, dendritic spine-head sizes are larger in G2019S
mutant SPNs, a morphological change that is correlated with a
shift toward larger postsynaptic responses. In contrast, syn-
apse density and dendritic length in GSKI mice are unchanged.
Third, endogenous LRRK2 kinase activity per se is not neces-
sary for normal spontaneous excitatory synaptic neurotrans-
mission, because there was no effect on sEPSCs in SPNs
when kinase activity of LRRK2 was ablated genetically or in-
hibited pharmacologically. Together, our data indicate that
the G2019S mutation imparts a unique gain-of-abnormal
function to striatal excitatory circuits during a critical stage of
development when heightened activity can permanently affect
striatal circuit structure and function (Andersen, 2003; Kozo-
rovitskiy et al., 2012; Molero et al., 2016; Peixoto et al., 2016).

The abnormally elevated frequency of EPSCs observed in
GSKI SPNs at P21 reflects mostly action potential-dependent
events (sEPSCs) rather than mEPSCs. This distinction is reveal-
ing because action potential-driven events and spontaneous min-
iature events (minis) can involve different pools of presynaptic
vesicles (Andreae et al., 2012; Bal et al., 2013), activate different
postsynaptic targets (Atasoy et al., 2008), and produce distinct
signaling outcomes at postsynaptic sites (Sutton et al., 2006,
2007; Kavalali, 2015). Action potential-driven fusion demands a
rapid and steep rise in calcium coupled to the actions of the
canonical SNARE complex generated by Synaptobrevin 2, Syn-
aptotagmin 1, and synaptosomal-associated protein of 25 kDa
(SNAP25; Kavalali, 2015), outlining a restricted mechanistic
framework in which LRRK2–G2019S is likely to act.

Our data indicate that the abnormally elevated sEPSC fre-
quency in GSKI SPNs is caused by enhanced kinase activity.
Kinase-dead DAKI SPNs displayed normal sEPSC frequency, and
a LRRK2 kinase inhibitor normalized the excessive EPSC
frequency in GSKI neurons. The effect is most likely mediated
presynaptically, because acutely removing cortical afferents nor-
malized postsynaptic responses and GSKI SPNs displayed nor-
mal densities of dendritic spines and synaptic molecular markers.
There is a strong precedent for LRRK2 to regulate presynaptic
terminal function; results from LRRK2 deletion, knockdown, or
loss-of-function studies collectively support that the entire mul-
tifunctional LRRK2 protein can regulate synaptic vesicle endocy-
tosis and/or exocytosis (Shin et al., 2008; Matta et al., 2012; Yun et
al., 2013; Piccoli et al., 2014; Arranz et al., 2015). However, there
is no consensus on the general mechanism(s) of action, and even
less clear are the relevant molecular substrates for normal or mu-
tant (G2019S) LRRK2 kinase activity because the majority of
targets identified in vitro have not been confirmed as targets
under physiological conditions. A recent report indicates that
LRRK2 can phosphorylate N-ethylmaleimide-sensitive factor
(NSF) in vitro (Belluzzi et al., 2016), an event that would be
expected to promote SNARE dissociation after fusion and one
that would be consistent with the increased glutamatergic activity
seen in GSKI SPNs. Conversely, similarly convincing in vitro data
have shown that LRRK2 can phosphorylate SNAPIN (SNAP as-
sociated protein), a protein that sequesters SNAP25 and nega-
tively regulates fusion (Yun et al., 2013). Neither NSF nor
SNAPIN has been shown to be phosphorylated by overexpressed
or endogenously expressed LRRK2 in cells. Currently, the most
plausible presynaptic candidate substrate for mediating the ef-
fects shown here is Rab3a, a GTPase that purifies with synaptic
vesicles and promotes exocytosis (Pavlos et al., 2010). Although
Rab3a has not yet been shown to be a bona fide substrate of
endogenously expressed LRRK2 or LRRK2–G2019S, recent work
shows that Rab3a is a substrate for LRRK2 in cells and in vitro
(Steger et al., 2016) and provides strong evidence that similar Thr
sites in Rab8 and Rab10 are phosphorylated by LRRK2 in an
endogenous context (Steger et al., 2016). Significantly, Rab3a is
expressed in a subpopulation of synaptic vesicles (Pavlos et al.,
2010) and can selectively modulate action potential-driven vesi-
cle release (Feliciano et al., 2013). Thus, G2019S may be affecting
action potential-dependent activity in particular through Rab3a.

Our undercut experiments suggest that corticostriatal affer-
ents are the likely source of elevated synaptic activity in GSKI
SPNs, although other sources of glutamatergic input (e.g., thala-
mus) cannot be ruled out ex vivo. Cortical neurons in layer 5, the
source of the majority of corticostriatal inputs (Wise and Jones,
1977; Shepherd, 2013; Sohur et al., 2014), also express LRRK2
(Taymans et al., 2006; Davies et al., 2013; Giesert et al., 2013; West
et al., 2014), suggesting that abnormal kinase activity within cor-
ticostriatal projection neurons acts to increase their synaptic
drive onto SPNs. Consistent with this idea, dissociated cortical
neurons cultured from G2019S–KI or G2019S–BAC transgenic
mice show elevated spontaneous activity (Beccano-Kelly et al.,
2014; Belluzzi et al., 2016).

The data also show a significant postsynaptic consequence of
G2019S expression in SPNs. Mutant SPNs display significantly
larger spine-head widths and sEPSC magnitudes compared with
WT SPNs. These data are consistent with the wider range of
action potential-driven activity on GSKI SPNs and indicate that
there is both cellular and synaptic heterogeneity in G2019S-
mediated outcomes. It remains to be determined whether such
aberrant spine morphology reflects direct postsynaptic effects of
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Figure 6. G2019S SPNs exhibit altered spine morphology and distribution of postsynaptic response amplitudes but no change in synapse/spine density. A, Representative images of sections
through P21 dorsal striatum immunofluorescently labeled for synaptic markers PSD95 (top, green), VGluT1 (middle, blue), and VGluT2 (bottom, red) taken from the indicated genotypes. Scale bar,
10 �m. Bar graphs of puncta area and density for each marker. There were no significant differences between genotypes, one-way ANOVA, n � 3–5 animals per genotype, p 
 0.05. B, Western
blots of synaptoneurosomes prepared from P21 striatum showing protein levels of PSD95, VGluT1, and VGluT2 from the indicated genotypes and actin, which was used as a loading control. There
were no significant differences between genotypes. One-way ANOVA, n � 3 mice per genotype, p 
 0.05 for all proteins. C, Bar graphs show average spine density (left) or average filopodia density
(right). For classification of spines and filopodia, see Results. There were no significant differences in density between WT and GSKI SPNs [spines and filopodia, Student’s t test, p � 0.214 (F � 12.19)
and p � 0.460 (F � 2.632), respectively, n � 7 (5) for WT and 8 (3) for GSKI]. D, Bar graph of average total dendrite length per cell in WT and GSKI SPNs. There were no significant differences;
Student’s t test, p � 0.56, F � 1.275, n � 12 cells for WT and 10 cells for GSKI. E, Bar graph of average spine-head widths show significantly increased width in GSKI neurons; Student’s t test, **p �
0.006, F � 3.154, n � 7 WT neurons and 8 GSKI neurons. At right are examples of deconvolved confocal image Z-stacks of biocytin-filled, Alexa Fluor 594-labeled GSKI and WT SPN dendrite
segments; scale bar, 4 �m. F, Cumulative probability distributions of spine-head widths in SPNs from WT (gray line) and GSKI (blue line) mice. Rightward shift is significant, ***Kolmogorov–
Smirnov test, p � 0.0001; n � 7 (5) WT and 8 (3) GSKI. Inset, Binned data of spine-head widths. G, Cumulative probability distributions of sEPSC amplitudes of the first 50 events per cell from WT
(gray) or GSKI (blue) SPNs. Rightward shift is significant, ***Kolmogorov–Smirnov test, p � 0.0001, n � 15 (5) for WT and 12(6) for GSKI. Inset, Binned data of all of the events.
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mutant LRRK2, but a postsynaptic locus of LRRK2 activity would
be consistent with anatomical studies in mouse and monkey
striatum showing LRRK2 protein localization in cell bodies
and dendrites (Aarsland et al., 2009; Lee et al., 2010a; West et al.,
2014) and increased proportions of thin compared with
mushroom-shaped dendritic protrusions in LRRK2 knock-out
mice at P15 (Parisiadou et al., 2014). Spine/synapse size and syn-
aptic response magnitude are tightly correlated but indepen-
dently regulated (Shi et al., 1999; Zito et al., 2004; Yang et al.,
2008), and LRRK2 G2019S could conceivably be regulating either
or both pathways. LRRK2 could control spine shape via its inter-
actions with the ERM family, cofilin, or other actin regulatory
proteins suspected to be substrates of LRRK2 (Jaleel et al., 2007;
Parisiadou et al., 2009, 2014; Meixner et al., 2011). It could also
affect postsynaptic receptor recycling via Rab10, a confirmed
LRRK2 substrate (Steger et al., 2016) that regulates AMPA recep-
tor recycling in C. elegans (Glodowski et al., 2007). Consistent
with this idea, a recent study showed that LRRK2–G2019S over-
expression disrupts hippocampal LTD by a mechanism that may
involve impaired GluR recycling (Sweet et al., 2015). Alterna-
tively, altered spine shape and amplitude in the GSKI mutants
could be an indirect effect of the abnormally elevated excitatory
synaptic activity, because synaptic activity generally plays a large
role in determining spine shape (Yuste and Bonhoeffer, 2001).

Although spine morphology was altered in G2019S SPNs,
there were no differences between G2019S and WT SPNs in den-
dritic length or glutamatergic synapse density. Several laborato-
ries have shown that overexpression of LRRK2–G2019S can
reduce neurite growth (MacLeod et al., 2006; Parisiadou et al.,
2009; Dächsel et al., 2010; Ramonet et al., 2011; Winner et al.,
2011; Sepulveda et al., 2013). However, this phenotype appears to
be attributable at least in part to overexpression (Skibinski et al.,
2014) because changes in neither dendrite length nor synapse
density have been reported in cultured hippocampal or cortical
neurons expressing physiological levels of LRRK2–G2019S
(Dächsel et al., 2010; Beccano-Kelly et al., 2014), consistent with
results reported here.

Our data reveal clearly abnormal neurobiological outcomes
selectively attributable to a prevalent PD-related LRRK2 muta-
tion early in postnatal life. The abnormally elevated synaptic ac-
tivity seen at P21 in G2019S SPNs was not yet evident at P14.
Differences in maturation between cortical and thalamic inner-
vation may account for this because thalamic afferents are pres-
ent at birth (Vercelli et al., 2003), whereas cortical inputs, which
grow into striatum in early postnatal life (Sohur et al., 2014), are
still immature, both structurally and functionally, at P14 (Pei-
xoto et al., 2016). High levels of synaptic activity observed at P21
were also not sustained into adulthood. There is a strong propen-
sity for neural circuits to undergo homeostatic adjustments to
normalize activity levels, thereby tuning neuronal responses to
activity patterns (Turrigiano, 2008). Such mechanistic adjust-
ments are likely involved here at later ages. Nevertheless, abnor-
mal timing or patterns of activity early in developing striatal,
visual cortical, and other circuits profoundly disrupt circuit or-
ganization, synapse plasticity, and behaviors later in life (Ander-
sen, 2003; Ehlers and Criado, 2010; Marco et al., 2011;
Kozorovitskiy et al., 2012; Archer and Garcia, 2015; Greenhill et
al., 2015; Molero et al., 2016; Peixoto et al., 2016) and are consis-
tent with recent fMRI studies showing that presymptomatic
human LRRK2 G2019S carriers display reorganized prefrontal–
striatal circuits (Helmich et al., 2015), changes in task-related
activity during cognitive testing (Thaler et al., 2013), and de-
creased executive function suggested by impaired performance

on the Stroop test compared with noncarrier controls recruited
from the same families (Thaler et al., 2016). Additional investi-
gation will reveal precisely how the dramatic but transient alter-
ations in excitatory circuitry observed in G2019S SPNs have a
lasting effect on circuit function and striatally based behaviors.
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