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Abstract

A novel implicit parametric shape model is proposed for segmentation and analysis of medical 

images. Functions representing the shape of an object can be approximated as a union of N 
polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can 

be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape 

model is initialized using seed points defined by the user. We define a cost function based on the 

Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization 

algorithms are used to find the model parameters.
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 1. INTRODUCTION

Shape models play an important role in many problems in biomedical imaging such as 

segmentation and analysis of variability in populations. Shape models can be categorized 

into several broad categories. First, shape models are either explicit where points on the 

curve/surface being modeled are directly represented or they are implicit where points on the 

curve/surface are embedded as a level set of a function. Second, shape models can also be 

categorized as parametric or non-parametric. A list of points on a 3D surface would be 

considered a non-parametric explicit model whereas snakes [1] and B-splines [2] are 

parametric explicit models. The most common implicit shape representation is the level set 

method [3, 4, 5], which is non-parametric. Parametric, implicit models are rarer and include 

algebraic curves and surfaces [6, 7]. In this paper, we propose a novel parametric, implicit 

shape model which we call the Disjunctive Normal Shape Model (DNSM). We approximate 

the characteristic function of a shape as a union of convex polytopes which themselves are 

represented as intersections of half-spaces in 2D or 3D. This type of representation of a 

Boolean function is known as the disjunctive normal form [8]. Next, we convert the 

disjunctive normal form into a differentiable model by: 1) using DeMorgan’s laws [8] to 

replace unions with intersections and complements, 2) representing intersections of half 

spaces as a product of perceptron equations and 3) relaxing the perceptrons used in 

representing the half-spaces to logistic sigmoid functions. We also take a variational 

approach and propose a simple cost function based on the Chan-Vese energy that can be 
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used to drive the proposed model for segmenting objects in biomedical images. In this paper, 

we demonstrate the experimental results of segmentation for different modalities, retinal 

cells from confocal microscopy images in zebrafish, cardiac CT image, knee MR image, 

tumors in multimodal MRI brain images. While we focus on the mathematical foundation of 

the proposed model and its application to data-driven, region-based image segmentation in 

this paper, it is possible to extend its use to other segmentation scenarios. For instance, given 

a set of training shapes, prior distributions for the model parameters can be learned and used 

in segmenting new images. Along with such prior distributions, one can also use DNSMs in 

conjunction with atlas-based initializations. Finally, the statistics of the model parameters 

can also be useful in analyzing shape variability.

 2. RELATED WORK

The pioneering work of Mumford and Shah [9] exemplifies variational approaches to image 

segmentation without any explicit ties to a shape model. Methods such as snakes [1] also 

employ energy minimization in conjunction with a specific shape model. Among such 

methods, variational image segmentation with level-sets has been a popular choice due to 

properties such as adaptive topology of level sets which can naturally change during 

evolution [10, 11]. However, due to their non-parametric nature level-set propagation always 

has to include a regularization term such as a penalty on curve length/surface area or 

curvature [12]. On the other hand, regularization is inherent in our model due to the limited 

amount of representation power afforded by its parametric nature. The proposed DNSM 

model is implicit and parametric. It has the advantage of being parametric which will can 

allow us to easily learn statistics and place regularizing priors on the shape model and it has 

the advantage of being an implicit representation which allows the model to naturally change 

topology during its evolution if needed. Graph-cut methods have become a popular 

alternative to level-set based segmentation [13, 14]. The use of interactive segmentation 

methods have been favored in scenarios when we need to segment a variety of regions. The 

GrabCut algorithm [15] uses iterative graph-cuts in an interactive fashion. Another popular 

interactive segmentation method is the random walks [16]. Our work is motivated by the 

recently proposed logistic disjunctive normal classifier [17].

 3. METHODS

Shapes can be represented with their characteristic function f : Rn → B where B = {0, 1}. 

Let Ωf = {x ∈ Rn : f(x) = 1} represent the foreground region. The foreground region Ωf can 

be approximated as the union of N convex polytopes  where the ith polytope is 

the intersection  of M half-spaces Hij = {x ∈ Rn : hij(x)}. The half-space Hij, in 

arbitrary dimensions is defined using the perceptron equation

(1)
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where wijk are the weights. Using Boolean logic any function b : Bn → B can be represented 

as a disjunction of conjunctions, known as the disjunctive normal form [8]. Hence, we can 

formulate the characteristic function for  as

(2)

such that . We would like to convert the disjunctive normal form of 

the function to a differentiable model. First, the conjunction of binary variables 

is equivalent to the product . Next, using De Morgan’s laws, we can express the 

disjunction  as negation of conjunctions, , which in turn can be 

replaced by . Finally, we relax the binary perceptrons hij(x) to logistic 

sigmoid functions,

(3)

The resulting approximation to the shape characteristic functions is then given as

(4)

 3.1. Parameter initialization

The parameters are initialized interactively using inputs from the user. The user defines a set 

of N seed points, Ci, i = 1 to N, for the foreground object such that they are well distributed 

in the region of interest. Using these seed points, we initialize the shape model with N 
polytopes and M = 32 logistic sigmoids per polytope. The polytopes are approximated as 

spheres with a fixed radius. This approximation is obtained by choosing the parameters as
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for varying values of θp, ϕq. We choose  and  for p = [1 ⋯ 8] and q = [1 ⋯ 4]. 

By using different combinations of θp and ϕq, we get parameters representing different 

planes.

 3.2. Energy Minimization

The cost function based on the Chan-Vese energy segments the image into foreground and 

background regions.

(5)

where cf and c0 are the average intensities in the foreground and background region and Ω0 

represents the background region. We fit the model to the data by minimizing this energy 

with respect to the weights W, using gradient descent. The gradient of the energy function 

with respect to the weights wijk is evaluated as follows:

The update equation is given as , where η is the step-size which needs 

to be tuned for every dataset.

 4. RESULTS

We present three experimental setups. We first experimented with confocal images to learn 

representations of retinal cells in zebrafish embryos. The underlying cell shapes are obtained 

by smoothing and thresholding the actual image. Segmentation of a cell with increasingly 

complex models is shown in Figure 1. We first start the segmentation with a single polytope, 

N = 1 and then refine the segmentation by increasing the number of polytopes. By 

comparing the segmentations for N = {1 ⋯ 5} polytopes, we see that the DNSM can capture 

complex boundaries. In this case, N = 3 captures most of the shape information while N = 5 

provides almost a perfect representation.

Next, to demonstrate the general applicability of our segmentation, we segment images of 

different organs from different modalities. The objects of interest in these images are varying 
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in size, shape, and contrast. We need to determine the number of polytopes needed to 

segment a region. We do this by varying the value of N and calculating the optimized energy 

of the DNSM, as seen in Figure 2. We see that the energy defined in Equation (5) decreases 

initially and stabilizes at N = 3, giving us the minimum number of polytopes needed to 

represent this object. We see in Figure 3(a), that the chosen N fits the knee nicely in terms of 

complexity. Since our algorithm is interactive, we also studied how sensitive the results are 

to the selection of seed points. The sensitivity of the placement of seed points is studied for a 

knee MR image and a CT cardiac image. The user defines a set of N seed points. These seed 

points are randomly shifted, the displacements are drawn from a normal distribution N(0, 

σ2). The segmentation is recomputed for the shifted seed points. The change in segmentation 

is calculated as the ratio of pixels that switched labels to the number of pixels originally 

labeled as foreground. The original images, segmentations and experimental results are 

shown in Figure 3. The experimental results are averaged over 20 trials. From the results, we 

observe that the algorithm is stable and produces a small change in segmentation for small 

displacements of the seed points.

While the previous results focused on demonstrating how the techniques works and 

sensitivity analysis, the last experiment is designed to obtain a quantitative assessment of the 

segmentation accuracy provided by our method. We applied our method to segment tumors 

in multimodal brain images in the BRATS-2012 dataset. We used the training set images 

which consists of 20 high grade images and 10 low grade images. The manual 

segmentations given had three intensity levels: 1 for edema, 2 for active tumor, and 0 for 

everything else. We only segmented the active tumor regions in this paper and used N = 5, M 
= 32. The visual segmentation results for the high grade and low grade real images are 

shown in Figure 4. Quantitative results for comparing the segmentation with automatic [18, 

19] and semiautomatic [20] methods in [21] is given in Table 1. We use the DICE 

coefficients to compute the similarity between the segmented shape and the manual 

segmentations. We see that the performance of our algorithm is comparable to the methods 

in the challenge for high grade images, while it outperforms them for low grade images.

 5. CONCLUSION

We proposed a novel implicit parametric shape model and an associated energy to segment 

objects of interest in medical images. The proposed method provides good segmentations 

even on low grade tumor images. We examined the sensitivity of the algorithm to the 

placement of seeds needed to represent a region. We also illustrated how we can capture 

complex boundaries by increasing the number of polytopes in the model for segmentation. A 

local Chan-Vese model can be used to further improve our segmentation results. One 

direction for future work is fully automated segmentation using the proposed model and 

atlas based initializations for tasks such as prostate or hippocampus segmentation. While we 

have used conjunctions of half-spaces in our current work, more application specific shape 

primitives will be considered in future work. Finally, given a set of training shapes, prior 

distributions for the model parameters can be learned and used as a regularization term in 

segmenting new images.
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Fig. 1. 
Segmentation of retinal cell in zebrafish embryo for N = 1 ⋯ 5.
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Fig. 2. 
Optimized energy of the shape model for varying N (knee MR image).
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Fig. 3. 
Sensitivity analysis of segmentation over 20 trials. Left: Seed initialization in green on 

original 2D image, the segmented region boundary in green, Right: Experimental results. 

The x-axis represents the standard deviation in pixels for the shift in the centroid positions. 

The y-axis represents the change in segmentation. The plotted line represents the mean, with 

error bar indicating the standard deviation.
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Fig. 4. 
Segmentation results for the BRATS 2012 dataset. Left: input weighted image (α T2 + β 

T1), manual segmentation (gray - edema, white - tumor), segmentation overlay on input 

image, Right: segmentation overlay on manual segmentation. The Top row shows an 

example of a high grade (HG) image and the bottom row shows an example of a low grade 

(LG) image.
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Table 1

Quantitative comparison of DICE coefficients for segmentation of the BRATS-2012 dataset (HG - high grade 

images, LG - low grade images).

Method HG LG

Zikic et al. [18] 0.71 0.62

Bauer et al. [19] (with std. dev.) 0.62±0.27 0.49±0.26

Hamamci et al.[20] 0.73 0.71

Our method 0.73 0.74
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