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Expression of an Activated Integrin Promotes Long-Distance
Sensory Axon Regeneration in the Spinal Cord
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After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and
chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particu-
larly «9B1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a B1-binding
integrin activator, kindlin-1. We examined the synergistic effect of @9 integrin and kindlin-1 on sensory axon regeneration in adult rat
spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from
C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1level and above
(>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection
to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of a9 integrin or

kindlin-1 alone promoted much less regeneration and recovery.
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ignificance Statement

icant improvement for a spinal cord-injured patient.

The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-
motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of
glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and
unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we
have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a signif-
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Introduction
After injury, CNS axons fail to regenerate because of the presence
of inhibitory factors, the lack of growth-promoting factors in
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the environment, and a poor intrinsic regenerative response of
the neurons. In the injured CNS, extracellular matrix molecu-
les, such as chondroitin sulfate proteoglycans (CSPGs) and
tenascin-C, are highly upregulated, and these molecules play a
critical role in blocking CNS repair. The upregulated CSPGs in
the glial scar have an inhibitory effect on axon growth, and treat-
ments directly targeting CSPGs, such as chondroitinase, can per-
mit some axon regeneration (Friedlander et al., 1994; Moon et al.,
2001; Bradbury et al., 2002; Cafferty et al., 2007). Tenascin-C has
several splice variants containing the binding sites for CSPGs,
integrins, fibronectin, laminin, contactin, and other ligands
(Joester and Faissner, 1999; Probstmeier and Pesheva, 1999; Lun-
dell et al., 2004). The combination of CSPGs, tenascin-C,
Nogo-A, semaphorin 3A, and other inhibitory molecules forms
an inhibitory environment for axon regeneration (Milev et al.,
1997; Probstmeier et al., 2000; Pasterkamp and Verhaagen, 2006;
Kwok et al., 2014). Of these molecules, tenascin-C is of particular
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interest. It is thought of as an inhibitory molecule, but it can
promote the growth of axons that possess an appropriate
tenascin-binding integrin such as «781 or a981 (Mercado et al.,
2004; Andrews et al., 2009). The aim of this study is to use a
tenascin-binding integrin to promote spinal cord regeneration.

Integrins are a family of transmembrane cell adhesion recep-
tors possessing an « and a 3 subunit that can promote neurite
outgrowth in embryonic (Lein et al., 1991; Neugebauer et al.,
1991), postnatal (Vogelezang et al., 2001), and adult (Condic,
2001; Gardiner et al., 2005; Andrews et al., 2009) neurons. Al-
though peripheral nerve regeneration is associated with upregu-
lation of a4, a5, a6, a7, and B1 (Hammarberg et al., 2000;
Vogelezang et al., 2001; Ekstrom et al., 2003; Wallquist et al.,
2004; Gardiner et al., 2007), a9 integrin, which is a receptor for
tenascin-C, remains downregulated after CNS injury (Stanisze-
wska et al., 2008; Andrews et al., 2009). The expression of a9
integrin in adult dorsal root ganglion (DRG) neurons promotes
profuse sensory axon regeneration in vitro on tenascin (Andrews
etal., 2009). However, the regeneration-promoting effect in vivo
was modest after spinal cord injury and dorsal root crush. The
reason is that integrins are deactivated by the presence of CSPGs
and Nogo-A (Hu and Strittmatter, 2008; Tan et al., 2012).

Integrin activation, “inside-out” signaling, is controlled by the
binding of kindlin and talin to the B-integrin cytoplasmic tail (Moser
et al., 2009). This enables binding of a ligand to integrin, which
triggers a series of intracellular signaling cascades, “outside-in” sig-
naling. The kindlins comprise three isoforms (kindlin-1, kindlin-2,
and kindlin-3) that bind to the -integrin tail viaa FERM (4.1/ezrin/
radixin/moesin) domain, triggering activation and cell-matrix adhe-
sion (Rogalski et al., 2000). Kindlin-1 is expressed predominantly in
epithelial cells, kindlin-2 is expressed in all tissues and is the only
isoform expressed in the nervous system, and kindlin-3 is exclusively
expressed in hematopoietic cells (Ussar et al., 2006). Our previous
work has demonstrated that expression of kindlin-1, but not
kindlin-2, can promote short-distance sensory axon regeneration in
vivo in the presence of CSPGs (Tan et al., 2012).

The aim of this study was to examine whether the expression
of the tenascin-binding a9 integrin with an integrin activator,
kindlin-1, could promote extensive sensory axon regeneration in
the spinal cord. We have examined sensory axon regeneration in
vitro and in vivo from DRG neurons expressing o9 integrin and
kindlin-1 through an environment rich in tenascin-C and
CSPGs. We show that activation of a9 integrin by kindlin1 allows
axons to interact with tenascin-C and overcome the inhibitory
environment of the adult CNS. Extensive axon regeneration was
observed in vivo through a mostly normal anatomical pathway
with behavioral and physiological restoration of sensory func-
tions. Expression of either a9 integrin or kindlin-1 alone stimu-
lated much less regeneration and recovery.

Materials and Methods

Adult rat DRG cultures

Adult female Sprague Dawley rats were killed, and DRGs were harvested.
For explant culture, each DRG was cut into two to three pieces and then
plated on substrate-coated glass coverslips. For dissociated culture,
DRGs were incubated with 0.2% collagenase (Sigma) and 0.1% trypsin
(Sigma), followed by trituration and centrifugation. Before being
plated on substrate-coated glass coverslips at a density of 2.0-4.0 X
10* cells/cm?, the cells were transfected with Neon transfection kit
(Invitrogen). For each reaction, 500 ng of plasmid [a9—enhanced
yellow fluorescent protein (eYFP) and/or kindlinl-mCherry] was
used to transfect 1.0—1.5 X 10° cells at 1200 V, 20 ms, and two pulses.
The substrates used for coating were poly-p-lysine (20 wg/ml; Sigma),
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laminin (10 wg/ml; Sigma), tenascin-C (10 ug/ml; Millipore), or ag-
grecan (10 ug/ml; Sigma).

Neurite outgrowth assay

Dissociated cultures were maintained for 3 d and explant cultures for 5d
before fixation with 4% paraformaldehyde (PFA). Quantification was
performed using NTH Image]J. For dissociated cultures, the longest neu-
rite of 20 randomly selected DRG neurons per condition was measured
(five independent repeats to give 100 neurons). For explant cultures, the
longest 25 neurites per explant per condition were measured (five ex-
plants per condition, five independent repeats). To measure the number
of neurites extending from each explant, a parallel line was drawn 50 wm
away from the edge of the explant, and the number of neurites passing
through the line was calculated per field of observation (550 X 425 um).

Probe synthesis and in situ hybridization

Probes were synthesized with PCR using the following primers: a9 integrin,
5'-AGCCGGACGCCAGAGTCCCCT-3’ (forward) and 5'-GGAGGGGAT
GATGTAGCAGAA-3' (reverse); and kindlinl, 5'-ATGTTCCAGCCT
GATCTTTG-3' (forward) and 5'-TGCGAGTTTAGGGATGTCAG-3' (re-
verse). The purified PCR products were then labeled with digoxigenin
(Roche) for in situ hybridization on PFA-fixed DRG sections. The procedure
for in situ hybridization was performed as previously described (Carulli et al.,
2006).

Generation of adeno-associated virus

The plasmids adeno-associated virus (AAV)-CMV-farnesylated GFP
(fGFP), AAV-CAG-a9-V5, and AAV-CMV-kindlin1-GFP were ampli-
fied and sequenced before proceeding to be packaged into AAV serotype 5
(AAV5) as described previously (Hermens et al., 1999). For virus produc-
tion, HEK293T cells were transfected with the individual expression and
helper plasmids and kept for 3 d in culture. The transfected cells were then
lysed by using three freeze—thaw cycles. After centrifugation, the crude lysate
was subjected to iodixanol gradient (15, 25, 40, and 60%) ultracentrifugation
using a Type 70Ti rotor (Beckman) at 490,000 X gat 16°C for 70 min. The
virus was then collected and concentrated using an Amicon Ultra-15 device
(Millipore). The titer of the virus was then determined by using real-time
quantitative PCR: 1.52 X 10 13 GC/ml for AAV5—fGFP, 1.54 X 10'* GC/ml
for AAV5-a9-V5, and 1.41 X 10'? GC/ml for AAV5-kindlin1-GFP.

Animal surgeries

All animal surgeries were conducted in accordance with the United King-
dom Animals (Scientific Procedures) Act 1986. Adult 2-month-old male
Lewis rats were used for surgery. Each animal was allocated a number and
assigned into one of the control or experimental groups randomly. The
experimenter was blinded throughout the entire study, including during
behavioral testing and axon quantification. During surgery, the animals
were anesthetized in 2—-4% isoflurane, in 1.5-2.0 L/min oxygen. A left
hemilaminectomy was performed at the level C5-T1. One microliter of
the virus ata working titer of 2 X 10 ' GC/ml was injected into the left C6
and C7 DRG using a 33 gauge needle syringe (Hamilton) with an infusion
syringe pump (World Precision Instruments) at 0.1 ul/min, with addi-
tional 3 min before needle withdrawal. At the same time, a concurrent
dorsal root crush injury (left C5-C8) was performed with a pair of fine
Bonn forceps (Fine Science Tools) for 3 X 10 s for each root. A week
before the final experimental time point, a total of 5 ul of 1% cholera
toxin B subunit (CTB; List Biological Labs) was injected into the left
footpad and the four digits (Carulli et al., 2010). At the end of the exper-
imental time point, the animals were perfused transcardially with 4%
PFA. We did not have to humanely kill any animals based on welfare
reasons in this study.

Sensory behavioral testing

Ladder-rung walking task, mechanical pressure (Randall-Selitto touch sen-

sitivity) test, and thermal pain (Hargreave’s hotplate) test were administered

once before the surgery and once each week after surgery for 12 weeks.
Ladder-rung walking task. Animals were placed on a 1.2-m-long hori-

zontal ladder, with unevenly spaced rungs that were 3.0-5.0 cm apart.
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Figure 1.

Coexpression of a9 integrin and kindlin-1 promotes DRG neurite outgrowth in vitro on tenascin-C + aggrecan. A, Neurite outgrowth of dissociated DRG neurons, mock transfected

(control) or transfected with «c9-eYFP and/or kindlin1—mCherry cultured on laminin or tenascin-C + aggrecan. Scale bar, 100 wm. B, C, The average neurite length of dissociated DRG
neurons cultured on laminin (B), tenascin-C only, or tenascin-C + aggrecan (C) for 3 d, n = 5. D, Neurite outgrowth of DRG explants injected with AAV5—fGFP, AAV5—a:9-V5, and/or AAV5—
kindlin1—GFP cultured on laminin or tenascin-C + aggrecan. Scale bar, 100 um. E, F, The average neurite length (E) and the average number of neurites per field of observation (F) of virus-injected
DRG explants cultured on laminin or tenascin-C + aggrecan for 5d, n = 5. Results were analyzed by one-way (B, E, F) or two-way (€) ANOVA and expressed as mean = SEM. *p << 0.05, **p <

0.01, and ***p < 0.001 were statistically significant.

Sugar pellets were provided at the end of the ladder. The animals were
allowed to walk on the ladder for three trials and video recorded. The
average number of slips from the three trials was quantified.
Mechanical pressure test. Animals were placed in an enclosure with a
metal mesh bottom. A probe connected to an electronic anesthesiometer

(IITC Life Science) was applied with a gradual increase of pressure to the
footpad of the forepaw, until the animal withdrew its paw. The maxi-
mum pressure recorded was termed as the withdrawal force (in grams).
Five trials were performed on each forepaw, left (experimental) and right
(internal control). The trial was terminated if the animal failed to re-
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spond within 100 g. The average withdrawal
force was determined after eliminating the
highest and lowest measurements.

Thermal test. Animals were placed in an en-
closure with a fiberglass bottom. An infrared-
emitting device (Ugo Basile) was placed
directly under the footpad of the forepaw, until
the animal withdrew its paw. The infrared in-
tensity was set at 48 units. The time between
the onset of the heat stimulus and withdrawal
of the paw was termed as the withdrawal la-
tency (in seconds). Three trials were performed
on each forepaw, left (experimental) and right
(internal control). The trial was terminated if
the animal failed to respond within 20 s. The
average withdrawal latency was calculated by
averaging the three trials.

Control

Alpha9

Electrophysiology

Animals were terminally anesthetized with
urethane (Sigma) at a dosage of 1.5 g/kg. A
laminectomy was performed at the level C4—
T2. The left dorsal roots C4, C5, C8, and T1
were cut acutely before the recording. The in-
cision cavity was filled with paraffin oil
(Sigma). The stimulating electrodes were in-
serted in parallel into the footpad of the left
forepaw (experimental) or right forepaw (in-
ternal control). The recording microelectrodes
(platinum/20% iridium metal; Harvard Appa-
ratus) were inserted into the left and right dor-
sal horns (~1 mm depth), perpendicularly to
the spinal cord. The parameters for electrical stimulation were 4 mA, 100
ws, and 5 Hz. The readings were recorded using Spike2 (Cambridge
Electronic Design).

Figure 2.

Immunostaining

Sections of PFA-fixed tissues were cut at 14 um on a cryostat. Sections
were blocked in 0.4% Triton X-100 (Sigma) and 10% normal goat serum
(Invitrogen). The tissues were then incubated with primary antibodies
overnight at 4°C and secondary antibodies for 2 h at room temperature.
After that, the tissues were washed in triplicate of 0.2% Triton X-100 in
PBS and then mounted with Fluorosave (Calbiochem). Primary antibod-
ies used were rabbit anti-B1-integrin (1:500; Millipore), chicken anti-
BIII-tubulin (1:500; Abcam), mouse anti-BIII-tubulin (1:500; Sigma),
mouse anti-focal adhesion kinase (FAK; 1:500; Invitrogen), rabbit anti-
pY397FAK (1:250; Invitrogen), chicken anti-GFP (1:500; Invitrogen),
rabbit anti-GFP (1:1000; Invitrogen), mouse anti-mCherry (1:250;
Clontech), mouse anti-V5 (1:250; Invitrogen), mouse anti-chondroitin
sulfate (1:400; Sigma), rabbit anti-laminin (1:500; Sigma), rabbit anti-
tenascin-C (1:250; Abcam), mouse anti-neurofilament (NF) 160/200 (1:
500; Sigma), mouse anti-NF200 (1:500; Sigma), rabbit anti-calcitonin
gene-related peptide (CGRP; 1:1000; Sigma), biotinylated isolectin B4
(IB4; 1:500; Vector Laboratories), goat anti-CTB (1:500; List Biological
Labs), and guinea pig anti-VGIuT2 (1:500; Synaptic Systems). Secondary
antibodies used were Alexa Fluor 488, 568, 647, or 660 (1:500;
Invitrogen).

Microscopy and statistical analysis

Fluorescence imaging was performed using a Leica DM6000 epifluores-
cent microscope and a Leica DMI4000B confocal microscope. Images
were analyzed using NIH Image]. Bar graphs were shown with mean *+
SEM produced using Microsoft Excel 2013. Statistical analysis was per-
formed using SPSS version 22, and statistical differences between groups
were determined by using Student’s t test, one-way, two-way, or
repeated-measures ANOVA with Bonferroni’s post hoc test when appro-
priate. For all statistical analyses, a p value of 0.05 was considered to be
significant.
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Results

Expression of both a9 integrin and kindlin-1 promotes DRG
neurite outgrowth on tenascin-C and aggrecan

To study the independent and synergistic effects of a9 integrin
and kindlin-1 in vitro, dissociated and explant adult DRG cul-
tures were used to assess neurite outgrowth. Dissociated DRG
neurons were transfected with the fusion constructs a9—eYFP
and/or kindlin1-mCherry, alongside mock-transfected controls.
Transfected DRG neurons were cultured on a substrate of
laminin (10 ug/ml) alone or tenascin-C (10 ug/ml) with or with-
out aggrecan (10 ug/ml) for 3 d (Fig. 1A—C). Because of a lack of
commercially reliable antibodies for a9 integrin and kindlin-1,
the immunostaining of eYFP was used for detecting a9 integrin
and mCherry for kindlin-1. In all cases, BIII-tubulin staining was
used for neurite length analysis, but &9 integrin and kindlin-1
colocalized with BIII-tubulin being present throughout the ax-
ons (Fig. 1A). On laminin, the average neurite length was ~210
um for all groups with no statistical differences (Fig. 1B). On
tenascin substrates, there was almost no growth except from neu-
rons transfected with a9 integrin: the a9-only (121 = 30 um)
and a9 + kindlinl (110 *= 34 um) groups had significantly
greater neurite outgrowth (***p = 1.0le ~°, two-way ANOVA,
n = 5 repeats of 20 neurons each) compared with the control
(32 = 8 um) and kindlinl-only (29 * 9 um) groups (Fig. 1C).
On tenascin-C + aggrecan, the a9-only group showed a signifi-
cant inhibition of neurite outgrowth by aggrecan (73 = 18 pum;
**p = 0.00274, two-way ANOVA, n = 5). The a9 + kindlinl
group extended long neurites on tenascin-C + aggrecan (126 =
30 wm), reversing the inhibitory effect of aggrecan.

To further study the synergistic effect of a9 integrin and
kindlin-1, we used DRG explant cultures. Specifically, the left
C5-C7 DRGs were injected in vivo with the viruses AAV5—fGFP,
AAV5-a9-V5, and/or AAV5-kindlin1-GFP 4 weeks before be-
ing harvested for explant culture. The DRG explants were cul-
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Figure 3.

Expression of &9 integrin and kindlin-1in DRG neurons 4 weeks after direct injection. A, In situ hybridization of AAV5—c9 —V5 or AAV5—kindlin1-GFP injected DRG sections, labeled

with antisense and sense probes for 9 integrin or kindlin-1. Scale bar, 500 wm. B, DRG sections injected with AAV5—fGFP, AAV5—a9 V5 and/or AAV5—kindlin1-GFP. Scale bar, 500 wm. C,
Transduction efficiencies of AAV5—fGFP, AAV5—a9—V5, and AAV5— kindlin1-GFP in DRG neurons, expressed as mean == SEM, n = 5. D, DRG sections injected with AAV5—a9 V5 or AAV5—

kindlin1-GFP, colabeled with antibodies to NF200 or CGRP. Scale bar, 50 m.

tured on a substrate of laminin or tenascin-C + aggrecan for 5 d
(Fig. 1D-F). On laminin, the average neurite length was ~1000
pm for all groups (Fig. 1E), with an average of 43 neurites per
field of observation (Fig. 1F). On tenascin-C + aggrecan, the a9
and a9 + kindlinl groups extended significantly longer neurites
(***p = 1.76e ~°, one-way ANOVA, n = 5) than the f{GFP con-
trol group (Fig. 1E). The @9 + kindlinl group had the longest
average neurite outgrowth (757 = 221 uwm), followed by a9-only
(584 = 233 um), kindlinl-only (224 = 82 wm), and fGFP (55 *
21 pm). For the number of neurites per field of observation,
the a9 + kindlinl group had 34 * 10 neurites (***p =
4.77¢ 77, one-way ANOVA, n = 5), and the a9-only group had
15 = 5 neurites (**p = 0.00364, one-way ANOVA, n = 5)
compared with <10 neurites in the kindlinl-only and fGFP
groups (Fig. 1F).

Additionally, the overexpression of kindlin-1 increased the
phosphorylation of FAK (*p = 0.0108, one-way ANOVA, n = 5),
demonstrated by an increased immunoreactivity to pY397 FAK
in the kindlinl-only (1.2 = 0.4 unit) and a9 + kindlinl (1.3 *
0.1 unit) groups (Fig. 2A,B), indicating downstream signaling
cascades triggered by integrin activation (Tan et al., 2011). Col-
lectively, these experiments showed that, in both dissociated and
explant cultures, a9 integrin expression allowed neurite growth
on tenascin-C, but this was inhibited by the presence of aggrecan,
confirming our previous results. However, additional expression
of kindlin-1 with a9 integrin allowed the neurites to overcome
the inhibitory effect of CSPG (aggrecan).

Expression of 9 integrin and kindlin1 in vivo by AAV
Previous studies have shown that adult rat DRG neurons do not
express a9 integrin or kindlinl (Andrews et al., 2009; Tan et al.,
2012; Chiu et al., 2014). To express a9 integrin and kindlinl
ectopically in vivo in DRG neurons, we used AAV5 to package the
fusion constructs AAV-CMV—GFP, AAV-CAG-a9-V5, and
AAV-CMV-kindlin1-GFP. Compared with lentivirus and other
AAV serotypes (1, 2, 3, 4, 6, and 8), AAVS5 has the highest effi-
ciency in transducing DRG neurons over a long time course, up
to 12 weeks, when injected directly into the DRG (Mason et al.,
2010).

First, we confirmed that our AAVs will cotransduce sensory
neurons. Four weeks after direct injection of AAV5-a9-V5 and
AAV5-kindlin1-GFP into C6—C7 DRGs, in situ hybridization
confirmed the positive expression of a9 integrin and kindlinl
mRNAs, respectively (Fig. 3A). Immunostaining analysis of
virus-injected DRG sections showed that AAV5—fGFP had a
transduction efficiency of 44 * 6%, whereas AAV5-a9-V5had a
transduction efficiency of 28 = 3%, with 33 = 4% for AAV5—
kindlin1-GFP and 25 * 6% for the cotransduction of AAV5—
a9-V5 + AAV5-kindlinl1-GFP (Fig. 3B,C). Transduction
efficiencies were obtained by measuring the ratio of GFP and/or
V5-positive cell bodies with BIII-tubulin-positive cell bodies.
Furthermore, additional immunostaining showed that AAV5-
a9-V5 and AAV5-kindlinl-GFP transduced both large-
diameter NF200-positive and small-diameter CGRP-positive
DRG neurons (Fig. 3D). Within the DRG and dorsal root, many
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axons containing both a9 integrin and
kindlin1, visualized by V5 and GFP stain-
ing, respectively, were seen, and bright
kindlin1-GFP-containing axons were
clearly seen passing up the spinal cord and
innervating the cuneate nucleus, validat-
ing it as a good axon tracer equivalent to
GFP alone. The staining of a9-V5 was
dimmer because of the limitations of the
antibody recognizing the short V5 tag, but
in most cases, axons were seen in the dor-
sal column up to the top of the spinal
cord.

Expression of both a9 integrin and
kindlin-1 promotes sensory axon

A  RIGHT (control)

Intact
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LEFT (1 week after dorsal root crush)

Injured Cut

25uv|

5ms

regeneration in vivo in a time- B
dependent manner

Cuneate nucleus (no dorsal root injury)

AAV5-a9-V5, AAV5-kindlin1-GFP, or
a combination of the two or AAV5—-{GFP
control was injected into the left C6 and
C7 DRGs at the same time as a concurrent
quadruple left C5-C8 dorsal root crush
injury in adult rats (four groups of n =
10). Lesions of these four dorsal roots
have been demonstrated to be a useful
model for forepaw deafferentation (Wu et
al., 2009). Twelve weeks after virus injec-
tion and injury, axon quantification was
performed on the C7 segment of the spi-
nal cord, corresponding to the C7 der-
matome map and the area of the forepaw
for behavioral testing and electrophysiol-
ogy (Takahashi and Nakajima, 1996). De-
pending on which AAV5 the animal had
been injected with, the immunostaining
of fGFP, the V5 tag on «9, and/or the GFP
tag on kindlin-1 was used as a neuronal tracer for axon quantifi-
cation. In addition, in all animals, CTB was injected into the left
forepaw as an additional neuronal tracer to ensure that regener-
ation measures were not confused by the use of different labels
and to confirm for the completeness of dorsal root axotomy
through staining of terminals in the cuneate nucleus.

Figure 4.

Completeness of dorsal root axotomy

To verify the completeness of axotomy in our crush injury model,
we examined the degree of denervation in the spinal cord using
electrophysiology and anatomy. One week after dorsal root crush
injury, electrophysiological recordings from the dorsal horn in a
group of five animals showed no compound action potential, and
no additional change was observed when the root was cut subse-
quently (Fig. 4A). In the main experiment, we used connection to
the cuneate nucleus as an indicator of incomplete lesioning. In
addition to kindlin-1, which can be observed filling axons and
terminals in the cuneate nucleus of animals with no dorsal root
injury, we also used CTB for transganglionic tracing of the dorsal
column axons (Fig. 4B). This allowed us to further verify the
completeness of our crush injury by excluding animals that
showed visible CTB and/or kindlin-1 staining in the cuneate nu-
cleus from all anatomical, behavioral, and electrophysiological
analyses. Using this criteria, from a total of 58 animals that un-
derwent surgery, we excluded three animals that showed evi-
dence of incomplete crush injury in the cuneate nucleus.

Kindlin-1

Dorsal root crush injury denervates the spinal cord. 4, Electrophysiological recordings at the right C7 dorsal horn with
right (7 dorsal root intact as an internal control, and the left C7 dorsal horn with left (7 dorsal root 1 week after injury and then cut
subsequently, n = 5. B, Section of cuneate nucleus from animals injected with AAV5—kindlin1-GFP or CTB with no dorsal root
crush injury. Animals that showed visible CTB and/or kindlin-1 staining in the cuneate nucleus were excluded from all analyses (3
of 58 animals). Scale bar, 250 m.

Regeneration in the dorsal root, dorsal root entry zone, and
C7 spinal cord segment

To assess ingrowth into the cord from the virus-injected C7
DRG, we analyzed axon regeneration in the dorsal root, dorsal
root entry zone (DREZ), and C7 spinal cord (Fig. 5A). Within
the dorsal root, all groups had ~47 regenerated axons per 14
um section (three sections per animal, n = 10) distal to the
crush site with no significant difference found between groups
(Fig. 5B). Within the DREZ, all three experimental groups,
a9-only (12 * 3 axons), kindlinl-only (15 = 4 axons), and a9
+ kindlinl (13 * 3 axons), showed significantly more axons
per 14 um section (three sections per animal, *p = 0.0466,
one-way ANOVA, n = 10) than the fGFP control group (2 £ 1
axons; Fig. 5C). In the C7 spinal cord segment, both the
kindlinl-only (22 % 5 axons) and a9 + kindlinl (48 * 10
axons) groups had significantly more axons per section (three
sections per animal, ***p = 7.99¢ 4, one-way ANOVA, n =
10) than the fGFP control (0.3 = 0.2 axons) and a9-only (2 =
0.5 axons) groups (Fig. 5D). Furthermore, the a9 + kindlinl
group had significantly more axons per section (*p = 0.0361,
one-way ANOVA, n = 10) than the kindlinl-only group. Ax-
ons expressing both a9 integrin and kindlin-1 were observed
in the spinal cord, especially in the cuneate fasciculus and
dorsal horn (Fig. 5E, G). For the fGFP control group, no axons
were observed growing into the DREZ and spinal cord
(Fig. 5F).
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Figure 5.  Coexpression of a9 integrin and kindlin-1 promotes sensory axon regeneration into the spinal cord at level (7. A, Dorsal root, DREZ, and spinal cord (7 sections 12 weeks after being
injected with AAV5—fGFP, AAV5—a9 —V5, and/or AAV5— kindlin1—-GFP and followed by dorsal root crush injury. Scale bar, 250 um. B, D, The number of axons per section in the dorsal root (B), DREZ
(€), and (7 spinal cord (D) after 12 weeks of treatment, three sections per animal, analyzed by one-way ANOVA and expressed as mean == SEM. *p << 0.05, **p << 0.01, and ***p << 0.001 were
statistically significant, n = 10 per group. E, Axons coexpressing kindlin-1 and «9 integrin in the spinal cord. Scale bar, 50 wm. F, G, Spinal cord sections at level (7 of AAV5—fGFP (F) or
AAV5-a9-V5 + AAV5—kindlin1-GFP (G) injected animals 12 weeks after dorsal root crush injury. The white-dotted lines represent the region of dorsal root crush. Scale bar, 650 m.
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Figure 6.  Coexpression of &9 integrin and kindlin-1 promotes sensory axon regeneration in the dorsal column up to C1 level and the medulla. 4, B, Diagrams representing a single 14 um
parasagittal spinal cord section of AAV5—a9 -V5 + AAV5—kindlin1-GFP (A) or AAV5—a9 —V5 (B) injected animals 12 weeks after dorsal root crush injury, showing regenerating axons in various
regions along the spinal cord. Scale bar, 250 m. The diagrams were produced by drawing the axons from single sections taken from the middle of the dorsal horninto the arrowed squares and then
interpolating between them. Each dorsal column is ~600 wm across or ~40 parasagittal 14 m sections. €, The maximum length (in millimeters) of regenerating axons observed along the spinal
cord for each group, analyzed by one-way ANOVA and expressed as mean == SEM. ***p < 0.001 was statistically significant, n = 5. D, The number of axons per section at (5/C6, (3/C4, and (2/C1
spinal cord segments of the &9 + kindlinT group, expressed as mean = SEM, n = 5.
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Coexpression of &9 integrin and kindlin-1 promotes axonal reconnections in the spinal cord. 4, Ipsilateral spinal cord (7 sections showing kindlin1-positive regenerating axons that are

immunopositive for NF200 in the dorsal column and CGRP and IB4 in the dorsal horn. The contralateral control side is the corresponding uninjured region of the spinal cord. Scale bar, 50 um. B, The
composition of axonal subtypes NF200, CGRP, and IB4 in laminae |-l and laminae |1V of the dorsal horn on the ipsilateral regenerated and contralateral control sides. Results expressed as mean =+
SEM, three sections per animal, n = 5. €, Spinal cord section showing potential synaptic reconnections of kindlin1-positive axonal terminals with VGluT2-positive neurons in the dorsal horn. Scale

bar, 50 pm.

Long-distance regeneration in the spinal cord with dual
expression of a9 integrin and kindlin-1

For animals treated with both «9 integrin and kindlin-1, addi-
tional assessment along the spinal cord revealed regenerated ax-
ons in the dorsal column all the way up to level C1 and medulla
with no kindlin1- or CTB-immunopositive axons observed in the
cuneate nucleus (Fig. 6A). However, only a limited amount of
regeneration with less than a spinal segment was observed in
animals treated with a9 integrin only (Fig. 6B). The long-distance
regeneration with a maximum axon length averaged between
animals of 25 * 3 mm observed in the a9 + kindlin1 group was
highly significant (**p = 1.66e ~'°, one-way ANOVA, n = 5)

compared with the fGFP, a9-only, and kindlin1-only groups in
which only one segment or less (=4 mm) regeneration was ob-
served (Fig. 6C). In the @9 + kindlinl group at C5/C6 segment,
an average of 31 axons per section was counted, whereas at C3/C4
and C1/C2 segments, there was still a robust projection with ~10
axons per section (Fig. 6D).

Additionally, further assessment of those regenerated axons
revealed that a proportion of the regenerated kindlinl-positive
axons were NF200, CGRP, and IB4 immunopositive (Fig. 7A).
Many NF200-immunopositive axons were observed as axons of
passage in the cuneate fasciculus of the dorsal column. Within the
dorsal horn, we counted the proportion of kindlin1-positive re-
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generated processes that stained for the
three markers. NF200 processes were

AAV5-a9-V5 + AAV5-kindlin1-GFP

17 £ 6% in laminae I-II (substantia gela-
tinosa) and 59 * 8% in the deeper lami-

Dorsal root

DREZ Spinal cord

nae [II-V (nucleus proprius) of the dorsal
horn. CGRP processes were 44 = 10% in
laminae I-II and 21 * 7% in laminae
III-V, and IB4-immunopositive processes
were 32 = 8% in laminae 1-1I and 14 *
4% in laminae I1I-V. The innervation pat-
tern of axonal subtypes was similar to nor-
mal spinal cord but less precise (Fig. 7B).
Using confocal microscopy of single opti-
cal slices, kindlinl-expressing sensory
axon terminals were observed in the dor-
sal horn to be colocalized with the
VGIuT2 puncta of dorsal horn neurons,
indicating potential synaptic reconnec-
tions (Fig. 7C). Together, these data show
that axons expressing both a9 integrin
and kindlin-1 are able to regenerate
through the DREZ, in which they follow
appropriate pathways and terminal zones
within the spinal cord, and within 12
weeks, they can grow for up to seven spi-
nal segments and >25 mm in length. B

3 weeks

6 weeks

Time course of regeneration

For the @9 + kindlinl group, we further
assessed axon regeneration at the 3 and 6
week time points in an additional set of
animals (two groups of n = 5; Fig. 8A). At
3 weeks (which is the time it takes for
maximal AAV-driven expression to build
up), regenerating axons were observed in
the dorsal root (27 = 5 axons per section,
three sections per animal, n = 5), with a
few in the DREZ (3 * 1 axons, three sec-
tions per animal, n = 5), and none were
found in the spinal cord (Fig. 8B). At 6
weeks, significantly more regenerating ax-
ons were observed in the DREZ (14 = 3
axons per section, three sections per ani-
mal, *p = 0.0414, Student’s t test, n = 5)
and spinal cord (25 * 4 axons per section,
3 sections per animal, **p = 0.00951, Student’s ¢ test, n = 5).
Together with the data obtained at the 12 week time point, these
data demonstrate that expression of both a9 integrin and
kindlin-1 significantly promotes sensory axon regeneration in a
time-dependent manner because the level of regeneration was
observed to increase over time from 3 to 6 to 12 weeks.
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Figure 8.

Changes in extracellular matrix molecules in the DREZ

For this study, the DREZ was defined as the segment in the dorsal
root that was immunonegative for laminin (Fig. 9A). Laminin
was highly expressed in the dorsal root but not in the DREZ
central where the dorsal root joins the spinal cord. Additionally,
the immunoreactivity of laminin does not change in the DREZ
after injury (McPhail et al., 2007), hence the staining of laminin is
a good delineator between the PNS and CNS environments of the
dorsal root. Twelve weeks after dorsal root crush injury, there was
an upregulation of CSPGs in the injured dorsal root and of
tenascin-C in the DREZ (Fig. 9B). A dorsal root crush did not

Kindlin-1/;/

AAV5-09-V5 + AAV5-kindlin1-GFP

B 3 weeks 06 weeks

——
DREZ

Dorsal root Spinal cord

Coexpression of «9 integrin and kindlin-1 promotes sensory axon regeneration in a time-dependent manner. 4,
Dorsal root, DREZ, and spinal cord (7 sections 3 and 6 weeks after being injected with AAV5—a9 —V5 + AAV5— kindlin1-GFP and
followed by dorsal root crush injury. Scale bar, 250 pum. B, The number of axons per section in the dorsal root, DREZ, and spinal cord
after3 and 6 weeks of treatment, three sections per animal, analyzed by Student’s t test and expressed as mean == SEM. *p << 0.05
and **p << 0.01 were statistically significant, n = 5.

upregulate the expression of CSPGs and tenascin-C in the con-
tralateral uninjured dorsal root (Fig. 9B). Axons in the f{GFP con-
trol group did not grow into the tenascin-C-rich DREZ, whereas
axons expressing both a9 integrin and kindlin-1 were observed
growing beyond the tenascin-C-rich DREZ and into the spinal
cord (Fig. 9C). This is consistent with our in vitro experiments,
with tenascin-C in the DREZ being inhibitory to sensory axon
regeneration. However, for axons expressing a9 integrin, this
tenascin-C would be a growth-promoting substrate.

Treatment with a9 integrin and kindlin1 promotes
electrophysiological reconnection

To further investigate functional sensory axon regeneration, elec-
trophysiological recording was performed at the end of the 12
week experimental time point. The left dorsal roots C4, C5, C8,
and T1 were cut acutely to eliminate spinal inputs from overlap-
ping dermatomes but leave C7 intact. Extracellular platinum—
iridium recording electrodes were inserted into the left and right
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Figure9.  DREZisa barrier for DRG axon regeneration. 4, The DREZ (white-bordered area) is
defined as the segment in the dorsal root that is immunonegative for laminin. Scale bar, 500
wum. B, Spinal cord section labeled with antibodies to chondroitin sulfate (CS) chain and
tenascin-C to show the upregulation of CSPGs in the injured dorsal root and tenascin-C in the
DREZ 12 weeks after dorsal root crush injury. Scale bar, 250 wm. €, Spinal cord section of
AAV5—GFP or AAV5—a9 V5 + AAV5—kindlin1-GFP injected animals 12 weeks after dorsal
root crush injury, showing that fGFP-expressing axons do not grow into the tenascin-C-rich
DREZ, whereas 9 integrin and kindlin1-expressing axons grow beyond the tenascin-C-rich
DREZ and into the spinal cord. Scale bar, 250 pum.

C7 dorsal horns. At the 12 week time point, there were large
differences in the size of the dorsal column compound action
potentials recorded from the control and three experimental
groups (a9-only, kindlinl-only, and a9 + kindlin1) (Fig. 10A).
In all cases, when the C7 dorsal root was cut subsequently during
the recording session, the compound action potential was com-
pletely eliminated. We saw no evidence of reconnection in the
fGFP control group. Compared with the f{GFP control group (3 =
0.2 wV), the @9 + kindlinl group showed the highest peak-to-
peak voltage amplitude of 64 = 20 uV (**p = 0.00352, one-way
ANOVA, n = 5), followed by the a9-only (21 £ 5 wV) and
kindlinl-only (21 = 1 wV) groups (*p = 0.0266, one-way
ANOVA, n = 5; Fig. 10B). This was compared with an amplitude
of 159 = 20 wV in uninjured controls.
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Treatment with &9 integrin and kindlin-1 promotes sensory—

motor behavioral recovery

To examine sensory behavioral recovery, mechanical pressure
(Randall-Selitto touch sensitivity) test, thermal pain (Har-
greave’s hotplate) test, and uneven-rung ladder-walking task
were administered up to 1 week before the surgery with pretrain-
ing on the ladder and then weekly after surgery for 12 weeks. One
week after surgery, the experimental left forepaw from all groups
showed significant sensory deficits in all three behavioral tests
compared with presurgery levels (Fig. 11A—C). This was indi-
cated by a higher withdrawal force and a longer withdrawal time
required to initiate paw withdrawal, together with an almost
complete inability to place the left forepaw on the rungs during
the ladder-walking task.

In the mechanical pressure test, the «9 + kindlinl group
started to show a significant recovery (**p = 0.00926, repeated-
measures ANOVA, n = 10) from week 8, whereas the other three
groups, fGFP control, a9-only, and kindlin1-only, did not show
any significant recovery (Fig. 11A). In the thermal test, all three
experimental groups (a9-only, kindlinl-only, and a9 + kind-
lin1) showed a significant recovery (*p = 0.0271, repeated-
measures ANOVA, n = 10 per group) compared with the f{GFP
control group (Fig. 11B). The a9 + kindlinl group showed a
faster and more significant recovery at an earlier time point (week
5) compared with the kindlin1-only (week 7) and a9-only (week
8) groups. In the ladder-walking task, the control group showed
very inaccurate limb placement throughout. The 9 + kindlinl
group showed significant recovery in limb proprioception (**p =
0.00631, repeated-measures ANOVA, n = 10) from week 9, and
the kindlin1-only group possibly showed marginal recovery from
week 11 (*p = 0.0429, repeated-measures ANOVA, n = 10), but
the fGFP control and a9-only groups did not recover (Fig. 11C).
Together, these results indicate that the 9 + kindlinl group
showed excellent sensory recovery in the mechanical pressure
and thermal tests and excellent sensory—motor recovery in the
ladder-walking task. The kindlin1-only group showed a delayed
recovery in the thermal and possibly ladder-walking tests,
whereas the a9-only group showed recovery only in the thermal
test and the fGFP control group showed no recovery in any test.

Discussion

This study demonstrates that sensory axons are able to regenerate
for substantial distances after a dorsal root axotomy provided
that they have on their surface an integrin coexpressed with an
inside-out activator, kindlin-1. a9 integrin binds to tenascin-C, a
constituent of the nonpermissive environment in the adult spinal
cord, and kindlin-1 prevents it from being deactivated by CSPGs.
Our previous studies (Andrews et al., 2009, Tan et al., 2012)
showed that expression of either a9 integrin or kindlin-1 in DRG
neurons could enhance regeneration of axons into the spinal cord
through the DREZ, but there was little growth from this point of
entry along the length of the cord. In this study, we show that the
combinatorial expression of @9 integrin and kindlin-1 promotes
axon regeneration over remarkably long distances, 25 mm or
seven spinal levels and more, all the way up to the medulla. The
regenerating axons follow a relatively normal pathway, re-form
synaptic connections in appropriate regions of the dorsal horn,
and can re-establish sensory and sensory—motor behaviors. Al-
though the combination of @9 integrin and kindlin-1 enabled
useful reconstruction of sensory connections and function, our
results with a9 integrin alone or kindlin-1 alone confirm our
previous studies, promoting regeneration for 4 mm or less with
only recovery of heat sensation.
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Expression and activation of an A
appropriate integrin RIGHT (control)
Axons will not grow unless they have on Intact

their surface a receptor that recognizes a

ligand in their environment. Our previous

work has identified a9 integrin as such a

receptor, recognizing tenascin-C, which is

present in the DREZ and CNS environ-

ment. However, axon regeneration in vivo

after expression of this integrin was mod-

est (Andrews et al., 2009). The probable

reason for the limited effect of a9 integrin

in vivo is that it is inactivated by CSPGs

and Nogo-A found in the injured CNS

(Hu and Strittmatter, 2008; Tan et al.,

2012). The signaling pathway is not iden-

tified, but intracellularly, the Rho/Rho ki-

nase (ROCK) pathway has been suggested

to mediate the growth inhibition of

CSPGs (Monnier et al., 2003) and myelin- B
associated inhibitors (Niederost et al.,
2002), and integrin-mediated suppres-
sion of the Rho/ROCK pathway is re-
quired to promote cell motility (Arthur et
al., 2000). Additionally, kindlin-1 (Tan et
al., 2012) and full-length talin (Tan et al.,
2015) have been shown to promote neu-
rite outgrowth in the presence of CSPGs
by binding to 1 integrin for integrin ac-
tivation, resulting in increased integrin
signaling via FAK and integrin linked ki-
nase (Schaller et al., 1995; Novak et al.,
1998). Kindlins activate integrins by bind-
ing to the f tail via their FERM domain.
They also bind to phosphatidylinositol-
3,4,5-triphosphate and paxillin (Rognoni
etal., 2016; Theodosiou et al., 2016). Full-
length talin cannot be used for promoting neuronal regeneration
because of its large size, and the talin head, which contains the
integrin-binding and activating site, inhibits axon growth, prob-
ably by competing with full-length talin (Tan et al., 2015).

In the present experiments, we expressed a9 integrin, which
combines with the pool of 81 subunit in adult DRG neurons, to
produce a9f1 integrin, which can then be activated via the
inside-out pathway using kindlin-1. Tissue culture experiments
using dissociated adult DRG neurons and adult DRGs trans-
duced in vivo showed that @91 integrin promotes growth on
tenascin-C, but this growth is inhibited by CSPGs. Activation
with kindlin-1 enables the axons to overcome this CSPG inhibi-
tion. The same combination of molecules was then transduced
into DRG neurons in vivo coupled with dorsal root crush injury.
Axons expressing either a9 integrin or kindlin-1 alone showed
limited regeneration through the DREZ into the cord, but only
the synergistic effect of @9 integrin and kindlin-1 coexpression
resulted in a combined effect, which led to much greater axon
regeneration, with many axons regenerating seven or more spinal
levels to and beyond C1, for a length of up to 25 mm and above.
It will be important to study the regenerative effect of a9 integrin
and kindlin-1 coexpression when the injury is placed in the spinal
cord rather than the dorsal root. Tenascin-C is strongly up-
regulated around spinal injuries, so it is probable that axons
expressing activated a9 integrin will grow extensively in this
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Treatment with «9 integrin and kindlin-1 promotes electrophysiological improvement. A, Electrophysiological
recordings at the right C7 dorsal horn with right (7 dorsal root intact as an internal control, and the left C7 dorsal horn with left (7
dorsal root injured (12 weeks after crush/regeneration) and then cutin fGFP, 9, kindlin1, and &9 + kindlin1 treatment groups.
B, Peak-to-peak voltage amplitude of the intact/injured recordings from each treatment group, analyzed by one-way ANOVA and
expressed as mean == SEM. *p << 0.05 and **p << 0.01 were statistically significant, n = 5.

environment, as they did through the upregulated tenascin-C
at the DREZ in the present study.

It is interesting that kindlin1-only expressing axons were able
to grow a limited distance into the spinal cord, whereas kindlin-1
did not increase growth in our in vitro experiments. We assume
that this occurs because DRGs express various integrins, such as
aVB8 and a7B1 (Chiu et al, 2014; Tucker and Chiquet-
Ehrismann, 2015), which become activated, allowing them to
interact with various integrin ligands in the spinal cord, whereas
in the in vitro assay, only tenascin-C and aggrecan were present.
These kindlinl-activated integrins were able to produce some
axon growth but were relatively ineffective compared with acti-
vated @91 integrin.

Long-distance axon regeneration in the spinal cord

We have demonstrated complete axotomy electrophysiologically
and by using two tracers to demonstrate complete denervation of
the cuneate nucleus; this was a good control because no axons
regenerated back to the cuneate nucleus. We also examined the
time course of regeneration, finding regeneration into the DREZ
at 3 weeks, to the lower cervical cord at 6 weeks, and to C1 and
above at 12 weeks. To date, dorsal column regeneration to the
nucleus has only been reported in cases with high cervical lesion
and with neurotrophin stimulation (Alto et al., 2009; Bonner et
al.,2011) or atalonger experimental time point of up to 6 months
after treatment with artemin (Wang et al., 2008; Wong et al.,
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Behavioral recovery

Animals receiving treatment of both a9
integrin and kindlin-1 showed good re-
covery in all three behavioral tests despite
no direct reinnervation of the cuneate nu-
cleus. The observation that thermal pain
sensation is restored even with the very
limited and local reinnervation that we
saw in the a9 integrin or kindlinl-alone
groups is consistent with the view that

WITHDRAWAL FORCE (GRAMS)
w
o

heat withdrawal is a local spinal reflex.
However, mechanical pressure sensation
and ladder-walking proprioception were
restored only in those animals treated
with both a9 integrin and kindlin-1, sug-
gesting that a more complete reinnerva-
tion is required for these behaviors.
Although there was no direct reinnerva-
tion of the cuneate nucleus, it is possible
that propriospinal neurons received input
from regenerated axons and then relayed
information up to the brain.
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The prolific regeneration that we have
seen in sensory axons forced to express a9
integrin and kindlin-1 begs the question
of whether this strategy could be used to
promote regeneration of CNS axons.
However, there are problems with this ap-
proach. Integrins are transported readily

down adult DRG neurons to be inserted
into the growth cones (Eva et al., 2010,
2012), explaining how a9 integrin expres-
sion can promote dorsal column regener-
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Figure11. Treatmentwith «9integrinand kindlin-1 promotes sensory behavioral recovery. A—C, Mechanical pressure test (4),

thermal test (B), and ladder-rung walking task (C) on the experimental left forepaw, before the surgery and during weeks 1-12
after surgery. The results were analyzed by repeated-measures ANOVA and expressed as mean == SEM. *p << 0.05and **p << 0.01

were statistically significant, n = 10 per group.

2015). Combinatorial overexpression of two neuronal intrinsic
regeneration-associated genes, GAP43 and CAP23 (Bomze et al.,
2001), or four regeneration-associated transcription factors, ac-
tivating transcription factor 3, c-Jun, signal transducer and acti-
vator of transcription 3, and Smadl (Fagoe et al., 2015), have
produced relatively modest sensory axon regeneration. The cur-
rent approach of combining an integrin with an integrin activator
seems to be the most effective strategy to boost the intrinsic re-
generative capacity of an injured sensory neuron.

The pathway taken by the regenerating axons was remarkably
normal, with most NF200-positive axons traveling in the dorsal
column and reinnervation of the dorsal horn by NF200-, CGRP-,
and IB4-positive processes being mainly in the correct layers,
although less precise than normal. This implies either that some
axon guidance information remains in the denervated adult cord
and/or that the axons were following the physical pathways of the
degenerated axons. We did not see evidence of axonal misguid-
ance or wandering as observed in some recent regeneration ex-
periments (Luo et al, 2013). We suggest that stimulation of
regeneration through expression of an appropriate surface recep-
tor allows for normal signaling within the axons, whereas maxi-
mal direct activation of signaling pathways might render axons
dazzled and unable to see features in their environment.

ation, but trafficking of integrins in
cortical neuron axons is very different.
During developmental growth, cortical
neurons transport integrins, but with
neuronal maturity integrins become re-
stricted to the somatodendritic domain
and are excluded from the axons, hence
contributing to the developmental loss of regenerative ability in
CNS axons (Heintz et al., 2014; Franssen et al., 2015). Extension
of the @9 integrin—kindlin1 approach to CNS axons will require a
solution to this issue. However, it is now reasonable to ask
whether it would be possible to restore useful sensation to pa-
tients with spinal injuries. Restoration of sensation would enable
patients to avoid burns, pressure sores, and other damage and to
improve manipulative ability. In addition, restoration of genital
sensation is a desired outcome for many patients (Anderson,
2004).
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